
Chapter 1

Introduction

In this chapter, we introduce the model of a communication system, as orig-
inally proposed by Claude E. Shannon in 1948. We will then focus on the
channel portion of the system and define the concept of a probabilistic chan-
nel, along with models of an encoder and a decoder for the channel. As our
primary example of a probabilistic channel—here, as well as in subsequent
chapters—we will introduce the memoryless q-ary symmetric channel, with
the binary case as the prevailing instance used in many practical applica-
tions. For q = 2 (the binary case), we quote two key results in information
theory. The first result is a coding theorem, which states that information
through the channel can be transmitted with an arbitrarily small probabil-
ity of decoding error, as long as the transmission rate is below a quantity
referred to as the capacity of the channel. The second result is a converse
coding theorem, which states that operating at rates above the capacity
necessarily implies unreliable transmission.

In the remaining part of the chapter, we shift to a combinatorial setting
and characterize error events that can occur in channels such as the q-ary
symmetric channel, and can always be corrected by suitably selected en-
coders and decoders. We exhibit the trade-off between error correction and
error detection: while an error-detecting decoder provides less information
to the receiver, it allows us to handle twice as many errors. In this context,
we will become acquainted with the erasure channel, in which the decoder
has access to partial information about the error events, namely, the loca-
tion of the symbols that might be in error. We demonstrate that—here as
well—such information allows us to double the number of correctable errors.

1.1 Communication systems

Figure 1.1 shows a communication system for transmitting information from
a source to a destination through a channel . The communication can be
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2 1. Introduction
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Figure 1.1. Communication system.

either in the space domain (i.e., from one location to another) or in the time
domain (i.e., by storing data at one point in time and retrieving it some time
later).

The role of source coding is twofold. First, it serves as a translator
between the output of the source and the input to the channel. For example,
the information that is transmitted from the source to the destination may
consist of analog signals, while the channel may expect to receive digital
input; in such a case, an analog-to-digital conversion will be required at
the encoding stage, and then a back conversion is required at the decoding
stage. Secondly, the source encoder may compress the output of the source
for the purpose of economizing on the length of the transmission; at the
other end, the source decoder decompresses the received signal or sequence.
Some applications require that the decoder restore the data so that it is
identical to the original, in which case we say that the compression is lossless.
Other applications, such as most audio and image transmissions, allow some
(controlled) difference—or distortion—between the original and the restored
data, and this flexibility is exploited to achieve higher compression; the
compression is then called lossy.

Due to physical and engineering limitations, channels are not perfect:
their output may differ from their input because of noise or manufacturing
defects. Furthermore, sometimes the design requires that the format of the
data at the output of the channel (e.g., the set of signals that can be read
at the output) should differ from the input format. In addition, there are
applications, such as magnetic and optical mass storage media, where cer-
tain patterns are not allowed to appear in the recorded (i.e., transmitted)
bit stream. The main role of channel coding is to overcome such limitations
and to make the channel as transparent as possible from the source and
destination points of view. The task of signal translation, which was men-
tioned earlier in the context of source coding, may be undertaken partially
(or wholly) also by the channel encoder and decoder.
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1.2. Channel coding 3

1.2 Channel coding

We will concentrate on the channel coding part of Figure 1.1, as shown in
Figure 1.2.

�
u

Channel
Encoder

�
c Channel �

y
Channel
Decoder

�
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Figure 1.2. Channel coding.

Our model of the channel will be that of the (discrete) probabilistic chan-
nel : a probabilistic channel S is defined as a triple (F, Φ, Prob), where F is a
finite input alphabet , Φ is a finite output alphabet, and Prob is a conditional
probability distribution

Prob{y received | x transmitted }

defined for every pair (x,y) ∈ Fm × Φm, where m ranges over all positive
integers and Fm (respectively, Φm) denotes the set of all words of length
m over F (respectively, over Φ). (We assume here that the channel neither
deletes nor inserts symbols; that is, the length of an output word y always
equals the length of the respective input word x.)

The input to the channel encoder is an information word (or message) u
out of M possible information words (see Figure 1.2). The channel encoder
generates a codeword c ∈ Fn that is input to the channel. The resulting
output of the channel is a received word y ∈ Φn, which is fed into the
channel decoder. The decoder, in turn, produces a decoded codeword ĉ and
a decoded information word û, with the aim of having c = ĉ and u = û.
This implies that the channel encoder needs to be such that the mapping
u �→ c is one-to-one.

