
Index

Symbols
!(logical NOT operator) – see hoc syntax:

expressions: operators
!= (inequality operator) – see hoc syntax:

expressions: operators
$ – see funcs and procs: arguments:

positional syntax
$1 – see funcs and procs: arguments:

positional syntax
$i – see funcs and procs: arguments:

symbolic positional syntax
$o – see funcs and procs: arguments:

positional syntax
$s – see funcs and procs: arguments:

positional syntax
% (remainder operator) – see hoc syntax:

expressions: operators
& (pointer operator) – see hoc syntax: pointer

operator
&& (logical AND operator) – see hoc syntax:

expressions: operators
'(apostrophe) – see DERIVATIVE block:

'(apostrophe)
()(paired left and right parentheses) – see

hoc syntax: expressions: operators
(1) – see units: dimensionless
* (multiplication operator) – see hoc syntax:

expressions: operators
*/ – see hoc syntax: comments
� (addition operator) – see hoc syntax:

expressions: operators
� (subtraction operator) – see hoc syntax:

expressions: operators
� (unaryminus operator) – see hoc syntax:

expressions: operators
–> (sink reaction indicator) – see KINETIC

block: –> (sink reaction indicator)

/ (division operator) – see hoc syntax:
expressions: operators

/* – see hoc syntax: comments
// – see hoc syntax: comments
: (colon) – see NMODL: comments, range

variable: linear taper
< (less than operator) – see hoc syntax:

expressions: operators
<–> (reaction indicator) – see KINETIC

block: <–> (reaction indicator)
<< (explicit flux) – see KINETIC block:

<< (explicit flux)
<= (less than or equal to operator) – see hoc

syntax: expressions: operators
= (assignment operator) – see hoc syntax:

expressions: operators
== (equality operator) – see hoc syntax:

expressions: operators
> (greater than operator) – see hoc syntax:

expressions: operators
>= (greater than or equal to operator) –

see hoc syntax: expressions:
operators

[] (index operator) – see hoc syntax:
variables: double, Vector class,
object: array, section: array, NMODL:
arrays, STATE variable: array in
NMODL

\(backslash) – see hoc syntax: continuation
character

ˆ(exponentiation operator) – see hoc syntax:
expressions: operators

ˆC (Control C) – see hoc: interrupting
execution

ˆD (Control D) – see hoc: starting and
exiting

_(underscore) – see hoc syntax: names

413

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

_ion – see ion mechanism: _ion suffix
x_ion – see ion mechanism:

automatically created
xi0_x_ion – see ion mechanism: default

concentration: specification in hoc
xo0_x_ion – see ion mechanism: default

concentration: specification in hoc
{} – see hoc syntax: statements: compound

statement
|| (logical OR operator) – see hoc syntax:

expressions: operators
~ (tilde) – see KINETIC block: ~ (tilde)

3
3 – see nseg: why triple nseg?
3-D model – see model: 3-D, 3-D

specification of geometry
3-D specification of geometry 103, 105, 144

3-D information 105, 109
arc3d() 109
calculation of L, diam, area(), and ri()

105, 108
coordinates

absolute vs. relative 146–147
data – see 3-D specification of geometry:

3-D information
also see quantitative morphometric data

diam3d() 105
checking 108

diameter 105
problems 108
also see 3-D specification of geometry:

calculation of L, diam, area(),
and ri()

n3d() 105, 109
number of 3-D points

effect on computational efficiency 106
vs. nseg 106
also see n3d()

origin of cell – see section: root section: is
3-D origin of cell

points – see 3-D specification of geometry:
3-D information

pt3dadd() 105
also see stylized specification of geometry

A
abrupt change – see variable: abrupt change

of, NET_RECEIVE block: handling
abrupt changes and discontinuities

absolute error 63, 71–72
local 75

tolerance 75, 79, 251
also see STATE block: specifying local

absolute error tolerance
also see relative error, numerical error

absolute tolerance—see absolute error: local:
tolerance

abstraction 33–34
AC length constant – see length constant: AC
access 100, 143

also see section: currently accessed: default
section

accumulation – see ion accumulation
accuracy 33, 64, 91

effect of boundary conditions 54
of ionic currents – see membrane current:

ionic: accuracy, standard run system:
fcurrent()

order – see numeric integration: order of
accuracy

physiological 79, 85
quantitative 67
spatial – see spatial accuracy
vs. speed 73, 117
temporal – see temporal accuracy
also see judgment, discretization, numerical

error, parameters: sensitivity to
acell_home_ – see NetWork Builder:

exporting reusable code: acell_home_
active current – see channel: voltage-gated
active transport 41, 199

electrically silent 256
initialization 203–205

pump transient 204
kinetic scheme 200

also see Example 9.9: a calcium pump
pump current 255–258

countering with a NONSPECIFIC_
CURRENT 256

initialization 258
also see buffer, diffusion, ion accumulation

adaptive integration – see numeric integration:
adaptive

adaptive time step – see numeric integration:
adaptive

adding items to NEURON Main Menu – see
NEURONMainMenu class:
miscellaneous_add()

adding new functions to NEURON – see
NMODL

adding new mechanisms – see mechanisms:
user-defined, nrniv: adding new
mechanisms, NMODL

414 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

addition operator – see hoc syntax:
expressions: operators

addplot() – see standard run system:
addplot()

advance microstep – see numeric integration:
adaptive: advance microstep

also see standard run system: fadvance():
local time step integration

advance() – see standard run system:
advance()

afferent event – see event: external
aggregation of events to time step boundaries

