Atmospheric Evolution on Inhabited and Lifeless Worlds

As the search for Earth-like exoplanets gathers pace, in order to understand them, we need comprehensive theories for how planetary atmospheres form and evolve. Written by two well-known planetary scientists, this text explains the physical and chemical principles of atmospheric evolution and planetary atmospheres, in the context of how atmospheric composition and climate determine a planet's habitability. The authors survey our current understanding of the atmospheric evolution and climate on Earth, on other rocky planets within our Solar System, and on planets far beyond. Incorporating a rigorous mathematical treatment, they cover the concepts and equations governing a range of topics, including atmospheric chemistry, thermodynamics, radiative transfer, and atmospheric dynamics, and provide an integrated view of planetary atmospheres and their evolution. This interdisciplinary text is an invaluable onestop resource for graduate-level students and researchers working across the fields of atmospheric science, geochemistry, planetary science, astrobiology, and astronomy.

David C. Catling is a Professor in Earth and Space Sciences at the University of Washington, Seattle, who studies planetary surfaces, atmospheres, and habitability. He actively participates in the research of NASA's Astrobiology Institute and is the author of *Astrobiology: A Very Short Introduction* (2013). He has taught courses in planetary atmospheres, planetary geology, astrobiology, and global environmental change at undergraduate and graduate levels. He was also an investigator for NASA's Phoenix Mars Lander, which successfully operated in the arctic of Mars during 2008.

James F. Kasting is an Evan Pugh Professor of Geosciences at The Pennsylvania State University, and an acknowledged expert on atmospheric and climate evolution. He is the author of the popular book, *How to Find a Habitable Planet* (2010) and coauthor of the introductory textbook, *The Earth System* (3rd edn, 2009). Dr. Kasting has received numerous awards, including that of Fellow of the American Geophysical Union, the Geochemical Society, the International Society for the Study of the Origin of Life (ISSOL), the American Academy for the Advancement of Science, and the American Academy of Sciences. He received the Oparin Medal from ISSOL in 2008, and the Stanley Miller Medal from the National Academy of Sciences in 2016.

Atmospheric Evolution on Inhabited and Lifeless Worlds

David C. Catling University of Washington

James F. Kasting Pennsylvania State University

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521844123

© David C. Catling and James F. Kasting 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2017

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Names: Catling, David (David Charles) | Kasting, James F. Title: Atmospheric evolution on inhabited and lifeless worlds / David C. Catling, University of Washington, James F. Kasting, Pennsylvania State University. Description: Cambridge : Cambridge University Press, 2017. | Includes bibliographical references and index. Identifiers: LCCN 2016030819 | ISBN 9780521844123 (hardback : alk. paper) Subjects: LCSH: Atmosphere. | Atmosphere, Upper. | Planets–Atmospheres. | Geochemistry. Classification: LCC QC861.3 .C38 2017 | DDC 551.5–dc23 LC record available at https://lccn.loc.gov/2016030819

ISBN 978-0-521-84412-3 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface

PART I Principles of Planetary Atmospheres	1
The Structure of Planetary Atmospheres	3
I.I Vertical Structure of Atmospheres	3
1.1.1 Atmospheric Temperature Structure: An Overview	3
1.1.2 Atmospheric Composition and Mass	6
1.1.3 Convection and Stability	14
1.2 Condensable Species on Terrestrial-Type Planets	24
1.2.1 Pure Water Atmospheres	24
1.2.2 Atmospheres with Multiple Condensable Species	25
1.2.3 Water in the Present-Day Martian Atmosphere	26
2 Energy and Radiation in Planetary Atmospheres	27
2.1 Energy Sources and Fluxes on Planets	27
2.1.1 Planetary Energy Sources	27
2.1.2 Radiation From the Sun and Other Stars	28
2.2 Planetary Energy Balance and the Greenhouse Effect	31
2.2.1 Orbits and Planetary Motion	31
2.2.2 Time-Averaged Incident Solar Flux	32
2.2.3 Albedo	32
2.2.4 Planetary Equilibrium Temperature	33
2.2.5 The Greenhouse Effect	34
2.2.6 Giant Planets, Internal Heat, and Equilibrium Temperature	36
2.3 Climate Feedbacks in the "Earth System"	37
2.3.1 Climate Sensitivity	37
2.3.2 The Emission Level and Radiative Time Constants	39
2.4 Principles of Radiation in Planetary Atmospheres	39
2.4.1 Basic Definitions and Functions in Radiative Transfer	40
2.4.2 Radiative Transfer in the Visible and Ultraviolet	42
2.4.3 Radiative Transfer in the Thermal Infrared	47
2.4.4 Level of Emission and the Meaning of "Optically Thick" and "Optically Th	<i>in</i> " 51
2.4.5 Radiative and Radiative–Convective Equilibrium	53
2.5 Absorption and Emission of Radiation by Atmospheric Gases	61
2.5.1 Overview of Absorption Lines	62
2.5.2 Electric and Magnetic Dipole Moments	62
2.5.3 Rotational Transitions	63
2.5.4 Vibrational Transitions	65

