
INTRODUCTION: THE GEOMETRY OF SOUND

It is the very same taste which relishes a demonstration in geometry, that is
pleased with the resemblance of a picture to an original and touched with the
harmony of music. All these have unalterable and fixed foundations in nature,
and are therefore equally investigated by reason and known by study; some with
more, some with less clearness, but all exactly in the same way.1

Musical sounds are elusive things. They are among the most
ephemeral of the objects of human perception and the productions
of human art. Not even a single musical phrase, let alone an entire
melody, is accessible to the ear all at once, as a painting is to the eye.
But this is only one of the difficulties. Even when musical sounds
are considered in isolation, they remain extraordinarily resistant
to analysis. Each of us, as much today as in antiquity, recognises
some sounds, and some combinations or sequences of sounds, as
more musical, more beautiful, more concordant than others, but we
may also find it difficult to say precisely what makes them so, or to
define these categories in a way that will account for differences of
individual taste, culture, or the age in which we live. Determining
to what extent categories such as the ‘musical’, the ‘beautiful’ and
the ‘concordant’ overlap presents even greater challenges.

One approach to the problem of defining and explaining musical
beauty is to assume that the realm of music is not unique or self-
contained, and that when we judge sounds as beautiful, we do so
on the basis of a broader definition of beauty which applies to
other perceptible things as well. Claudius Ptolemy (fl. ad 146–c.
170), one of the best representatives of this view among those
who wrote on harmonics in Greek antiquity, argued that of all
the senses, hearing and sight are the most closely connected to
the faculty of reason, and that this accounts for the fact that while

1
Joshua Reynolds, Discourses on Art, discourse VII, delivered to the Students of the Royal
Academy, on the Distribution of the Prizes, 10 December 1776.
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introduction: the geometry of sound

other senses take pleasure from their objects, sight and hearing
alone find beauty in them: a smell may be fragrant, a taste may be
delicious, a thing may be soft to the touch, but only a sight or a
sound can be beautiful.2 Thus when the fifth-century bc sculptor
Polyclitus locates beauty in proportionality (symmetria), by which
he means the proportional relationship of parts to one another and
to the whole,3 the student of music who accepts this thesis will say
that beauty in music must arise from some sort of proportionality
between sounds. If our student of music also accepts Ptolemy’s
view, he will say that we can appreciate beauty in music because
hearing, like sight, communicates more directly with the faculty of
reason than the other senses. Beauty, then, will be a kind of rational
judgement made through our two most rational senses. And one
way to extend the argument into the realm of music is to suggest
that musical sounds are more beautiful than non-musical ones.

Without this set of preliminary assumptions, the thesis that musi-
cal sounds are musical in virtue of being proportional seems almost
laughable. One reason for this is that proportion, in Polyclitus’
sense at least, is something we identify and assess primarily with
our eyes: we can look at a polygon drawn on a board and say
at a glance whether it is a square or a rectangle (a proportional
judgement, and readily definable as such). But the gap between
visual and aural judgement seems unbridgeable, because there are
no sounds which exhibit proportion in the way we know it from
sight. Sounds can differ in timbre, in pitch, in volume, in duration –
all of which are perceived as qualities except the last. The quanti-
tative differences of duration constitute musical rhythm, which is
the only proportionality in music directly accessible to perception.
Since the same verse can be either spoken or sung in identical
rhythm, however, and since only the latter would be counted fully
musical by most people, the study of rhythm alone does not answer
the question of what makes sounds musical. So we require a new
starting point.

In spring, before the leaves come out in the hardwood forests
of south-western Ontario, the ground is blanketed with the white

2
Ptol. Harm. 5.19–24, 93.11–94.1.

3
For example, of fingers to hand, hand to forearm, forearm to arm, and so on: Polyclitus
ap. Gal. De plac. Hipp. et Plat. V.3 (= DK 40 a 3).
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introduction: the geometry of sound