– see numeric integration: fixed time
step: event aggregation

algebra
linear – see linear algebra

algebraic equation – see equation: algebraic
algebraic difference equation – see equation:

difference
AlphaSynapse 19

graphical interface – see
PointProcessManager GUI

parameters 20
preserving spatial accuracy – see point

process: preserving spatial accuracy
also see Example 10.4: alpha function

synapse
alpha function synapse – see AlphaSynapse,

Example 10.4: alpha function synapse
Alt key – see Graph class: menu_tool()
amount of material – see material: amount
ampa.mod – see Example 10.6: saturating

synapses
AMPAergic synapse – see Example 10.3:

synapse with exponential decay, Example
10.6: saturating synapses

amplification factor – see amplifier: gain
amplifier 45

feedback – see feedback: amplifier
gain 45, 49
headstage 49
also see circuit: element: amplifier

analysis 24
initialization – see initialization: analysis

analytic solution
and discrete event simulation – see discrete

event simulation: conditions for
cable equation – see equation: cable:

analytic solution
anatomical data – see quantitative

morphometric data
anatomical distance – see distance

anatomical properties
separating biology from numerical issues 92

also see section, range, range variable
specifying – see 3-D specification of

geometry, stylized specification of
geometry, topology: specifying

also see geometry, topology
AND operator – see hoc syntax: expressions:

operators
apostrophe – see DERIVATIVE block:

'(apostrophe)
approximate Jacobian – see Jacobian:

approximate
approximation 25, 34, 52–53

of a continuous system by a discrete system
60, 90

piecewise linear – see continuous variable:
piecewise linear approximation

also see Jacobian: approximate
arc length – see range
arc3d() – see 3-D specification of

geometry: arc3d()
architecture – see topology
area

membrane – see surface area, membrane area
surface – see surface area, membrane area
zero area nodes – see section: nodes: zero area

area
as an ASSIGNED variable – see ASSIGNED

variable: v, celsius, t, dt, diam,
and area

also see area()
area() 104

calculation of – see stylized specification of
geometry: calculation of area() and
ri(), 3-D specification of geometry:
calculation of L, diam, area(), and
ri()

effect of creating a Shape – see Shape
object: creating: effect on diam,
area(), and ri()

effect of define_shape() – see
define_shape(): effect on diam,
area(), and ri()

stylized vs. 3-D surface integral 110
arguments – see funcs and procs: arguments

section as – see SectionRef class
trapping – see good programming style:

bulletproofing against nonsense
arguments

also see FUNCTION block, PROCEDURE
block, NET_RECEIVE block

Index 415

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

arithmetic operators – see hoc syntax:
expressions: operators

arrays
in NMODL – see NMODL: arrays, STATE

variable: array in NMODL
of numbers – see hoc syntax: variables:

double, Vector class
of objects – see object: array
of sections – see section: array

ArtCellGUI
bringing up an ArtCellGUI 311
cell names – see NetWork Builder: cells:

names
changing – see ArtCellGUI: specifying

cell types
changing cell parameters – see NetWork

Builder: caveats
also see PointProcessGroupManager

specifying cell types 311
Artificial Cell – see ArtCellGUI
artificial cell – see artificial spiking cell
artificial neuron – see artificial spiking cell
artificial spiking cell 82–83, 289

advantages and uses 265
computational efficiency 290, 292

differences from other point processes
290–291

implemented as point processes 290
IntFire1 – see IntFire1 class,

Example 10.7: IntFire1, a basic
integrate and fire model

IntFire2 – see IntFire2 class,
Example 10.8: IntFire2, firing rate
proportional to input

IntFire4 – see IntFire4 class,
Example 10.9: IntFire4, different
synaptic time constants

under CVODE 88
also see biophysical neuron model,

integrate and fire, IntFire1 class,
IntFire2 class, IntFire4 class,
NEURON block: ARTIFICIAL_CELL

ARTIFICIAL_CELL – see NEURON block:
ARTIFICIAL_CELL, artificial spiking
cell

ASCII file – see plain text file
ASSIGNED block 212, 222, 231, 250

also see PARAMETER block, STATE block
ASSIGNED variable 184, 195, 212

abrupt change of – see variable: abrupt
change of, NetCon class: event(),
NET_RECEIVE block: handling
abrupt changes and discontinuities

accuracy 169, 172
GLOBAL

spatial variation 232
vs. RANGE 215, 230
also see NEURON block: GLOBAL

initialization 187
also see initialization

is a range variable by default 213
also see NEURON block: RANGE, range

variable
v, celsius, t, dt, diam, and area

213
visibility at the hoc level 213, 218
when to use for an equilbrium potential 223
also see PARAMETER variable, STATE

variable, state variable: as an
ASSIGNED variable, ion_style()

assignment operator – see hoc syntax:
expressions: operators

assumptions 1, 41–42, 46, 51, 53
at_time() – see CVODE: and model

descriptions: at_time(), variable:
abrupt change of, NET_RECEIVE block:
handling abrupt changes and
discontinuities

atol 79
also see absolute error: local: tolerance

attaching a section – see connect
attenuation

at high frequencies 122
also see membrane time constant: and

attenuation of fast signals, spatial
decay of fast signals

Avogadro’s number – see units: mole
axial current 51–54, 56

positive current convention 51
axial resistance 52–53

infinite 107, 115
also see diameter: zero or narrow diameter

also see ri(), Ra, cytoplasmic resistivity

B
b_flux – see KINETIC block: b_flux
backward Euler method 61, 66–68, 165

and LONGITUDINAL_DIFFUSION 253
iteration coefficient 62
local error 67, 83
stability 67
summary 86
also see modified Euler method, numeric

integration: fixed time step
backward flux – see flux: backward,

KINETIC block: b_flux

416 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

backslash (\) – see hoc syntax: continuation
character

balance
charge – see charge: conservation
mass – see material: conservation

ball and stick 34
bandpass 122
barbed wire shape – see stylized specification

of geometry: strange shapes
base class – see class: base class, object-

oriented programming: polymorphism,
object-oriented programming: inheritance

biological properties vs. purely computational
issues 92

biophysical mechanism – see distributed
mechanism, point process

biophysical neuron model 82, 265
also see artificial spiking cell

biophysical properties
separating biology from numerical issues 92

also see section, range, range variable
specifying 111, 133
also see distributed mechanism, point

process
blocks – see NMODL: named blocks
boundary conditions 51

effect on accuracy – see accuracy: effect of
boundary conditions

sealed end 54, 56
branch

cell 92
also see neurite, section

circuit – see circuit: edge
branched architecture 51, 53, 91, 98

also see topology
branched cable – see cable: branched
break – see hoc syntax: flow control:

break
BREAKPOINT block 213, 223

abrupt change of a variable – see variable:
abrupt change of, NetCon class:
event(), NET_RECEIVE block:
handling abrupt changes and
discontinuities

and computations that must be performed
only once per time step 224

and counts, flags, and random numbers 223
and PROCEDUREs 224
and rate functions 224
and variables that depend on the number of

executions 223
at_time() – see CVODE: and model

descriptions: at_time(), variable:

abrupt change of, NET_RECEIVE
block: handling abrupt changes and
discontinuities

currents assigned at end of 223
METHOD – see BREAKPOINT block:

SOLVE
SOLVE 168–170, 223, 225
cnexp 225
derivimplicit 226
is not a function call 224
sparse 87, 243
also see STATE variable

state_discontinuity() – see
CVODE: and model descriptions:
state_discontinuity(),
variable: abrupt change of,
NET_RECEIVE block: handling
abrupt changes and discontinuities

time-dependent PARAMETER – see
PARAMETER variable: time-
dependent, Vector class: play()

translation of 168, 170
browser – see directory browser, variable

browser, Plot what? GUI
buffer 37

also see ion accumulation, diffusion,
Example 9.8: calcium diffusion with
buffering

built-in constants – see hoc syntax: variables:
built-in constants

built-in editor – see em, emacs
bulletproofing against nonsense arguments –

see good programming style:
bulletproofing against nonsense
arguments

C
C code

embedding – see NMODL: VERBATIM . . .
ENDVERBATIM

ca_ion – see ion mechanism: automatically
created

cable 50
branched 53
equation – see equation: cable
passive cylindrical 56–58, 60
unbranched 50, 53–54, 92

CABLE 164
cadif.mod – see Example 9.8: calcium

diffusion with buffering
cagk.mod – see Example 9.5: a calcium-

activated, voltage-gated current
cai – see calcium, ion mechanism

Index 417

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

cai0_ca_ion – see calcium, ion
mechanism: default concentration:
specification in hoc

calcium
amount of 41
buffering – see Example 9.8: calcium

diffusion with buffering
concentration 42

free 80
current 199

effect on concentration 200
diffusion – see Example 9.8: calcium

diffusion with buffering
pump 41, 79, 199

also see Example 9.9: a calcium pump,
active transport

also see ion mechanism
calcium-activated current – see Example 9.5: a

calcium-activated, voltage-gated current
call by reference vs. call by value – see funcs

and procs: arguments: call by reference
vs. call by value, NET_RECEIVE block:
arguments are call by reference,
FUNCTION block: arguments are call by
value, PROCEDURE block: arguments are
call by value

also see funcs and procs: arguments:
pointer, hoc syntax: pointer operator

cao – see calcium, ion mechanism
cao0_ca_ion – see calcium, ion

mechanism: default concentration:
specification in hoc

capacitance
electrode – see electrode: capacitance
compensation – see electrode: capacitance:

compensation
membrane – see cm, membrane capacitance,

specific membrane capacitance
capacitive current – see membrane current:

capacitive
capacitor

feedback – see feedback: capacitor
also see circuit: element: capacitor

Cell Map – see NetWork Builder: cells: Cell Map
cell time queue – see standard run system:

event delivery system: cell time queue
CellBuilder 5

bringing up 6
hoc output

exported cell 135
root section 8, 21

also see section: default section

spatial grid – see CellBuilder GUI:
Geometry page: d_lambda

CellBuilder GUI
Biophysics page 13

assigning values 16
specifying strategy 15

Continuous Create 17, 152–153
Geometry page 12

assigning values 14
d_lambda 14

also see spatial accuracy, spatial grid,
d_lambda rule

specifying strategy 13
Management page 16

Export 16, 135
Subsets page 8, 10

all subset 11
making a new subset 12

Topology page 8
base name 10
Basename 10
changing the name of a section 11
making a new section 9

celsius 212–213, 231
as an ASSIGNED variable – see

ASSIGNED variable: v, celsius, t,
dt, diam, and area

central difference method – see Crank–
Nicholson method

changing a variable in mid-run – see
PARAMETER variable: time-dependent,
variable: abrupt change of

changing point process location with hoc
code – see point process: loc()

changing standard functions and procedures –
see standard GUI library: redefining
functions and procedures, standard run
library: redefining functions and
procedures

channel 53
analytic integration of states – see numeric

integration: analytic integration of
channel states

calcium-activated – see Example 9.5: a
calcium-activated, voltage-gated
current

conductance 53
current

accuracy – see membrane current: ionic:
accuracy, standard run system:
fcurrent()

density 84, 92

418 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

gating model 87
HH type 70, 225

also see channel: linear
nonlinear 226
under CVODE 88

initialization – see initialization: channel
model

ligand-gated 36
also see Example 10.1: graded synaptic

transmission, Example 10.5:
use-dependent synaptic plasticity,
Example 10.6: saturating synapses

linear 87
also see channel: gating model: HH-type

model 36
nonlinear 87

under CVODE 88
ohmic – see channel: linear
voltage-gated 36

also see Example 9.4: a voltage-gated
current, Example 9.5: a calcium-
activated, voltage-gated current,
Example 9.7: kinetic scheme for a
voltage-gated current

chaos and numerical error – see numerical
error: chaotic system

chaotic system – see initialization: categories:
to a desired state

charge 50
conservation 51–52

also see Kirchhoff’s current law, gap
junction: conservation of charge

electronic – see e: electronic charge vs.
units conversion factor

chemical
notation – see kinetic scheme
reaction – see kinetic scheme
signal – see signal: chemical

child section – see section: child
chord conductance – see conductance: chord
circuit 44

analysis 44
branch 44
edge 44
element 45

amplifier 45
capacitor 45
current source 45
ground 45
resistor 45
voltage source 45
wire 45

equivalent 48, 53
also see section: equivalent circuit

linear – see linear circuit
node 44
parallel RC 45
positive current convention 45