The rate of the channel encoder is defined as

R =
log|F | M

n
.

If all information words have the same length over F , then this length is
given by the numerator, log|F | M , in the expression for R (strictly speaking,
we need to round up the numerator in order to obtain that length; however,
this integer effect phases out once we aggregate over a sequence of � →
∞ transmissions, in which case the number of possible information words
becomes M � and the codeword length is � · n). Since the mapping of the
encoder is one-to-one, we have R ≤ 1.

The encoder and decoder parts in Figure 1.2 will be the subject of Sec-
tions 1.3 and 1.4, respectively. We next present two (related) examples of
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4 1. Introduction

probabilistic channels, which are very frequently found in practical applica-
tions.

Example 1.1 The memoryless binary symmetric channel (in short,
BSC) is defined as follows. The input and output alphabets are F = Φ =
{0, 1}, and for every two binary words x = x1x2 . . . xm and y = y1y2 . . . ym

of a given length m,

Prob{y received | x transmitted }

=
m∏

j=1

Prob{ yj received | xj transmitted } , (1.1)

where, for every x, y ∈ F ,

Prob{ y was received | x was transmitted } =
{

1− p if y = x
p if y �= x

.

The parameter p is a real number in the range 0 ≤ p ≤ 1 and is called the
crossover probability of the channel.

The action of the BSC can be described as flipping each input bit with
probability p, independently of the past or the future (the adjective “memo-
ryless” reflects this independence). The channel is called “symmetric” since
the probability of the flip is the same regardless of whether the input is 0 or
1. The BSC is commonly represented by a diagram as shown in Figure 1.3.
The possible input values appear to the left and the possible output values
are shown to the right. The label of a given edge from input x to output y
is the conditional probability of receiving the output y given that the input
is x.

1

0

1

0

�
1− p

�1− p

�
p�

p

Figure 1.3. Binary symmetric channel.

The cases p = 0 and p = 1 correspond to reliable communication, whereas
p = 1

2 stands for the case where the output of the channel is statistically
independent of its input.

Example 1.2 The memoryless q-ary symmetric channel with crossover
probability p is a generalization of the BSC to alphabets F = Φ of size q. The
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1.3. Block codes 5

conditional probability (1.1) now holds for every two words x = x1x2 . . . xm

and y = y1y2 . . . ym over F , where

Prob{ y was received | x was transmitted } =
{

1− p if y = x
p/(q−1) if y �= x

.

(While the term “crossover” is fully justified only in the binary case, we will
nevertheless use it for the general q-ary case as well.)

In the case where the input alphabet F has the same (finite) size as the
output alphabet Φ, it will be convenient to assume that F = Φ and that the
elements of F form a finite Abelian group (indeed, for every positive integer q
there is an Abelian group of size q, e.g., the ring Zq of integer residues modulo
q; see Problem A.21 in the Appendix). We then say that the channel is an
additive channel . Given an additive channel, let x and y be input and output
words, respectively, both in Fm. The error word is defined as the difference
y−x, where the subtraction is taken component by component. The action of
the channel can be described as adding (component by component) an error
word e ∈ Fm to the input word x to produce the output word y = x + e,
as shown in Figure 1.4. In general, the distribution of the error word e may
depend on the input x. The q-ary symmetric channel is an example of a
channel where e is statistically independent of x (in such cases, the term
additive noise is sometimes used for the error word e).

+x � � y = x + e
�

e

Figure 1.4. Additive channel.

When F is an Abelian group, it contains the zero (or unit) element. The
error locations are the indexes of the nonzero entries in the error word e.
Those entries are referred to as the error values.

1.3 Block codes

An (n, M) (block) code over a finite alphabet F is a nonempty subset C of
size M of Fn. The parameter n is called the code length and M is the code
size. The dimension (or information length) of C is defined by k = log|F | M ,
and the rate of C is R = k/n. The range of the mapping defined by the
channel encoder in Figure 1.2 forms an (n,M) code, and this is the context
in which the term (n,M) code will be used. The elements of a code are
called codewords.
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6 1. Introduction

In addition to the length and the size of a code, we will be interested
in the sequel also in quantifying how much the codewords in the code differ
from one another. To this end, we will make use of the following definitions.

Let F be an alphabet. The Hamming distance between two words x,y ∈
Fn is the number of coordinates on which x and y differ. We denote the
Hamming distance by d(x,y).