three-petalled wildflower called the trillium. It is a beautiful sight,
but saying precisely why can be as difficult as explaining why
a melody is beautiful. We could perhaps list some of the visi-
ble aspects of trilliums that must contribute to their beauty: their
shape, their colour, their texture, the curl of their petals. But it
is hard to get further, partly because the beauty we assess with
our eyes, like the beauty we assess with our ears, seems to arise
from many factors in combination. One approach, then, might
be to narrow the focus and consider one factor in isolation. Sup-
pose for the moment that we select a single trillium, and ignore
all the things that make it beautiful that have nothing to do with
its shape. Doing this requires restricting our vision: we might con-
template a black-and-white photograph of a pressed trillium, and
find that it is still beautiful. Why? Ptolemy would probably say
because of its various manifestations of symmetria (commensura-
bility, proportion): literally, the ways in which its parts measure
each other.4 The idealised trillium (more perfect than any individ-
ual specimen we might obtain) has three petals of identical size and
shape, whose points trace the outline of an equilateral triangle, the
simplest and most symmetrical polygon. Polyclitus would proba-
bly say that this sort of basic mathematical structure is what makes
works of art beautiful too. The hunch was that music, when it is
beautiful, is so because it participates similarly in the mathemat-
ics of nature. But because proportion is a visual concept, sounds
must somehow be rendered visible in order for us to investigate
their proportionality. This can only be done indirectly, by assess-
ing the dimensions of the physical objects that resonate when
sounds occur. Some of these objects do not immediately appear
to possess proportionality (the human vocal organs, for instance);
others do (panpipes). The key, then, is to remove all the factors
which cannot lead to an investigation of proportionality, like colour
and texture for the trillium: we need an instrument that will pro-
vide a black-and-white photograph of pressed sounds. This is the
monochord.

In Greek the instrument was called, simply, the ‘measuring-rod’
(kanōn). It consisted of a single string stretched over a soundbox

4
See e.g. Ptol. Harm. 92.27–30.
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introduction: the geometry of sound

whose surface could be marked with measurements, like a ruler.
Fixed bridges at either end raised the string above the ruler, and
a movable bridge allowed the string to be divided at any point in
between. As long as the string was uniform, the only factor which
could now contribute to its pitch was the length of the plucked sec-
tion: thickness, tension and linear density were controlled. Divide
the string in half by placing a movable bridge at its mid-point, and
the half-length will sound a note an octave above that produced
by the whole length. Here are proportion and musical beauty in
one place, for the octave is (and was also for the Greeks) a privi-
leged interval in music, and no matter where we construct it on the
string, the lower note will always take twice as much length as the
upper one. Thus we could say that the ratio of the octave is 2:1.
Likewise, a division into two thirds generates the fifth (3:2), and
one into three quarters produces the fourth (4:3). Musical relation-
ships are now quantifiable, and just as the musician can say that a
fourth and a fifth together make an octave, the mathematician can
say that 4:3 × 3:2 = 2:1. The proportions which appear to underlie
these three fundamental concords are all to be found in the first
four numbers, 4:3:2:1. The special character of certain musical
intervals, otherwise accessible to perception only as qualities, now
opens itself to enquiry in the realm of arithmetic: one can attempt
to define what makes musical concords concordant on the basis of
their mathematical properties alone. This was the approach taken
by a number of Greek musical writers, the earliest of whom were
associated with the Pythagoreans.

In order to investigate music by means of ratio and proportion,
therefore, the scientist needs to make sacrifices. Questions about
how timbre and volume contribute to what is beautiful in music
cannot be addressed; the causes of these attributes will be puz-
zled out in the science of acoustics. Questions of rhythm, too, will
constitute a separate branch of investigation. The field of enquiry
is narrowed to questions about the relationships between pitches
in music, and because the questions have been framed in terms
of proportion, these relationships will be further limited to those
which can be expressed as a ratio of numbers. Indeed, those which
cannot be so expressed will be considered unmusical: proportion-
ality itself then becomes a condition of the musical. One of those
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introduction: the geometry of sound

who took this view was Adrastus of Aphrodisias, who wrote on
music in the second century ad:
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Under irrational relations noises are irrational and unmelodic, and should not
strictly even be called notes, but only sounds; but under relations that place them
in certain ratios to one another, the multiple or the epimoric or simply that of
number to number,5 they are melodic, and are strictly and properly notes.6

Multiple ratios are those in which one term is a multiple of the
other (mn:n); the ratios of the octave (2:1), octave plus fifth (3:1)
and double octave (4:1) are of this form.7 Epimoric ratios are those
which have a ‘part (morion) in addition’: that is, the greater term
exceeds the smaller by a simple part of the smaller ((n + 1):n);
the ratios of the fifth (3:2), fourth (4:3) and tone (9:8) are of this
form.8 ‘Number to number’ ratios are those whose terms have no
special relationship; the most common example is the interval left
over when two tones are taken away from a fourth. This is the
so-called leimma (‘leftover’), an interval slightly smaller than half
of a tone, whose ratio is 256:243.9

Adrastus calls this last category ‘number to number’ because
this is the way such ratios are referred to in Greek: the leimma is
‘the 〈ratio〉 of 256 to 243’ (0 �"� ��1

′
���� �2 ���′ 〈���
�〉).10

5
An arithmos is something slightly different from what we mean by the term ‘number’:
in Greek terms, it is ‘a plurality (plēthos) composed of units’ (Euc. El. VII def. 2); in
our terms, this means a positive integer greater than one. Thus ‘ratio of numbers’ in the
Greek sense excludes a quantity such as � (the ratio of the circumference of a circle to
its diameter, two incommensurable magnitudes).