V

		Conten
2.5		
2.5.2	Electronic Transitions	6
2.5.0	Units Constant Autority Constant Function, Function, Carly Early, and Venus	() F
2.5.	Continuum Absorption	
2.5.9	Band Transmission and Weak and Strong Absorption	7
2.6	Calculating Atmospheric Absorption in Climate Calculations	7
3 Esser	tials of Chemistry of Planetary Atmospheres	7
3 1	General Principles	7
3.1	General Thicipies	7
3.1.	Chamical Kinatics of Atmospharic Gasas	7
3.1.2	The Importance of Free Radicals	7
3.1.4	Three-Body (Termolecular) Reactions	7
3.1.5	5 Temperature Dependence of Reaction Rates	
3.1.0	6 Photolysis	
3.2	Surface Deposition	7
33	Earth's Stratospheric and Tropospheric Chemistry	
J.J 2 2		7
3.3.	Earth's Tropospheric Chemistry	S
34	CO- Stability on Venus and Mars	c s
л. т Э.г		c c
3.5	CO ₂ and Cold Thermospheres of Venus and Mars	
3.6	Methane and Hydrocarbons on Outer Planets and Titan	2
4 Moti	ons in Planetary Atmospheres	8
4.1	Introductory Concepts	8
4.1.	Forces, Apparent Forces, and the Equation of Motion	8
4.1.2	2 Characteristic Force Balance Regimes in Atmospheres	8
4.2	The Zonal-Mean Meridional Circulation and Thermally Driven Jet Streams	(
4.2.	The Two Types of Jet Stream: Thermally Driven and Eddy Driven	(
4.2.2	2. The Hadley Circulation and Subtropical Jets	(
4.2.3	Symmetric Hadley Circulation Theory	1
4.2.4	Asymmetric Hadley Circulations on Earth and Mars, and Monsoons	10
4.2.3	Hadley Circulations on Venus and Ittan	10
4.2.0	Eddy Duiven let Streeme and Planetary Manual	10
4.3	Eddy-Driven jet Streams and Planetary Waves	10
4.3.	Vorticity	10
4.3.4	2 Jet Forcing by Shirring or Friction	10
4.5.3	Filinetary waves	10
4.5	5 Planetary Waya Instability	1
431	Fidu-Driven Lets on the Outer Planets: Shallow Layer Atmospheres	1
43	7 Eddy-Driven Jets on the Outer Planets: Deep Atmospheres	1
4.3.8	A Shallow Atmosphere Model Coupled to the Deep Interior of Outer Planets	1
4.3.9	 Ice Giants: Uranus and Neptune 	1
4.4	Buovancy Waves and Thermal Tides	1
4.4	Mechanism and Properties of Buoyancy Wayes	1
4.4.2	Wave Generation Breaking and Impact on the Zonal Mean Flow	1
4.4.	Atmospheric Tides	12
4.5	Superrotation	12
4.6	' Transport by Eddy-Driven Circulations	11
4.6.	The Brewer–Dobson Circulation and Mesospheric Circulation	12
4.6.2	2 Implications of Large-Scale Overturning Circulations for Atmospheric Evolution	12