clamp – see current clamp, voltage clamp
class 363

base class 376
also see object-oriented programming:

polymorphism, object-oriented
programming: inheritance

defining a new class – see template: writing
a template

subclass 376
also see object-oriented programming:

polymorphism, object-oriented
programming: inheritance

vs. object 363
also see object, object-oriented

programming, template
class definition – see template, class
Close button – see GUI: tools: Close button
closed end – see boundary conditions: sealed end
closed system 36, 38, 40
cm 13, 15–16, 94

default value 103
also see specific membrane capacitance,

membrane capacitance
Cm – see cm
cnexp – see DERIVATIVE block,

BREAKPOINT block: SOLVE: cnexp
collection

of numbers – see hoc syntax: variables:
double, Vector class

of objects – see object: array, List class
of sections – see SectionList class,

CellBuilder GUI: Subsets page
command history – see hoc: history function
COMMENT . . . ENDCOMMENT – see

NMODL: comments
comments – see hoc syntax: comments,

NMODL: comments
comparison of real values – see hoc syntax:

float_epsilon
COMPARTMENT – see KINETIC block:

COMPARTMENT
compartment 37, 52, 60

adjacent 53, 56
size 37, 41–42, 52, 92
vs. biologically relevant structures 92, 96
vs. conceptual clarity 96
also see segment

Index 419

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

compartmental model – see model:
compartmental

compartmentalization 8, 14
also see discretization

complexity 32–34, 91
compound statement – see hoc syntax:

statements: compound statement
computational efficiency 68–74, 82, 87–88,

91, 98, 126, 163, 181, 207, 210, 225, 239,
243, 253, 261

and STATEs 83
rate tables – see numeric integration:

analytic integration of channel states
staggered time steps – see Crank–Nicholson

method: staggered time steps
tree topology 165, 167, 169
why is NEURON fast? 344
also see d_lambda rule, function table,

IntFire2 class: firing time: efficient
computation, IntFire4 class: firing
time: efficient computation, synaptic
transmission: spike-triggered:
computational efficiency in NEURON,
discrete event simulation:
computational efficiency

computational model
implementing with hoc 130
also see model: computational

computational solution – see numeric solution
computer display – see GUI: screen
computing

purpose – see insight
concentration 36, 41, 42

and accuracy 87
default – see ion mechanism: default

concentration
specification in hoc – see ion

mechanism: default concentration:
specification in hoc

gradient 50
initialization – see ion mechanism: default

concentration, initialization: ion
specification – see ion mechanism: default

concentration, initialization: ion
also see ion accumulation, ion mechanism,

initialization: ion
conceptual clarity 129, 144, 207–208, 239, 261
conceptual model – see model: conceptual
conductance

absolute 112
density 111

also see channel: density

ion channel – see channel: conductance
membrane – see specific membrane

conductance, membrane resistance
slope 70

conflicts between hoc and GUI tools – see
hoc: conflicts with GUI

connect 101, 130
preserving spatial accuracy 102
preventing confusion – see section: child:

connect 0 end to parent
also see section

connectivity – see NetCon class, List object:
managing network connections with

conservation law 50
also see charge: conservation, material:

conservation, kinetic scheme:
conservation rules

CONSERVE – see KINETIC block: CONSERVE
consistency of units – see units: consistency
CONSTANT

vs. PARAMETER or LOCAL variable 257
CONSTANT block 257
constant

built-in constant – see hoc syntax:
variables: built-in constants

length – see length constant
membrane time – see membrane time

constant
rate – see rate constant
time – see time constant

constant current mechanism 196
also see initialization: strategies: injecting a

constant current
continuation character (\) 348
continue – see hoc syntax: flow control:

continue
continuerun() – see standard run system:

continuerun()
continuous function – see function: continuous
continuous system – see system: continuous
continuous variable 90–91

piecewise linear approximation 96–97
also see range variable: estimating by linear

interpolation between nodes
Control C – see hoc: interrupting execution
Control D – see hoc: starting and exiting
Control key – see Graph class:

menu_tool()
control – see simulation control
convergence 275–276

also see synaptic transmission: spike-
triggered

420 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

conversion factor – see scale factor, NMODL:
units conversion factor, UNITS block:
units scaling

correspondence between conceptual and
computational model – see model:
correspondence between conceptual and
computational

Crank–Nicholson method 61, 68–72, 165
hybrid of backward and forward Euler 68
iteration coefficient 62
local error 68, 84, 166

kinetic scheme 87
second order correct plots 180
stability 70
staggered time steps 70–72, 165, 169
summary 86
unstaggered time steps 70–71
also see secondorder

create 101, 130
also see section

creating an object – see object: creating
creating an object reference – see object

reference: declaring
criterion for proper initialization – see

initialization: criterion for proper
initialization

Ctrl key – see Graph class: menu_tool()
current 44

absolute 112
also see current: density

axial – see axial current
balance – see equation: current balance,

Kirchhoff’s current law
calcium-activated – see Example 9.5: a

calcium-activated, voltage-gated
current

capacitive 122
also see membrane current: capacitive

density 51, 54, 111
also see current: absolute

electrode 49, 51
also see ELECTRODE_CURRENT

ionic – see membrane current: ionic
membrane – see membrane current
sign convention – see membrane current:

positive current convention, axial
current: positive current convention,
circuit: positive current convention

source 51, 53
also see circuit: element: current source

transmembrane – see membrane current
voltage-gated – see channel: voltage-gated

current clamp 48
preserving spatial accuracy – see point

process: preserving spatial accuracy
also see IClamp class, Example 9.3: an

intracellular stimulating electrode
currently accessed section – see section:

currently accessed
cursor – see focus: cursor
custom GUI – see user interface: custom GUI
custom initialization – see initialization:

categories, initialization: strategies
CVODE 73–82, 171

abrupt changes and discontinuities – see
CVODE: and model descriptions,
variable: abrupt change of,
NET_RECEIVE block: handling
abrupt changes and discontinuities

and LONGITUDINAL_DIFFUSION 253
and model descriptions 88
at_time() 171, 218, 260–262
state_discontinuity()