6
Adrastus ap. Theo. Sm. 50.14–19, trans. Barker 1989: 214.

7
Octave plus fifth: 2:1 × 3:2 = 3:1. Double octave: (2:1)2 = 4:1. These are often referred
to as compound ratios. Here and throughout the book I avoid the modern names for
intervals greater than the octave in favour of those used by Greek authors (I write
‘octave plus fifth’, for example, rather than ‘twelfth’).

8
Just as the tone is the interval by which a fifth exceeds a fourth, so too 9:8 = 3:2 ÷ 4:3.
Note that the definition is more exact than the expression (n + 1):n in that it excludes
2:1, which is not an epimoric ratio but a multiple: see Theo. Sm. 76.21–77.2. The Latin
writers translate the term superparticularis, ‘superparticular’.

9
4:3 ÷ (9:8)2 = 256:243.

10
Number to number ratios are also called ‘epimeric’ (%�����,�): see e.g. Theo. Sm. 78.6.
The Latin equivalent is superpartiens, ‘superpartient’.
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introduction: the geometry of sound

This marks an important difference between Greek usage and ours,
and it is a linguistic difference with ideological consequences. The
privileged status of multiple and epimoric ratios is reflected in the
fact that they can be expressed in a single word. Just as we can
say ‘duple’ for 2:1, ‘triple’ for 3:1 and ‘quadruple’ for 4:1, Greek
authors could also say ‘hemiolic’ (literally ‘half-and-whole’) for
3:2, ‘epitritic’ (literally ‘a quarter in addition’) for 4:3, ‘epogdoic’
for 9:8. This usage was not limited to ratios with smaller terms: the
27:1 ratio, for example, is 3���������
����4��
�; the 17:16 ratio
is %������)5���
�.11 The fact that the proportions found in the
first four numbers (4:3:2:1) correspond to intervals which Greek
musicians unanimously identified as concords was thus taken as
an indication that the special status of these intervals reflected a
broader principle which could be seen in the simplicity of the ratios
and of the form of their expression.

Investigating music within these parameters means studying
the different combinations and arrangements of intervals which
arise in music with the ratios always in view. The science which
pursued this investigation was concerned with the mathematical
‘fitting-together’ (harmonia) of the constituent notes and intervals
of music. Aristotle called it ‘mathematical harmonics’, to distin-
guish it from ‘hearing-based harmonics’,12 for the thesis that musi-
cal intervals acquire their particular qualities through the ratios to
which they seem to correspond was not uncontroversial in antiq-
uity. Those who had investigated music before Aristotle had done
so in a variety of ways, not all of which are clear to us now from
the surviving remnants of their work. But for Aristotle this variety
could be condensed into a single dichotomy: some prioritised the
mathematical aspects of the study of harmonia, and others priori-
tised the audible aspects. Aristotle called the former ‘mathematical
harmonicists’, or more literally, ‘those who investigate harmonics

11
3���������
����4��
�: Nicom. Harm. 260.17; %������)5���
�: Adrastus ap. Theo. Sm.
69.15. The more common way of writing epimorics with larger terms is just as brief:
e.g. 0 %�� �1

′
for 17:16 (Ptol. Harm. 24.12). Readers familiar with Boethius and the

Latin tradition will recognise ‘hemiolic’ as ‘sesquialter’, ‘epitritic’ as ‘sesquitertian’
(sesquitertius) and ‘epogdoic’ as ‘sesquioctave’ (sesquioctauus).