Contents

Esca	pe of Atmospheres to Space	129
5.1	Historical Background to Atmospheric Escape	130
5.2	Overview of Atmospheric Escape Mechanisms	131
5.2	1 Thermal Escape Overview	131
5.2	2 Suprathermal (or Nonthermal) Escape, in Brief	134
5.2	3 Impact Erosion, in Brief	134
5.2	4 The Upper Limit of Diffusion-Limited Escape, in Brief	135
5.3	Breakdown of the Barometric Law	135
5.4	The Exobase or "Critical Level"	136
5.5	Escape Velocity	137
5.6	leans' Thermal Escape of Hydrogen	138
5.6	1 Concept and Mathematical Derivation	138
5.6	2 Effusion Velocity	141
5.7	Suprathermal (Nonthermal) Escape of Hydrogen	141
5.8	Upwards Diffusion and the "Diffusion-Limited Escape" Concept	143
5.8	1 Molecular Diffusion	14
5.8	2 Eddy Diffusion	144
5.8	3 Diffusion-Limited Escape of Hydrogen	14
5.8	4 Application of Diffusion-Limited Hydrogen Escape to Earth's Atmosphere	140
5.9	Diffusion-Limited Hydrogen Escape Applied to Mars, Titan, and Venus	143
5.9.	1 Mars	143
5.9	2 Titan	149
5.9	3 Venus	149
5.10	Hydrodynamic Escape	150
5.1	0.1 Conditions for Hydrodynamic Escape	150
5.1	0.2 Energy-Limited Escape	15:
5.1	0.3 Density-Limited Hydrodynamic Escape	15
5.1	0.4 Maximum Molecular Mass Carried Away in Hydrodynamic Escape	158
5.11	Mass Fractionation by Hydrodynamic Escape	16
5.1	1.1 Fractionation Theory	16
5.1	1.2 Applications of Mass Fractionation in Hydrodynamic Escape: Noble Gas Isotopes	162
5.12	Impact Erosion of Planetary Atmospheres	165
5.13	Summary of the Fundamental Nature of Atmospheric Escape	160
RT I	Evolution of the Earth's Atmosphere	169
Forr	nation of Earth's Atmosphere and Oceans	17
6.1	Planetary Formation	17
6.1.	1 Formation of Stars and Protoplanetary Disks	17
6.1.	2 The Planetesimal Hypothesis	172
6.1.	<i>3 Planetary Migration: When Did the Gas and Dust Disappear?</i>	17:
6.2	Volatile Delivery to the Terrestrial Planets	17:
6.2.	1 The Equilibrium Condensation Model	17:
6.2.	2 Modern Accretion Models	17
6.2.	<i>5 D/H Ratios and their Implications for Water Sources</i>	179
6.3	Meteorites: Clues to the Early Solar System	18
6.4	The Implications of the Abundances of Noble Gases and Other Elements	18.
6.4.	1 Atmophiles, Geochemical Volatiles, and Refractory Elements	18.
6.4.	2 Noble Gases	184
6.4.	3 Early Degassing	186
6.5	Impact Degassing, Co-accretion of Atmospheres, and Ingassing	188
6.5	1 Laboratory Evidence for Impact Degassing	188

viii —		Contents
		100
	6.5.2 Formation of Steam and Reducing Atmospheres During Accretion	180
	6.6 Moon Formation and its Implications for Earth's Volatile History	191
	6.6.1 The Giant Impact Hypothesis	191
	6.6.2 The Post-Impact Atmosphere and Loss of Volatiles	191
	6.7 "Late Heavy Bombardment": Causes and Consequences	192
	6.8. The Early Atmosphere: the Effect of Planetary Differentiation and Rotation Rate	195
	6.8.1 Core Formation and its Effect on Atmospheric Chemistry	195
	6.8.2 Day Length, the Lunar Orbit, and the Early Steam Atmosphere	196
7	Volcanic Outgassing and Mantle Redox Evolution	198
	7.1 Historical Context: Strongly and Weakly Reduced Atmospheres	198
	7.2 Volcanic Outgassing and Metamorphic Degassing of Major Volatile Species	200
	7.2.1 Mechanisms of Volcanic Outgassing	200
	7.2.2 Outgassing and Metamorphic Degassing of CO_2 7.2.3 Subarrial Outgassing of H.O. SO: H.S. and N.	202
	7.2.5 Subderial Ourgassing of H_2O , SO_2 , H_2S , and N_2 7.3 Oxidation State of the Mantle	205
	7.3.1 Oxidation State of the Present Upper Mantle	205
	7.3.2 How the Mantle Became Oxidized	205
	7.4 Release of Reduced Gases From Subaerial Volcanism	208
	7.5 Reduced Gases Released From Submarine Volcanism and Hydrothermal Systems	210
	7.5.1 H_2S and H_2	210
	7.5.2 CH_4	211
	7.6 Past Rates of Volcanic Outgassing	212
	7.7 Summary	213
8	Atmospheric and Global Redox Balance	215
	8.1 Principles of Redox Balance	216
	8.2 H ₂ Budget of the Prebiotic Atmosphere: Approximate Solution	216
	8.3 Rigorous Treatment of Atmospheric Redox Balance	218
	8.4 Global Redox Budget of the Early Earth	221
	8.5 Organic Carbon Burial and the Carbon Isotope Record	223
	8.6 Redox Indicators for Changes in Atmospheric Oxidation State	227
	8.6.1 Holland's f-Value Analysis	227
	8.6.2 The Catling and Claire K_{OXY} Parameter	230
9	The Prebiotic and Early Postbiotic Atmosphere	231
	9.1 N_2 and CO_2 Concentrations in the Primitive Atmosphere	231
	9.2 Prebiotic O_2 Concentrations	232
	9.2.1 Dependence of O_2 on CO_2	233
	9.2.2 Dependence of O_2 on Π_2 9.2.3 Effect of Higher IIV Fluxes on O_2 and O_2	235
	9.3 Prebiotic Synthesis of Organic Compounds in Weakly Reduced Atmospheres	230
	9.3.1 Synthesis of RNA Building Blocks: H ₂ CO and HCN	238
	9.3.2 CO as a Prebiotic Compound	239
	9.4 When Did Life Originate?	240
	9.4.1 Evidence from Microfossils and Stromatolites	240
	9.4.2 Carbon Isotopic Evidence for Early Life	243
	9.4.3 Molecular Biomarkers	244
	9.5 The Molecular Phylogenetic Record of Life	244
	9.6 Early Anaerobic Metabolisms and Their Effect on the Atmosphere	246
	9.6.1 Heterotrophy and Fermentation	247