260–262
also see NET_RECEIVE block:

state_discontinuity()
as generic term for adaptive integration

172
default error criteria 80
interpolation formulas – see numeric

integration: adaptive: interpolation
formulas

local error 75, 79
step() under – see standard run system:

step(): under CVODE
summary 88
also see numeric integration: adaptive,

standard run system: CVODE
CVode class 172
re_init() 161, 187–188, 196, 263

also see initialization: strategies:
changing a state variable

record() 83, 166, 179, 187
CVODES 172

also see CVODE, numeric integration:
adaptive

cytoplasmic resistivity 15, 54, 56, 94
also see Ra

D
d_lambda rule 8, 122–126

also see discretization, spatial grid
d_X rule 123

also see discretization, spatial grid

Index 421

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

DASPK 73–74, 172
summary 88
also see numeric integration: adaptive,

standard run system: DASPK, IDA
daughter section – see section: child
DC length constant – see length constant: DC
declaring an object reference – see object

reference: declaring
declaring variables – see NMODL: declaring

variables
default section – see access, section:

currently accessed: default section
deferred computation – see standard run

system: event delivery system:
implementing deferred computation

DEFINE – see NMODL: DEFINE
define_shape()

effect on diam, area(), and ri() 108
defining a new class – see template: writing a

template
defining a new template – see template:

writing a template
delayed action – see standard run system:

event delivery system: implementing
deferred computation

delta function – see function: delta
demonstration program – see neurondemo
density 36, 42

also see channel: density, conductance:
density, current: density, material:
density, state: as density

density mechanism – see distributed mechanism
DERIVATIVE block 225, 232, 237
'(apostrophe) 225
and CVODE 88
dependent variable

is a STATE variable 184
also see initialization: channel model:

Hodgkin–Huxley style
derivimplicit – see DERIVATIVE

block, BREAKPOINT block: SOLVE:
derivimplicit

detaching a section – see disconnect()
detail 33–34

how much 1, 27
also see judgment

developing new GUI tools – see GUI tool
development

diam 13, 94, 132
as an ASSIGNED variable – see

ASSIGNED variable: v, celsius, t,
dt, diam, and area

calculation from 3-D data – see 3-D
specification of geometry: calculation
of L, diam, area(), and ri()

checking 108
also see 3-D specification of geometry:

diam3d(): checking
default value 103
effect of creating a Shape – see Shape

object: creating: effect on diam,
area(), and ri()

effect of define_shape() – see
define_shape(): effect on diam,
area(), and ri()

specifying
3-D specification – see 3-D specification

of geometry: calculation of L,
diam, area(), and ri()

stylized specification 104
tapering 115
updating from 3-D data 109

diam3d() – see 3-D specification of
geometry: diam3d()

diameter 3, 94
abrupt change 110
change flag 168
checking – see diam: checking, 3-D

specification of geometry:
diam3d(): checking

problems – see 3-D specification of
geometry: diameter: problems

zero or narrow diameter 107
also see axial resistance: infinite, diam:

checking, 3-D specification of
geometry: diam3d(): checking

also see diam, stylized specification of
geometry, 3-D specification of
geometry: diam3d()

difference equation – see equation: difference
differential algebraic solver – see DASPK
differential equation – see equation:

differential
diffusion 41, 199

kinetic scheme 200, 238
longitudinal 253

model geometry – see ion accumulation:
initialization: of model geometry

radial 246, 254
restricted – see Example 9.6: extracellular

potassium accumulation
under CVODE 88
with buffering – see Example 9.8: calcium

diffusion with buffering

422 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

also see active transport, buffer, ion
accumulation, Example 9.8: calcium
diffusion with buffering

dimensionless variable – see units: dimensionless
dimensions – see units
directory browser 17–18
disconnect() 101
discontinuity – see variable: abrupt change of,

diameter: abrupt change
also see function: discrete

discrepancy
between conceptual model and

computational model 34
also see model: correspondence between

conceptual and computational
between physical system and conceptual

model 28
between prediction and simulation 27, 29

discrete event simulation 83, 88
computational efficiency 290
conditions for 83, 88, 290
also see standard run system:

fadvance(): global time step
integration, standard run system:
fadvance(): local time step
integration

discrete event system – see standard run
system: event delivery system

discrete events and adaptive integration – see
standard run system: event delivery
system: adaptive integration and, standard
run system: fadvance(): global time
step integration, standard run system:
fadvance(): local time step integration

discrete input event – see event: external
discrete simulation – see discrete event

simulation
discretization 14, 25, 51, 56

guidelines 121
intent and judgment 91, 118
parameter – see nseg
rule – see d_lambda rule, d_X rule,

discretization: guidelines
spatial 51, 53–54, 91–92

also see �, length constant, d_lambda
rule, spatial grid, spatial accuracy

temporal 51, 91, 118
also see dt,
t

testing – see spatial accuracy, temporal
accuracy

discretization interval – see
x, spatial grid
display – see GUI: screen

distance
normalized distance along a section – see

range
physical distance along a section 114

distributed mechanism 13, 18, 111, 113, 133,
208, 220

adding new – see mechanisms: user-
defined, NMODL

insert – see insert
vs. point process 113
also see NEURON block: SUFFIX

Distributed Mechanism GUI
Manager

Inserter 214
Distributed Mechanism Manager – see

Distributed Mechanism GUI: Manager
distributed physical system – see system:

continuous
divergence 275

also see synaptic transmission: spike-
triggered

divide and conquer – see good programming
style: divide and conquer

division operator – see hoc syntax:
expressions: operators

doEvents() – see standard run system:
doEvents()

dot notation
accessing object members – see object:

public members: dot notation
specifying section properties – see section:

currently accessed: dot notation
double – see hoc syntax: variables: double
dt 24

as an ASSIGNED variable – see
ASSIGNED variable: v, celsius, t,
dt, diam, and area