It is easy to verify that the Hamming distance satisfies the following
properties of a metric for every three words x,y, z ∈ Fn:

• d(x,y) ≥ 0, with equality if and only if x = y.

• Symmetry: d(x,y) = d(y,x).

• The triangle inequality: d(x,y) ≤ d(x, z) + d(z,y).

Let F be an Abelian group. The Hamming weight of e ∈ Fn is the
number of nonzero entries in e. We denote the Hamming weight by w(e).
Notice that for every two words x,y ∈ Fn,

d(x,y) = w(y − x) .

Turning now back to block codes, let C be an (n, M) code over F with
M > 1. The minimum distance of C is the minimum Hamming distance
between any two distinct codewords of C; that is, the minimum distance d
is given by

d = min
c1,c2∈C : c1 �=c2

d(c1, c2) .

An (n,M) code with minimum distance d is called an (n,M, d) code (when
we specify the minimum distance d of an (n, M) code, we implicitly indicate
that M > 1). We will sometimes use the notation d(C) for the minimum
distance of a given code C.

Example 1.3 The binary (3, 2, 3) repetition code is the code

{000, 111}

over F = {0, 1}. The dimension of the code is log2 2 = 1 and its rate
is 1/3.

Example 1.4 The binary (3, 4, 2) parity code is the code

{000, 011, 101, 110}

over F = {0, 1}. The dimension is log2 4 = 2 and the code rate is 2/3.
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1.4. Decoding 7

1.4 Decoding

1.4.1 Definition of decoders

Let C be an (n,M, d) code over an alphabet F and let S be a channel
defined by the triple (F, Φ, Prob). A decoder for the code C with respect to
the channel S is a function

D : Φn → C .

The decoding error probability Perr of D is defined by

Perr = max
c∈C

Perr(c) ,

where

Perr(c) =
∑

y :D(y)�=c

Prob{y received | c transmitted } .

Note that Perr(c) is the probability that the codeword c will be decoded
erroneously, given that c was transmitted.

Our goal is to have decoders with small Perr.

Example 1.5 Let C be the binary (3, 2, 3) repetition code and let S be
the BSC with crossover probability p.

Define a decoder D : {0, 1}3 → C as follows:

D(000) = D(001) = D(010) = D(100) = 000

and

D(011) = D(101) = D(110) = D(111) = 111 .

The probability Perr equals the probability of having two or more errors:

Perr = Perr(000) = Perr(111) =
(
3
2

)
p2(1− p) +

(
3
3

)
p3

= 3p2 − 3p3 + p3

= p(2p− 1)(1− p) + p .

So, Perr is smaller than p when p < 1/2, which means that coding has im-
proved the probability of error per message, compared to uncoded transmis-
sion. The price, however, is reflected in the rate: three bits are transmitted
for every information bit (a rate of (log2 M)/n = 1/3).
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8 1. Introduction

1.4.2 Maximum-likelihood decoding

We next consider particular decoding strategies for codes and channels.
Given an (n,M, d) code C over F and a channel S = (F, Φ, Prob), a
maximum-likelihood decoder (MLD) for C with respect to S is the function
DMLD : Φn → C defined as follows: for every y ∈ Φn, the value DMLD(y)
equals the codeword c ∈ C that maximizes the probability

Prob{y received | c transmitted } .

In the case of a tie between two (or more) codewords, we choose one of the
tying codewords arbitrarily (say, the first according to some lexicographic
ordering on C). Hence, DMLD is well-defined for the code C and the channel S.

A maximum a posteriori decoder for C with respect to a channel S =
(F, Φ, Prob) is defined similarly, except that now the codeword c maximizes
the probability

Prob{ c transmitted | y received } .

In order to compute such a probability, however, we also need to know the
a priori probability of transmitting c. So, unlike an MLD, a maximum a
posteriori decoder assumes some distribution on the codewords of C. Since

Prob{ c transmitted | y received }

= Prob{y received | c transmitted } · Prob{ c transmitted }
Prob{y received } ,

the terms maximum a posteriori decoder and MLD coincide when the a
priori probabilities Prob{ c transmitted } are the same for all c ∈ C; namely,
they are all equal to 1/M .