			——— i
	962	Methanogenesis	247
	9.6.3	Sulfur Metabolism and Sulfate Reduction	248
	9.6.4	Nitrogen Fixation and Nitrate Respiration	249
	9.6.5	Anoxygenic Photosynthesis	250
	9.7	Detailed Modeling of Ha-Based Ecosystems	251
	971	Atmosphere_Ocean Gas Exchange: the Stagnant Film Model	252
	9.7.2	Models of H ₂ -Based Archean Ecosystems	252
	9.8	Comparing With the Carbon Isotope Record	255
10	The R	se of Oxygen and Ozone in Earth's Atmosphere	257
	10.1	Co-evolution of Life and Oxygen: an Overview	257
	10.2	Controls on Q ₂ Levels	260
	10.2.1	Reday Budgeting for the Modern O_2 -Rich System	260
	10.2.1	The "Net" Source Flux of O_2 and $System$	261
	10.2.2	The O_2 Sink Fluxes	263
	10.2.4	Generalized History of Atmosphere–Ocean Redox	265
	10.3	Evidence for a Paleoproterozoic Rise of O_2	266
	1031	Continental Indicators: Paleosols Detrital Grains and Redbeds	266
	10.3.2	Randed Iron Formations	267
	10.3.3	Concentration of Redox-Sensitive Elements and the Rise of Oxygen	269
	10.3.4	Iron Speciation: Ocean Anoxia or Euxinia, and the Rise of Oxygen	270
	10.4	Mass-Dependent Stable Isotope Records and the Rise of Oxygen	272
	1041	Carbon Isotopes	272
	10.4.2	Sulfur Isotopes	273
	10.4.3	Nitrogen Isotopes	274
	10.4.4	Transition Metal (Iron, Chromium, and Molybdenum) and Non-Metal Isotopes (Selenium)	275
	10.5	Mass-Independent Fractionation of Sulfur Isotopes and the Rise of Oxygen	276
	10.6	When Did Oxygenic Photosynthesis Appear?	279
	10.6.1	Geochemical Evidence for Ω_2 Refore the Great Oxidation Event	279
	10.6.2	For the Great Oxidation Event F is the original original term F is the Great Oxidation Event	281
	10.7	Explaining the Rise of Q_2	281
	1071	General Conditions for an Anoxic Versus Oxic Atmosphere	281
	10.7.1	Hypotheses for an Increasing Flux of Q_2	284
	10.7.3	Hypotheses for a Decreasing Sink of Q_2	284
	10.8	Atmospheric Chemistry of the Great Oxidation Event	289
	10.8.1	A Great Collarse of Methane	289
	10.8.2	The Formation of a Stratospheric Ozone Shield	20)
	10.8.3	Did the Rise of O_2 Affect Atmospheric N_2 Levels?	291
	10.9	The Neoproterozoic Oxidation Event (NOE) or Second Rise of Oxygen	292
	10.9.1	Fyidence for Neoproterozoic Orvoenation	292
	10.9.1	What Caused the Second Rise of Oxygen?	292
	10 10	Phanerozoic Evolution of Atmospheric On	296
	10.11	O_2 and Advanced Life in the Cosmos	290
	l ong-	- Ferm Climate Evolution	299
		Solar Evolution	299
	11.2	Implications for Planetary Surface Temperatures: Sagan and Mullen's Model	301
	113	Geological Constraints on Archean and Hadean Surface Temperatures	302
	11 2 1	Glacial Constraints on Surface Temperature	302
	11.3.1	Isotonic Constraints on Surface Temperature	302
	11.3.2	Solving the Faint Young Sun Problem with CO.	303
	11. 1	The Carbonate Silicate Cycle	204
	11.4.1 11 1 0	The Curvonale-Silicate Cycle Feedbacks in the Carbonate-Silicate Cycle and a Possible Solution to the Edint Vound Sur Droblem	304
	11.4.4	recubactos in me curbonale-sincale cycle ana a rossible solunon to me raini roung sun riobiem	500

