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Introduction

This book is about pricing and hedging financial derivatives under stochas-

tic volatility in equity, interest rate, and credit markets. We demonstrate that

the introduction of two time scales in volatility, a fast and a slow, is needed

and is efficient for capturing the main features of the observed term struc-

tures of implied volatility, yields, or credit spreads. The present book builds

on and replaces our previous book, Derivatives in Financial Markets with

Stochastic Volatility, published by Cambridge University Press in 2000.

We present an approach to derivatives valuation and hedging which

consists of integrating singular and regular perturbation techniques in the

context of stochastic volatility. The book has a dual purpose: to present

“off-the-shelf” formulas and calibration tools, and to introduce, explain, and

develop the mathematical framework to handle the multiscale asymptotics.

There are many books on financial mathematics (mostly for introductory

courses at the level of the Black–Scholes model). Primarily, these books

deal with the case of constant volatilities, be it for stock prices, interest

rates, or default intensities. This book is about analyzing these models in

the presence of stochastic volatility using the powerful tools of perturba-

tion methods. The book can be used for a second-level graduate course in

Financial and Applied Mathematics.

Our goal is to address the following fundamental problem in pricing and

hedging derivatives: how can traded call and put options, quoted in terms

of implied volatilities, be used to price and hedge more complicated con-

tracts? Modeling the underlying asset usually involves the specification of a

multifactor Markovian model under the risk-neutral pricing measure. Cali-

bration of the parameters of that model to the observed implied volatilities,

including the market prices of risk, is a challenging task because of the

complex relation between option prices and model parameters (through a

pricing partial differential equation, for instance). The main difficulty is to
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xii Introduction

find models which will produce stable parameter estimates. We like to think

of this problem as the “(K,T, t)-problem”: for a given present time t and a

fixed maturity T , it is usually easy with low-dimensional models to fit the

skew with respect to strikes K. Getting a good fit of the term structure of

implied volatility, that is when a range of observed maturities T is taken

into account, is a much harder problem that can be handled with a sufficient

number of parameters. The main problem remains: the stability with respect

to t of these calibrated parameters. This is a crucial quality to have if one

wants to use the model to compute no-arbitrage prices of more complex

path-dependent derivatives, since in this case the distribution over time of

the underlying is central.

Modeling directly the evolution of the implied volatility surface is a pro-

mising approach but involves some complicated issues. One has to make

sure that the model is free of arbitrage or, in other words, that the surface is

produced by some underlying under a risk-neutral measure. This is known

to be a difficult task, and the choice of a model and its calibration is also an

important issue in this approach. But most importantly, in order to use this

modeling to price other path-dependent contracts, one has to identify a cor-

responding underlying which typically does not lead to a low-dimensional

Markovian evolution.

Wouldn’t it be nice to have a direct and simple connection between the

observed implied volatilities and prices of more complex path-dependent

contracts! Our objective is to provide such a linkage. This is done by using

a combination of singular and regular perturbation techniques correspond-

ing respectively to fast and slow time scales in volatility. We obtain a

parametrization of the implied volatility surface in terms of Greeks, which

involves four parameters at the first order of approximation. This procedure

leads to parameters which are exactly those needed to price other contracts

at this level of approximation. In our previous work presented in Fouque

et al. (2000), we used only the fast volatility time scale combined with a

statistical estimation of an effective constant volatility from historical data.

The introduction of the slow volatility time scale enables us to capture more

accurately the behavior of the term structure of implied volatility at long

maturities. Yet, we preserve a parsimonious parametrization which effec-

tively and robustly captures the main effects of time scale heterogeneity.

Moreover, in the framework presented here, statistics of historical data are

not needed for the calibration of these parameters.

Thus, in summary, we directly link the implied volatilities to prices of

path-dependent contracts by exploiting volatility time scales. Furthermore,

we extend this approach to interest rate and credit derivatives.
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Introduction xiii

In Chapter 1 we review the basic ideas and methods of the Black–Scholes

theory as well as the tools of stochastic calculus underpinning the models

used. Chapter 2 provides a general introduction to stochastic volatility mod-

els. In Chapter 3, we identify time scales in financial data and introduce

them in stochastic volatility models. In Chapter 4 we present the first-order

perturbation theory in the context of European equity derivatives and iden-

tify the important parameters arising in this asymptotic analysis. This is

the central chapter on the mathematical tools used in our multiscale mod-

eling approach. In Chapter 5 we provide a calibration procedure for these

parameters using observed implied volatilities. Indeed, these are the param-

eters that provide a parsimonious linkage between various contracts. We

also show in this chapter how to extend the perturbation techniques to the

case with time-dependent parameters needed for practical fitting of the pre-

sented S&P 500 data. The extensions to exotic and American claims are

described in Chapters 6 and 7. It is also natural to exploit the presence of

a skew of implied volatilities for designing hedging strategies of part of

the volatility risk by trading the underlying. This is achieved in Chapter 8

by using the asymptotic analysis presented in the previous chapters com-

bined with a martingale argument, which in turns can be used to derive

asymptotics in the case of non-Markovian models of volatility. In Chap-

ter 9 we present several extensions to the perturbation theory, including

the cases with dividends and varying interest rates, and the derivation of

the second-order corrections. Next, in Chapter 10, we discuss the Heston

model, which is very popular for its computational tractability. We imple-

ment our perturbation theory on this particular model, we show how to

generalize it while retaining its tractability, and we derive large deviation

results in the regime of short maturities and fast mean-reverting volatility.

Applications to variance-reduction techniques for Monte Carlo simulations,

to portfolio optimization, and to estimation of CAPM Beta parameters are

presented in Chapter 11. After introducing the basics of fixed income mar-

kets, we demonstrate in Chapter 12 that our perturbation approach is also

effective for interest rates models with stochastic volatility. Then, we intro-

duce the fundamental concepts used in credit risk modeling, and we apply

our method to both single-name and multiname credit derivatives using

structural models in Chapter 13 and intensity-based models in Chapter 14.

One cannot write a book in 2011 on financial mathematics without com-

menting on the recent financial crisis. We choose to do so in the Epilogue –

Chapter 15 – since it involves judgement and behavior of the market players

rather than mathematical modeling as presented in this book.
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