Example 1.6 We compute an MLD for an (n,M, d) code C with respect
to the BSC with crossover probability p < 1. Let c = c1c2 . . . cn be a
codeword in C and y = y1y2 . . . yn be a word in {0, 1}n. Then

Prob{y received | c transmitted }

=
n∏

j=1

Prob{ yj received | cj transmitted } ,

where

Prob{ yj received | cj transmitted } =
{

1− p if yj = cj

p otherwise
.

Therefore,

Prob{y received | c transmitted } = pd(y,c)(1− p)n−d(y,c)

= (1− p)n ·
(

p

1− p

)d(y,c)

,
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1.4. Decoding 9

where d(y, c) is the Hamming distance between y and c. Observing that
p/(1 − p) < 1 when p < 1/2, it follows that—with respect to the BSC
with crossover probability p < 1/2—for every (n,M, d) code C and every
word y ∈ {0, 1}n, the value DMLD(y) is a closest codeword in C to y. In
fact, this holds also for the q-ary symmetric channel whenever the crossover
probability is less than 1− (1/q) (Problem 1.7).

A nearest-codeword decoder for an (n,M) code C over F is a function
Fn → C whose value for every word y ∈ Fn is a closest codeword in C
to y, where the term “closest” is with respect to the Hamming distance. A
nearest-codeword decoder for C is a decoder for C with respect to any additive
channel whose input and output alphabets are F . From Example 1.6 we get
that with respect to the BSC with crossover probability p < 1/2, the terms
MLD and nearest-codeword decoder coincide.

1.4.3 Capacity of the binary symmetric channel

We have seen in Example 1.5 that coding allows us to reduce the decoding
error probability Perr, at the expense of transmitting at lower rates. We next
see that we can, in fact, achieve arbitrarily small values of Perr, while still
transmitting at rates that are bounded away from 0.

Define the binary entropy function H : [0, 1]→ [0, 1] by

H(x) = −x log2 x− (1− x) log2(1− x) ,

where H(0) = H(1) = 0. The binary entropy function is shown in Figure 1.5.
It is symmetric with respect to x = 1/2 and takes its maximum at that point
(H(1/2) = 1). It is ∩-concave and has an infinite derivative at x = 0 and
x = 1 (a real function f is ∩-concave over a given interval if for every two
points x1 and x2 in that interval, the line segment that connects the points
(x1, f(x1)) and (x2, f(x2)) lies entirely on or below the function curve in the
real plane; the function f is called ∪-convex if −f is ∩-concave).

�

�
H(x)

0

1

1/2 1
x

Figure 1.5. Binary entropy function.
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10 1. Introduction

Let S be the BSC with crossover probability p. The capacity of S is
given by

cap(S) = 1− H(p) .

The capacity is shown in Figure 1.6 as a function of p. Notice that cap(S) = 1
when p ∈ {0, 1} and cap(S) = 0 when p = 1/2.

�

�
cap(S)

0

1

1/2 1
p

Figure 1.6. Capacity of the BSC.

The next two theorems are special cases of fundamental results in in-
formation theory. These results state that the capacity of a channel is the
largest rate at which information can be transmitted reliably through that
channel.

Theorem 1.1 (Shannon Coding Theorem for the BSC) Let S be the
memoryless binary symmetric channel with crossover probability p and let R
be a real in the range 0 ≤ R < cap(S). There exists an infinite sequence of
(ni,Mi) block codes over F = {0, 1}, i = 1, 2, 3, · · ·, such that (log2 Mi)/ni ≥
R and, for maximum-likelihood decoding for those codes (with respect to S),
the decoding error probability Perr approaches 0 as i→∞.

Theorem 1.2 (Shannon Converse Coding Theorem for the BSC) Let S
be the memoryless binary symmetric channel with crossover probability p and
let R be a real greater than cap(S). Consider any infinite sequence of (ni,Mi)
block codes over F = {0, 1}, i = 1, 2, 3, · · ·, such that (log2 Mi)/ni ≥ R
and n1 < n2 < · · · < ni < · · ·. Then, for any decoding scheme for those
codes (with respect to S), the decoding error probability Perr approaches 1 as
i→∞.

The proofs of these theorems will be given in Chapter 4. In particular,
we will show there that Perr in Theorem 1.1 can be guaranteed to decrease
exponentially with the code length ni. On the other hand, our proof in that
chapter will only establish the existence of codes with the property that is
stated in the theorem, without exhibiting an efficient algorithm for producing
them. The constructive part will be filled in later on in Section 12.5. At
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