		Contents
11 / 2	Constrained Constraints on Past CO. Concentrations	307
11.4.5	Clouds and the Eaint Young Sun Problem	30/
11.5		210
11.0		310
11.0.1	Methane and Climate: Greenhouse and Anti-Greenhouse Effects	31
11.0.2	Fractal Organic Haze and UV Snielaing of Ammonia Effect of H. on Archean Climate	312
11.0.5	The Gaia Hypothesis	315
11.7	N. Paramatuia Pressume and Climate	215
11.0	The March Control of the Mill Device of Clines	313
11.9		310
11.9.1	Greenhouse Warming by CH_4	310
11.9.2	The Neoprotorozoic "Spowball Earth" Episoder	310
11.10	In Coologie Fuidence for Security II Forth	310
11.10.	Alternative Models to Explain Low-Latitude Glaciation	310
11.10.	3 Triogering a Snowhall Farth	321
11.10.	4 Recovery from Snowball Earth	322
11.10.	5 Survival of the Photosynthetic Biota: the Thin-Ice Model and Narrow Waterbelt State	323
11.11	Phanerozoic Climate Variations	325
'ART III	Atmospheres and Climates on Other Worlds	327
2 Mars		329
12.1	Introduction to Mars	329
12.1.1	Overview of Mars	329
12.1.2	The Geologic Timescale for Mars	332
12.1.3	The Basis of our Knowledge: Spacecraft Data and Martian Meteorites	333 225
12.2	The Present-Day Atmosphere and Climate of Plars	333 225
12.2.1	Composition and Thickness of the Present Atmosphere	333
12.2.2	Atmospheric Chemistry	338
12.2.4	The Escape of H. O. C. and N	340
12.3	Volatile Inventory: Present and Past	342
12 2 1	The Present-Day Volatile Inventories	342
12.0.1	Past Volatile Inventory	
12.3.1		345
12.3.1 12.3.2 12.3.3	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence	345 349
12.3.1 12.3.2 12.3.3 1 2.4	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres	345 349 351
12.3.1 12.3.2 12.3.3 12.4 12.4.1	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres Geomorphic Evidence of Possible Water Flow	345 349 351 351
12.3.1 12.3.2 12.3.3 12.4 12.4.1 12.4.2	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres Geomorphic Evidence of Possible Water Flow Mineralogy and Sedimentology	345 349 351 351 355
12.3.1 12.3.2 12.3.3 12.4 12.4.1 12.4.2 12.5	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres Geomorphic Evidence of Possible Water Flow Mineralogy and Sedimentology Explaining the Early Climate of Mars	345 349 351 351 355 360
12.3.1 12.3.2 12.3.3 12.4 12.4.1 12.4.2 12.5 12.5.1	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres Geomorphic Evidence of Possible Water Flow Mineralogy and Sedimentology Explaining the Early Climate of Mars The Faint Young Sun Problem	345 349 351 355 360 360
12.3.1 12.3.2 12.3.3 12.4 12.4.1 12.4.2 12.5 12.5.1 12.5.2	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres Geomorphic Evidence of Possible Water Flow Mineralogy and Sedimentology Explaining the Early Climate of Mars The Faint Young Sun Problem Mechanisms for Producing Early Climates Conducive to Fluvial Erosion	345 349 351 355 360 360 361
12.3.1 12.3.2 12.3.3 12.4 12.4.1 12.4.2 12.5 12.5.1 12.5.2 12.6	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres Geomorphic Evidence of Possible Water Flow Mineralogy and Sedimentology Explaining the Early Climate of Mars The Faint Young Sun Problem Mechanisms for Producing Early Climates Conducive to Fluvial Erosion Effect of Orbital Change on Past Martian Climate	345 349 351 355 360 360 361 366
12.3.1 12.3.2 12.3.3 12.4 12.4.1 12.4.2 12.5 12.5.1 12.5.2 12.6 12.7	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres Geomorphic Evidence of Possible Water Flow Mineralogy and Sedimentology Explaining the Early Climate of Mars The Faint Young Sun Problem Mechanisms for Producing Early Climates Conducive to Fluvial Erosion Effect of Orbital Change on Past Martian Climate Wind Modification of the Surface	345 349 351 355 360 360 361 366 367
12.3.1 12.3.2 12.3.3 12.4 12.4.1 12.4.2 12.5 12.5.1 12.5.2 12.6 12.7 12.8	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres Geomorphic Evidence of Possible Water Flow Mineralogy and Sedimentology Explaining the Early Climate of Mars The Faint Young Sun Problem Mechanisms for Producing Early Climates Conducive to Fluvial Erosion Effect of Orbital Change on Past Martian Climate Wind Modification of the Surface Unanswered Questions of Mars' Astrobiology and Atmospheric Evolution	345 349 351 355 360 360 361 366 367 368