also see dt: use in NMODL
fixed – see numeric integration: fixed time

step
use in NMODL 210, 213
variable – see numeric integration: adaptive
also see standard run system: setdt(),

standard run system: fadvance(),
RunControl GUI: dt, RunControl GUI:
Points plotted/ms

t 61–72, 91
fixed – see numeric integration: fixed time

step
also see discretization

x 59–61
also see spatial grid, discretization

Index 423

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

E
e

electronic charge vs. units conversion factor
231

also see NMODL: units conversion factor
also see units: e

e_pas – see pas mechanism
edge – see circuit: edge
efficiency – see computational efficiency
eigenfunction 65–66
eigenvalue 48, 65
elapsed simulation time 24

also see t
electrical synapse – see gap junction, synapse:

ephaptic
electrode

capacitance 48
compensation 48

current – see current: electrode,
ELECTRODE_CURRENT

intracellular stimulating – see Example 9.3:
an intracellular stimulating electrode

resistance 48
shunting effect of sharp microelectrode –

see Example 9.2: a localized shunt
ELECTRODE_CURRENT 186
electronic charge – see e: electronic charge vs.

units conversion factor
electronic instrumentation – see linear circuit
electrotonic architecture

spurious effect of changing nseg 102
else – see hoc syntax: flow control: else
em 362

also see emacs
emacs

blocks of text
copying to the kill buffer 408
cutting to the kill buffer 408
marking 408
pasting from the kill buffer 408

buffers 406, 409
cursor movement 407
entering 407
exiting 407
files 409
modes 406, 408
repeating commands

kill current command 407
macros 411
repeating commands 411

search and replace 409
send command to OS 409

text
deleting 408
formatting 409
inserting 408

windows 410
embedding C code – see NMODL:

VERBATIM . . . ENDVERBATIM
empty temporal resolution – see temporal

accuracy: empty
encapsulating code – see object-oriented

programming: encapsulating code
ENDCOMMENT – see NMODL: comments
ENDVERBATIM – see NMODL:

VERBATIM . . . ENDVERBATIM
enhancing NEURON – see NMODL
EOT (ˆD) – see hoc: starting and exiting
ephapse – see synapse: ephaptic
ephaptic synapse – see synapse: ephaptic
equality operator – see hoc syntax:

expressions: operators
equation

algebraic 36, 74, 86–87, 114
cable 50, 53

analytic solution 56
characteristic 45
conservation 211
current balance 44, 46, 167–169, 211

also see Kirchhoff’s current law
difference 51
differential 36–39, 42, 46, 48, 50, 63, 65, 114

coupled vs. independent 66, 71
ordinary 46, 53
partial 51
stiff – see system: stiff

iteration – see iteration: equation
node – see equation: current balance,

Kirchhoff’s current law
sacred runes 85
system – see system equations

equilibrium potential
ASSIGNED vs. PARAMETER – see

ASSIGNED variable: when to use for
an equilibrium potential

computation 186, 195
also see ion_style(), NEURON block:

NONSPECIFIC_CURRENT:
equilibrium potential

initialization – see initialization: ion
also see ion_style()

equivalent circuit – see circuit: equivalent,
section: equivalent circuit

Erase – see Graph GUI: primary menu: Erase

424 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

erasing traces – see Graph GUI: primary
menu: Erase

error – see numerical error, hoc: error
handling, error message

error message
diam = 0 107
no accessed section 143
no message for pt3dadd with zero

diameter 108
also see hoc: error handling

Euler method – see backward Euler method,
forward Euler method

event 81, 87
afferent – see event: external
aggregation – see numeric integration: fixed

time step: event aggregation
delivery 80–81
delivery system – see standard run system:

event delivery system
discrete – see discrete event simulation
external 288

distinguishing from a self-event 288
flag 288

also see event: external: distinguishing
from a self-event

handler – see NetCon class: event()
input 80–81

also see event: external
logical 80
mouse – see mouse: events
net_send 186
queue – see standard run system: event

delivery system: cell time queue,
standard run system: event delivery
system: event time queue

self-event 261, 288
distinguishing from an external event –

see event: external: distinguishing
from a self-event

implementing absolute refractory period
– see IntFire1 class: refractory
period

implementing deferred computation – see
standard run system: event delivery
system: implementing deferred
computation

implementing transmitter release duration
– see Example 10.6: saturating
synapses

also see event: external, NET_RECEIVE
block: net_move(),
NET_RECEIVE block:

net_send(), IntFire2 class:
firing time: role of self-events,
IntFire4 class: firing time: role
of self-events

spike – see event: external
times

notification – see CVODE: and model
descriptions: at_time(), NetCon
class: event()

with adaptive integration 218, 263
also see NetCon class: event()

with fixed time step integration – see
numeric integration: fixed time step:
event aggregation

also see standard run system: event
delivery system: event time
queue

event aggregation to time step boundaries –
see numeric integration: fixed time step:
event aggregation

event handler – see NetCon class: event()
event queue – see standard run system: event

delivery system: event time queue
event times – see event: times
event-driven simulation – see discrete event

simulation
event() – see NetCon class: event()
Example 9.1: a passive “leak” current 208
Example 9.2: a localized shunt 214
Example 9.3: an intracellular stimulating

electrode 217
Example 9.4: a voltage-gated current 220
Example 9.5: a calcium-activated, voltage-

gated current 228
Example 9.6: extracellular potassium

accumulation 233
Example 9.7: kinetic scheme for a voltage-

gated current 240
Example 9.8: calcium diffusion with

buffering 245
Example 9.9: a calcium pump 255
Example 10.1: graded synaptic transmission

266
Example 10.2: a gap junction 271
Example 10.3: synapse with exponential

decay 277
Example 10.4: alpha function synapse 280
Example 10.5: use-dependent synaptic

plasticity 281
Example 10.6: saturating synapses 284
Example 10.7: IntFire1, a basic integrate

and fire model 290

Index 425

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

Example 10.8: IntFire2, firing rate
proportional to input 297

Example 10.9: IntFire4, different synaptic
time constants 301

execute() 385
exiting hoc – see hoc: starting and exiting
exiting NEURON – see NEURON: starting

and exiting
Exp2Syn

computational efficiency 280
also see Example 10.4: alpha function

synapse
explicit Euler method – see forward Euler

method
explicit flux – see KINETIC block:

<<(explicit flux)
exploiting reusable code – see good

programming style: exploiting reusable
code

exploratory simulations – see GUI: vs.
hoc

exponentiation operator – see hoc syntax:
expressions: operators

ExpSyn – see Example 10.3: synapse with
exponential decay

expsyn1.mod – see Example 10.3: synapse
with exponential decay

extensive variable – see variable: extensive
external event – see event: external
extracellular field – see extracellular

mechanism, system equations: matrix
form: extracellular field

extracellular mechanism 56, 74, 87
computational efficiency 167
effect of ELECTRODE_CURRENT – see

NEURON block:
ELECTRODE_CURRENT: effect on
extracellular mechanism

initialization – see initialization:
extracellular mechanism

vext 186
also see NEURON block:

ELECTRODE_CURRENT: effect on
extracellular mechanism

extracellular potassium accumulation – see
Example 9.6: extracellular potassium
accumulation

F
f_flux – see KINETIC block: f_flux
F-H space – see Example 9.6: extracellular

potassium accumulation

factor
amplification – see amplifier: gain
conversion or scale – see scale factor,

NMODL: units conversion factor,
UNITS block: units scaling

fadvance.c 164, 185
also see initialization: finitialize()

fadvance() – see standard run system:
fadvance()

FALSE – see hoc syntax: expressions: logical
expressions

fan-in – see convergence
also see synaptic transmission: spike-triggered

fan-out – see divergence
also see synaptic transmission: spike-triggered

faraday – see units: faraday
fast signals

spatial decay – see spatial decay of fast signals
fast_flushPlot() – see standard run

system: fast_flushPlot()
fast_flush_list – see standard run

system: plotting system:
fast_flush_list

fcurrent() – see standard run system:
fcurrent()

feedback
amplifier 49
capacitor 49
positive 49

field – see extracellular mechanism
file
hoc file – see hoc
mod file – see mod file, NMODL
reading and writing – see hoc syntax: basic

input and output
ses file – see session file
session file – see session file

finitialize() – see initialization:
finitialize()

fixed
dt – see numeric integration: fixed time step

t – see numeric integration: fixed time step
time step – see numeric integration: fixed

time step
float_epsilon – see hoc syntax:

float_epsilon
flow control – see hoc syntax: flow control
flushPlot() – see standard run system:

flushPlot()
flush_list – see standard run system:

plotting system: flush_list
flux 37–39, 42

426 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

backward 39
also see KINETIC block: b_flux

forward 39
also see KINETIC block: f_flux

also see KINETIC block: << (explicit flux)
FOCAL 164
focus

cursor 10
for – see hoc syntax: flow control: for
for (x) 114
forall 100
forsec 100
forward Euler method 61

iteration coefficient 61
local error 64, 83
stability 62, 64, 243
also see numerical integration: fixed time

step
forward flux – see flux: forward, KINETIC

block: f_flux
Fourier theory 56
fprint() – see hoc syntax: basic input and

output: fprint()
FROM . . . TO . . . – see NMODL:

FROM . . . TO . . . (loop statement)
Frankenhaeuser-Hodgkin space – see Example

9.6: extracellular potassium accumulation
frecord_init() – see initialization:

frecord_init()
frequency 66

spatial 57, 59–61, 122
also see spatial accuracy, spatial grid,

numerical error: spatial
temporal 122

fscan() – see hoc syntax: basic input and
output: fscan()

funcs and procs
$ – see funcs and procs: arguments:

positional syntax
$i – see funcs and procs: arguments:

symbolic positional syntax
$o – see funcs and procs: arguments:

objects and objrefs
$s – see funcs and procs: arguments:

strdef
& – see hoc syntax: pointer operator
arguments

call by reference vs. call by value 359, 366
numarg() 358
objects and objrefs 358–359, 366
pointer 358

also see hoc syntax: pointer operator

positional syntax 358
strdef 358–359
symbolic positional syntax 358

defining 357
local variable 360

also see hoc syntax: names
recursion 360
return 357

also see hoc syntax: flow control: return
returned value – see funcs and procs:

return
FUNCTION

calling from hoc – see hoc: calling an
NMODL FUNCTION or PROCEDURE

function
continuous

of space 51
also see range variable

of time 51
delta 51
discrete 77
piecewise linear 78, 80

also see continuous variable: piecewise
linear approximation

rate – see BREAKPOINT block: and rate
functions, KINETIC block: reaction
rates: voltage sensitive

table – see function table
also see funcs and procs, FUNCTION

FUNCTION block 226, 232
arguments are call by value 283

function call operator – see hoc syntax:
expressions: operators

function table 114, 170
also see NMODL: FUNCTION_TABLE

FUNCTION_TABLE – see NMODL:
FUNCTION_TABLE

G
g_pas – see pas mechanism
gain – see amplifier: gain
gap junction 265–266, 271

computational efficiency 167
conservation of charge 271

also see charge: conservation, equation:
current balance, Kirchhoff’s current
law

spurious oscillations 271
under CVODE 88
also see Example 10.2: a gap junction,

synapse: ephaptic, LinearCircuitBuilder:
for gap junctions

Index 427

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

gap.mod – see Example 10.2: a gap junction
gating model – see channel: gating model
gating state

initialization – see initialization: channel
model

custom initialization – see initialization:
strategies: changing a state variable

gating variable – see gating state
Gaussian elimination 74, 167–169
generic starting point for GUI tool

development – see GUI tool
development: generic starting point

GENESIS 207, 210
geometry 98

artifacts
stylized specification reinterpreted as 3-D

specification 108
zero diameter 107

specifying – see 3-D specification of
geometry, stylized specification of
geometry

also see CellBuilder GUI: Geometry page
also see topology, anatomical properties

getstr() – see hoc syntax: basic input and
output: getstr()