12
.��
���* 6 �� ���������* ���  ���2 �*� #�
,�, An. post. 79a1–2; with the former
cf. Metaph. 997b21.
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introduction: the geometry of sound

according to numbers’.13 The hearing-based harmonicists, he says,
know ‘the fact that’ (�� 7��), but the mathematical harmonicists
know ‘the reason why’ (�� )����), for the mathematical scientists
‘are in possession of the demonstrations of the causes’.14

Later in the same text (the Posterior Analytics), Aristotle lists
some of the concerns of mathematical harmonics:

�	 %��� ������	�; ���
� #����"� %� 89�& ��� :���&. )�2 �	 �������& �� 89; ��

:���&; )�2 �� ���
� <���� #����"� �� 89; ��� �� :���. =�> <��� �������&� ��
89; ��� �� :���; =�> %���� %� #����
&� 0 ���
� �(�"�; ��:����� )> 7�� <���, �	�

!� %���� 0 ���
�;

What is concord? – a ratio of numbers between the high-pitched and the low-
pitched. Why does the high-pitched form a concord with the low-pitched? –
because the high-pitched and the low-pitched stand in a ratio of numbers. Does
there exist a concord between the high-pitched and the low-pitched? – Is their
ratio in numbers? Granted that it is, what then is the ratio?15

This book is about the monochord and its use within the tradition
of mathematical harmonics, from the instrument’s first appearance
to the Harmonics of Claudius Ptolemy. The chronological scope
of the book is defined in two ways. Firstly, it is in Ptolemy’s work
that the monochord receives its fullest, most detailed, most cre-
ative and methodologically rigorous treatment in antiquity. There
are a number of important ancient witnesses who followed him:
his earliest commentator, Porphyry, for one, and Boethius, whose
De institutione musica transmitted the instrument and its use to
the Latin West. But Porphyry is in some ways more helpful for
his testimony about those whose monochord-informed harmonics
preceded Ptolemy, and Boethius contributes little to the subject
that is new.16 Secondly, the history of the monochord in the Mid-
dle Ages has been written by others. Boethius’ treatise has been
studied both from the point of view of mediaeval music theory
and from that of its Neoplatonic background,17 and the uses of the

13

? ���2 �
;� #����
;� .��
���
	, Top. 107a15–16.

14
An. post. 79a2–4.

15
An. post. 90a18–23, trans. Barker 1989: 70–1, following Ross’ reading (%� 89�& ���
:���&) rather than Bekker’s (%� 89�& - :���&) in 90a19.

16
The instrument also appears in the work of Aristides Quintilianus (possibly third century
ad), Gaudentius (possibly fourth century ad) and many Latin authors of late antiquity.

17
See especially Bower 1989, Heilmann 2007. Mathiesen (1999: 629–36) gives an
overview of the work. Barbera (1991) examines Boethius’ transmission of a version
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introduction: the geometry of sound

monochord in the Latin West from Boethius to 1500 have been
exhaustively treated.18 An area which is still in need of further
work is the Arabic tradition. The most important items among the
Greek literature on the monochord were known to Arabic music
theorists of the ninth and tenth centuries, who added to the tradition
by adapting the instrument to a new theoretical context, but this
important aspect of its mediaeval legacy has been little studied.19

The aim of the book is to contextualise the monochord and its
use within this chronological scope on four levels. The first, and
narrowest, is mathematical harmonics: I shall attempt to establish
when the instrument first came into use (toward the end of the
fourth century bc, I shall suggest, although we cannot be certain);
who among early mathematical harmonicists used it, and who did
not; what mathematical harmonics could be done without it; and
what it contributed to the science when it first appeared.

The second level is Greek harmonics more broadly. Aristotle’s
statement that it is the mathematical scientists who are in posses-
sion of the demonstrations of the causes, and the implied superi-
ority of the mathematical approach to harmonics which follows
from this, was challenged by two of his students, Aristoxenus and
Theophrastus. Aristoxenus did not go so far as to deny that cer-
tain ratios can be found in the physical dimensions of instruments
when they produce certain intervals, but he denied absolutely the
value of such observations for the study of musical theory. We do
not perceive music quantitatively, he argued, and so our science
must be carried out in the realm of what we do perceive. Further-
more, pursuing the study of music on the authority of perception
does not require relegating reason to a negligible role, nor does

of a short Hellenistic treatise on monochord division (the Sectio canonis); related
issues (including Boethius’ transmission of Ptolemy) are considered by Bowen and
Bowen 1997.

18
The first strides forward were made by Wantzloeben (1911); more work was done by
Adkins (1963, 1967). Other contributions followed: e.g. Hughes 1969, Lindley 1980,
Brockett 1981, Herlinger 1987, Pesce 1999 and especially Meyer 1996. See Herlinger
2002 for a summary of the literature on the monochord in the Middle Ages.