12.3.1 12.3.2 12.3.3 12.4 12.4.1 12.4.2 12.5 12.5.1 12.5.2 12.6 12.7 12.8 3 Evolut	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres Geomorphic Evidence of Possible Water Flow Mineralogy and Sedimentology Explaining the Early Climate of Mars The Faint Young Sun Problem Mechanisms for Producing Early Climates Conducive to Fluvial Erosion Effect of Orbital Change on Past Martian Climate Wind Modification of the Surface Unanswered Questions of Mars' Astrobiology and Atmospheric Evolution ion of Venus' Atmosphere	345 349 351 355 360 360 361 366 367 368 370
12.3.1 12.3.2 12.3.3 12.4 12.4.1 12.4.2 12.5 12.5.1 12.5.2 12.6 12.7 12.8 3 Evolut 13.1	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres Geomorphic Evidence of Possible Water Flow Mineralogy and Sedimentology Explaining the Early Climate of Mars The Faint Young Sun Problem Mechanisms for Producing Early Climates Conducive to Fluvial Erosion Effect of Orbital Change on Past Martian Climate Wind Modification of the Surface Unanswered Questions of Mars' Astrobiology and Atmospheric Evolution ion of Venus' Atmosphere Current State of Venus' Atmosphere	345 349 351 355 360 360 361 366 367 368 370 370
12.3.1 12.3.2 12.3.3 12.4 12.4.1 12.4.2 12.5 12.5.1 12.5.2 12.6 12.7 12.8 3 Evolut 13.1 13.1.1	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres Geomorphic Evidence of Possible Water Flow Mineralogy and Sedimentology Explaining the Early Climate of Mars The Faint Young Sun Problem Mechanisms for Producing Early Climates Conducive to Fluvial Erosion Effect of Orbital Change on Past Martian Climate Wind Modification of the Surface Unanswered Questions of Mars' Astrobiology and Atmospheric Evolution ion of Venus' Atmosphere Atmospheric Temperature and Composition: the Concept of "Excess Volatiles"	345 349 351 355 360 360 361 366 367 368 370 370 370 370
12.3.1 12.3.2 12.3.3 12.4 12.4.1 12.4.2 12.5 12.5.1 12.5.2 12.6 12.7 12.8 3 Evolut 13.1 13.1.1 13.1.2	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres Geomorphic Evidence of Possible Water Flow Mineralogy and Sedimentology Explaining the Early Climate of Mars The Faint Young Sun Problem Mechanisms for Producing Early Climates Conducive to Fluvial Erosion Effect of Orbital Change on Past Martian Climate Wind Modification of the Surface Unanswered Questions of Mars' Astrobiology and Atmospheric Evolution ion of Venus' Atmosphere Current State of Venus' Atmosphere Atmospheric Temperature and Composition: the Concept of "Excess Volatiles" Cloud Composition and Photochemistry	345 349 351 355 360 360 361 366 367 368 370 370 370 370 373
12.3.1 12.3.2 12.3.3 12.4 12.4.1 12.4.2 12.5 12.5.1 12.5.2 12.6 12.7 12.8 3 Evolut 13.1 13.1.1 13.1.2 13.1.3	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres Geomorphic Evidence of Possible Water Flow Mineralogy and Sedimentology Explaining the Early Climate of Mars The Faint Young Sun Problem Mechanisms for Producing Early Climates Conducive to Fluvial Erosion Effect of Orbital Change on Past Martian Climate Wind Modification of the Surface Unanswered Questions of Mars' Astrobiology and Atmospheric Evolution ion of Venus' Atmosphere Atmospheric Temperature and Composition: the Concept of "Excess Volatiles" Cloud Composition and Photochemistry Atmospheric Circulation	345 349 351 355 360 360 361 366 367 368 370 370 370 370 373 375
12.3.1 12.3.2 12.3.3 12.4 12.4.1 12.4.2 12.5 12.5.1 12.5.2 12.6 12.7 12.8 13.1 13.1.1 13.1.2 13.1.3 13.2	Noachian and Pre-Noachian Atmospheric Escape: Theory and Evidence Evidence for Past Climate Change and Different Atmospheres Geomorphic Evidence of Possible Water Flow Mineralogy and Sedimentology Explaining the Early Climate of Mars The Faint Young Sun Problem Mechanisms for Producing Early Climates Conducive to Fluvial Erosion Effect of Orbital Change on Past Martian Climate Wind Modification of the Surface Unanswered Questions of Mars' Astrobiology and Atmospheric Evolution ion of Venus' Atmosphere Atmospheric Temperature and Composition: the Concept of "Excess Volatiles" Cloud Composition and Photochemistry Atmospheric Circulation The Solid Planet: Is Plate Tectonics Active on Venus?	345 349 351 355 360 360 361 366 367 368 370 370 370 370 373 375 376

