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Preface

For millennia, philosophers have offered mere opinions

about whether life exists beyond the Earth, but amaz-

ingly it will soon be possible to replace such conjectures

with data. In other words, we stand on the brink of

solving the question of “are we alone?” The answer

may come from the spectrum of an exoplanet, from rocks

on Mars, or from some unexpected source. In any case,

we now know that our galaxy contains billions of exo-

planets, some of which may be inhabited. This problem

focuses our attention on what makes a planet habitable.

When we look at Earth, Mars and Venus, we see that an

atmosphere – through composition and climate – plays a

critical role in distinguishing lifeless from inhabited

planets. Thus, the topic of atmospheric evolution is

essential. We need to know where atmospheres come

from, how atmospheres remain stable, how the mixture

of gases in an atmosphere changes over billions of years

from the origin of a planet to its current or future state,

and whether an atmosphere can provide a climate con-

ducive to life.

We have been working on various aspects of atmos-

pheric evolution for two (DCC) and four decades (JFK),

respectively. Both of us have been fortunate in receiving

continual support from NASA’s Exobiology Program and

the NASA Astrobiology Institute. We have previously

published reviews on relevant topics, such as the physics

and chemistry of atmospheres (Catling, 2015) (which we

expand in Chapters 1–5), the origin and habitability of the

Earth (Kasting and Catling, 2003) (which we bring up-to-

date in Chapters 6–11), oxygenation of Earth’s atmos-

phere (Catling, 2014; Kasting, 2013) (which is newly

reviewed in Chapter 10), astrobiology (Catling, 2013)

(a theme throughout this book), and searching for

habitable planets (Kasting, 2010) (which is the topic of

Chapter 15). Our reviews have been at different levels,

and, for the researcher, useful information has remained

very scattered across the scientific literature. Such

dispersal arises because aspects of astronomy, geology,

geochemistry, and atmospheric science all contribute to

the formation and evolution of atmospheres. On a planet

with life, we must add biology also. Consequently, we

wrote this book to gather our knowledge of planetary

atmospheres into a framework of atmospheric evolution

and habitability. Our intended reader is any interested

researcher or graduate student.

In this book, we are concerned with inhabited planets

such as Earth, as well as lifeless ones. But the Earth itself

changed from being lifeless to inhabited. We also con-

sider other inhabited planets in the context of possible life

on early Mars or potential life on exoplanets that might be

remotely detectable. As mentioned above, whether a

planet is inhabited or lifeless is a key motivation to study

atmospheric evolution. All of these considerations led us

to the title of this book.

The book has three parts. In Part I, we concisely

describe principles of atmospheres (structure, radiation,

chemistry, and motions) that are needed to appreciate

atmospheric evolution and habitability. Part II describes

origins of atmospheres and the evolution of Earth’s

atmosphere and climate. Finally, Part III turns to other

worlds, including Mars, Venus, outer planet satellites, and

exoplanets.

Because atmospheric evolution ranges over a vast

swath of disciplines that stretches the limits of our expert-

ise, colleagues have kindly provided essential help. In

alphabetical order, we thank the following people for

commenting on individual chapters: Dorian Abbot, Don

Brownlee, John Chambers, Nick Cowan, Colin Goldblatt,

David Grinspoon, Paul Hoffman, Dick Holland, Edwin

Kite, Conway Leovy, Ralph Lorenz, Vikki Meadows,

Tyler Robinson, Adam Showman, Jon Toner, and Steve

Warren. We also thank Beth Tully for her patience in

helping us with the diagrams. We owe special thanks to a

couple of departed friends on our list who are greatly
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missed. These colleagues always generously shared their

ideas and unfailingly provided eager encouragement.

They were Conway Leovy (1933–2011) and Heinrich

(“Dick”) Holland (1927–2012). We would also like to

acknowledge James C.G. Walker, who was a mentor to

JFK, and who in 1977 wrote a previous book titled

Evolution of the Atmosphere that has guided thinking on

this topic for about the past 40 years. Finally, we thank

Vince Higgs at CUP for enormous patience in waiting for

us to complete this book.
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