19
The most important theorists in this tradition are Al-Kind@ (ninth century) and Al-Fārāb@
(tenth century), who knew many of the important Greek harmonic texts which have
survived to modern times, including Ptolemy’s Harmonics. See Barbera 1991: 7–8 and
Mathiesen 1999: 610–11 for brief accounts; the sources are listed by Shiloah (1979 and
2003).
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introduction: the geometry of sound

it necessarily fail to demonstrate the causes of things to do with
music: the third book of what survives as his Elementa harmon-
ica is concerned almost exclusively with giving demonstrations,
in Aristotle’s sense of the word, of things to do with melodic
succession.20 The reason Aristoxenus’ non-rational approach to
harmonics (by which I mean merely ‘not thinking about intervals
as ratios’, rather than ‘unreasoned’) is so important to the history
of the monochord is that it provoked a counter-attack: this came in
the form of a very short treatise called The Division of the Mono-
chord (usually cited by its Latin title, Sectio canonis), in which
the instrument made its first appearance in Greek literature. It is
attributed, insecurely, to Euclid, but is probably to be dated to his
generation (c. 300 bc).21 It consists almost entirely of demonstra-
tions of the primary theorems of mathematical harmonics, some
of which are formulated in such a way as to refute specific rival
arguments of Aristoxenus. That the vindication of the mathemat-
ical approach brought the monochord into the literature of music
theory for the first time is significant: from its first appearance it
was a polemical instrument as much as a musical one. And yet in
later centuries, as harmonic theorists sought in different ways to
bring the rival traditions together and combine their inheritances,
the monochord also appears in a mediating role.

The third level is Greek mathematics. The arguments of the
Sectio canonis are framed in the formulaic language of Euclidean
arithmetic: they rely on theorems demonstrated in the arithmeti-
cal books of Euclid’s Elements (V, VII–IX), and they employ a
similar style of presentation. More specifically, they prove propo-
sitions in arithmetic through constructions in geometry: simple
constructions, in which numbers are represented as line segments,
and ratios as the relationships between their lengths. The mono-
chord comes to participate in this presentation, for it makes the
20

El. harm. III contains twenty-three theorems set out as ‘proofs’ or ‘demonstrations’
(apodeixeis). It is now generally accepted that the text of the Elementa harmonica as we
have it is a combination of more than one original work: see Mathiesen 1999: 294–334,
Gibson 2005: 39–75. For a recent attempt to delineate its ancient components and their
relationships, see Barker 2007, ch. 5; for the unitarian position, see Bélis 1986, ch. 1.

21
Besides the authorship of the treatise, its date and unity have been the subject of
significant debate. These issues will be discussed in chapter 3. The monochord is attested
independently in a fragment of Duris of Samos (c. 300 bc); this will be examined in
chapter 2.
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introduction: the geometry of sound

connection between ratios and intervals by means of simple geo-
metrical constructions. A ratio can only be heard as an interval if
it can first be represented as a relationship between two segments
of string. Viewed from the level of mathematics, the instrument is
a kind of extension of the diagrams used in Euclidean arithmetic,
and its use in mathematical harmonics is consequently limited in
ways that also limit the arithmetical use of geometrical diagrams.

The fourth level is Greek science more broadly. Here I have
had to be selective. The third level raises questions about how
instruments are incorporated into the methods of sciences other
than harmonics, and what such a comparison can tell us about
the role of the monochord as a scientific instrument. What, if
anything, is unique about the way it mediates between the sensory
and intelligible realms? If there is anything unique about it, what
effect does this have on the way it was used by Greek harmonicists,
and on the development of their scientific methods? To frame
preliminary answers to these questions (the eligible material is
vast, and what I offer here is only a start), I have chosen a pair of
astronomical instruments discussed by Ptolemy in his Almagest,
and have compared his introduction of them with his introduction
of the monochord in the Harmonics.

When a geared calendrical device was found in an ancient
shipwreck off the Greek island of Antikythera in 1901, it was
a scientific instrument without a literature. The complexity of
the Antikythera mechanism came as a surprise to students of
ancient science and technology, because such a level of mechanical
sophistication could not have been inferred from surviving Greek
literature.22 The monochord, by contrast, is an instrument with-
out an archaeology. Because its history must be written entirely
from books, there are a number of things we cannot know about
its earliest incarnations: their dimensions, the materials of their
construction, and so on. But what we can be more certain of are
the uses to which it was put, so far as these are described for
us by Greek authors. Precisely how the Antikythera mechanism
functioned, and what exactly it was designed to do, are matters of

22
On the Antikythera mechanism, see especially Price 1974; Bromley 1986; Freeth,
Bitsakis et al. 2006; Freeth, Jones et al. 2008.
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