Contents

13.4	The Runaway Greenhouse	37
13.4.1	The Classical Runaway Greenhouse	37
13.4.2	A Simple Approximation to the Outgoing Infrared Flux from a Runaway Greenhouse Atmosphere	38
13.4.3	More Rigorous Limits on Outgoing Infrared Radiation from Gray Atmospheres	38
13.4.4	Radiation Limits from Non-Gray Models	38
13.4.5	Evolution of Venus' Atmosphere: the "Moist Greenhouse"	38
13.5	Stability of Venus' Present Atmosphere	38
13.6	Implications for Earth and Earth-Like Planets	39
13.6.1	Can CO2 Cause a Runaway Greenhouse on Earth?	39
13.6.2	Future Evolution of Earth's Climate	39
Giant	Planets and their Satellites	39
14.1	Giant Planets	39
14.1.1	Current Atmospheres	39
14.1.2	Thermal Evolution of Giant Planets and their Atmospheres	39
14.1.3	Thermal (Hydrodynamic) Escape on Hot Giant Exoplanets	39
142	Tenuous Atmospheres on Icy Worlds	39
14.2.1	Overview of Outer Satellite Atmospheres	30
14.2.1	Tanuous Volcanic or Cryonoleanic Atmospheres	30
14.2.2	Tenuous O. Rich and CO. Rich Atmospheres	40
14.2.5	The Nitrogen Atmospheres of Triton and Pluto	40
14.3	The Dense Atmosphere on Titan versus the Barren Galilean Satellites	40
14.4	Titan	40
14.4.1	Overview	40
14.4.2	Titan's Atmosphere: Structure, Climate, Chemistry, and Methane Cycle	40
14.4.3	Atmospheric Escape	41
14.4.4	Origin and Evolution of Titan's Atmosphere	41
14.4.5	Life on Titan: "Weird Life" or Liquid Water Life	42
14.5	The Exoplanet Context for Outer Planets and their Satellites	42
Exopla	nets: Habitability and Characterization	42
15.1	The Circumstellar Habitable Zone	42
15 1 1	Requirements for Life: the Importance of Liquid Water	42
15.1.1	Historical Treatment of the Habitable Zone	42
15.1.2	Modern Limits on the Habitable Zone Around the Sun	42
15.1.5	Empirical Estimates of Habitable Zone Roundaries	42
15.1.1	Habitable Zones Around Other Main Sequence Stars	42
15.1.6	Other Concents of the Habitable Zone	43
15.1.0	The Galactic Habitable Zone	43
15.2	Finding Planets Around Other Stars	43
15.2	The Actionative Method	13
15.2.1	The Padial Valoaity Mathod	43
15.2.2	The Transit Method and Peoulte from NASA's Konlor Mission	43
15.2.5	The Transit Method and Results from NASA's Repict Mission	43
15.2.4	Diract Detection Mathede: Terrectrial Planet Finder (TPF) and Darwin	-13
15.2.3	Characterizing Evoplanet Atmochares and Surfaces	-+J //2
13.3	The New Terms Terms is for extension Directs Answer 1.4	40
15.3.1	The Frederic Direct Detection of Helpitelle Director	43
15.3.2	The Future: Direct Detection of Habitable Planets	44
15.4	Interpretation of Possible Biosignatures	44
15.4.1	The Criterion of Extreme Thermodynamic Disequilibrium	44
15.4.2	Classification of Biosignature Gases	44
15.4.3	Is O_2 by Itself a Reliable Biosignature?	44
15.5	Parting Thoughts	44

		Content
Append	lix A: One-Dimensional Climate Model	44
A.I	Numerical Method	44
A.2	Calculation of Radiative Fluxes	450
A.3	Treatment of Water Vapor	452
A.4	Treatment of Clouds	454
Append	lix B: Photochemical Models	455
B.I	Photochemical Model Equations	455
B.2	Finite Differencing the Model Equations	456
B.3	Solving the System of Ordinary Differential Equations (ODEs)	457
B.4	Boundary Conditions	458
B.5	Including Particles	459
B.6	Setting up the Chemical Production and Loss Matrices	460
B.7	Long- and Short-Lived Species and III-Conditioned Matrices	460
B.8	Rainout, Lightning, and Photolysis	461
Append	lix C: Atomic States and Term Symbols	463
Bibliog	raphy	467
Index		562

Preface

For millennia, philosophers have offered mere opinions about whether life exists beyond the Earth, but amazingly it will soon be possible to replace such conjectures with data. In other words, we stand on the brink of solving the question of "are we alone?" The answer may come from the spectrum of an exoplanet, from rocks on Mars, or from some unexpected source. In any case, we now know that our galaxy contains billions of exoplanets, some of which may be inhabited. This problem focuses our attention on what makes a planet habitable. When we look at Earth, Mars and Venus, we see that an atmosphere - through composition and climate - plays a critical role in distinguishing lifeless from inhabited planets. Thus, the topic of atmospheric evolution is essential. We need to know where atmospheres come from, how atmospheres remain stable, how the mixture of gases in an atmosphere changes over billions of years from the origin of a planet to its current or future state, and whether an atmosphere can provide a climate conducive to life.

We have been working on various aspects of atmospheric evolution for two (DCC) and four decades (JFK), respectively. Both of us have been fortunate in receiving continual support from NASA's Exobiology Program and the NASA Astrobiology Institute. We have previously published reviews on relevant topics, such as the physics and chemistry of atmospheres (Catling, 2015) (which we expand in Chapters 1-5), the origin and habitability of the Earth (Kasting and Catling, 2003) (which we bring up-todate in Chapters 6-11), oxygenation of Earth's atmosphere (Catling, 2014; Kasting, 2013) (which is newly reviewed in Chapter 10), astrobiology (Catling, 2013) (a theme throughout this book), and searching for habitable planets (Kasting, 2010) (which is the topic of Chapter 15). Our reviews have been at different levels, and, for the researcher, useful information has remained very scattered across the scientific literature. Such dispersal arises because aspects of astronomy, geology, geochemistry, and atmospheric science all contribute to the formation and evolution of atmospheres. On a planet with life, we must add biology also. Consequently, we wrote this book to gather our knowledge of planetary atmospheres into a framework of atmospheric evolution and habitability. Our intended reader is any interested researcher or graduate student.

In this book, we are concerned with inhabited planets such as Earth, as well as lifeless ones. But the Earth itself changed from being lifeless to inhabited. We also consider other inhabited planets in the context of possible life on early Mars or potential life on exoplanets that might be remotely detectable. As mentioned above, whether a planet is inhabited or lifeless is a key motivation to study atmospheric evolution. All of these considerations led us to the title of this book.

The book has three parts. In Part I, we concisely describe principles of atmospheres (structure, radiation, chemistry, and motions) that are needed to appreciate atmospheric evolution and habitability. Part II describes origins of atmospheres and the evolution of Earth's atmosphere and climate. Finally, Part III turns to other worlds, including Mars, Venus, outer planet satellites, and exoplanets.

Because atmospheric evolution ranges over a vast swath of disciplines that stretches the limits of our expertise, colleagues have kindly provided essential help. In alphabetical order, we thank the following people for commenting on individual chapters: Dorian Abbot, Don Brownlee, John Chambers, Nick Cowan, Colin Goldblatt, David Grinspoon, Paul Hoffman, Dick Holland, Edwin Kite, Conway Leovy, Ralph Lorenz, Vikki Meadows, Tyler Robinson, Adam Showman, Jon Toner, and Steve Warren. We also thank Beth Tully for her patience in helping us with the diagrams. We owe special thanks to a couple of departed friends on our list who are greatly xiv

Cambridge University Press & Assessment 978-0-521-84412-3 — Atmospheric Evolution on Inhabited and Lifeless Worlds David C. Catling , James F. Kasting Frontmatter <u>More Information</u>

Preface

missed. These colleagues always generously shared their ideas and unfailingly provided eager encouragement. They were Conway Leovy (1933–2011) and Heinrich ("Dick") Holland (1927–2012). We would also like to acknowledge James C.G. Walker, who was a mentor to

JFK, and who in 1977 wrote a previous book titled *Evolution of the Atmosphere* that has guided thinking on this topic for about the past 40 years. Finally, we thank Vince Higgs at CUP for enormous patience in waiting for us to complete this book.