GLOBAL – see NEURON block: GLOBAL,
ASSIGNED variable: GLOBAL,
PARAMETER variable: is GLOBAL by
default

also see LOCAL variable: declared outside
an equation block: scope and
persistence

global – see GLOBAL, global variable
global error – see numerical error: global
global time step – see numeric integration:

adaptive: global time step
global variable – see variable: local vs.

nonlocal, hoc syntax: names, template:
writing a template: external

GMODL 210
good programming style

bulletproofing against nonsense arguments
330

divide and conquer 5
exploiting reusable code 307, 324, 328
iterative development 155, 329, 378, 381
modular programming 5, 142, 328

control – see simulation control
instrumentation – see instrumentation
model specification – see model

specification
program organization 98, 154

separating model specification from user
interface 155, 328

also see hoc: idiom
graded synapse – see synaptic transmission:

graded
gradient – see concentration: gradient, voltage:

gradient
gradsyn.mod – see Example 10.1: graded

synaptic transmission
Graph

automatically updating plots and x axis –
see standard run system: addplot()

creating
Shape plot 22
Space Plot 22
Voltage axis 21

incorporating into plotting system – see
standard run system: plotting system:
incorporating Graphs and objects,
standard run system: addplot()

Graph class
addexpr() 180
addvar() 180
begin() 180–181

also see initialization: initPlot(),
standard run system: Plot()

beginline() 390
erase_all() 337, 389
exec_menu() 392
flush() 180–181, 393
mark() 393
menu_tool() 380
plot() 180–181

also see standard run system: Plot()
save_name() 385
size() 181, 337, 391
view_count() 180–181
view_info() 394
view() 335
also see standard run system: addplot()

Graph GUI
primary menu

Erase 29
Keep Lines 28
Plot what? – see Plot what? GUI

graph
raster – see spike trains: recording and

plotting, NetWork Builder: buttons:
SpikePlot

also see Graph
graph lists – see standard run system: plotting

system: graphLists

428 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

graph theory 44, 317
graphical interface – see user interface:

custom GUI, NEURON Main Menu
graphical tools – see NEURON Main Menu,

CellBuilder, Graph, PFWM,
PointProcessManager, RunControl,
Shape plot, Shape Plot, Space Plot, Plot
what?, GUI tool development

graphics terminology – see GUI: graphics
terminology

greater than operator – see hoc syntax:
expressions: operators

greater than or equal to operator – see hoc
syntax: expressions: operators

ground – see circuit: element: ground
gsyn.mod – see Example 10.5: use-

dependent synaptic plasticity
GUI

combining with hoc 141, 324
computer display – see GUI: screen
conflicts with hoc or other GUI tools 152
focus – see focus: cursor
graphics terminology 378
implementing a computational model – see

CellBuilder, NetWork Builder
mapping to the screen – see GUI: screen:

mapping to the screen
model 378
model coordinates 378

also see GUI: scene coordinates
scene 378
scene coordinates 378

making scene and view coordinates
equivalent 395

vs. screen coordinates 394
screen 378

mapping to the screen 378
also see GUI tool development:

mapping to the screen
screen coordinates 378

vs. scene coordinates – see GUI:
scene coordinates: vs. screen
coordinates

tools
are implemented in hoc 129, 344
Close button 381, 383
developing new tools – see GUI tool

development
work by constructing hoc programs

129, 344
also see NEURON Main Menu GUI

view 378

which view contains the mouse – see
Graph class: view_info()

vs. hoc 128
also see user interface: custom GUI,

NEURON Main Menu, standard GUI
library

GUI tool development
basic pattern – see GUI tool development:

generic starting point
box – see VBox, HBox
Close button – see GUI: tools: Close button
general issues

allowing multiple instances 380,
383–384

destroying 381, 383–384
encapsulating 380
saving and retrieving 380, 385, 395

also see session file, session file:
object_push(), session file:
object_pop(), GUI: scene
coordinates: making scene and
view coordinates equivalent

generic starting point 387
graphical model – see GUI: model
mapping to the screen 386–387

window title 384
also see GUI: screen: mapping to the

screen, VBox class: map()
mouse events – see mouse: events
panel – see xpanel()
which view contains the mouse – see

Graph class: view_info()

H
Hamming, R.W. 86
HBox 383

also see VBox
hh mechanism 16
hiding information – see object-oriented

programming: information hiding
Hinton plot 180
history function – see hoc: history function
hoc 2, 17, 128, 343

adding new mechanisms – see nrniv:
adding new mechanisms, mechanisms:
user-defined, NMODL

calling an NMODL FUNCTION or
PROCEDURE 226

specifying proper instance with
setdata_ 226

can do anything that a GUI tool can 130
combining with GUI 141, 324

Index 429

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

hoc (contd)
conflicts with GUI 152
efficient simulation – see computational

efficiency: why is NEURON fast?
enhancements and extensions 343
error handling 348
functions – see funcs and procs
history function 347
idiom
forall nseg*=3 97
forall psection() 134
load_file("nrngui.hoc") 142,

159
also see List class: iteration

immediate mode 347
implementing a computational model 130
interrupting execution 349

also see hoc: starting and exiting
Kernighan and Pike 343
keywords – see hoc syntax: keywords
libraries 344

also see standard GUI library, standard
run library

oc> prompt 347
parse errors – see hoc: error handling
procedures – see funcs and procs
run-time errors – see hoc: error handling
scalar – see hoc syntax: variables: scalars
scope – see hoc syntax: names, funcs and

procs: local variable, variable: local
vs. nonlocal, LOCAL variable,
ASSIGNED variable: GLOBAL,
NEURON block: GLOBAL,
PARAMETER variable: is GLOBAL by
default

also see object: public members,
template: writing a template:
public, template: writing a
template: external

speed – see computational efficiency: why
is NEURON fast?

starting and exiting 346
stopping – see hoc: interrupting execution

also see hoc: starting and exiting
syntax – see hoc syntax
top level of the interpreter 385

also see execute()
user-defined variable – see hoc syntax:

names
vs. GUI 128
also see hoc syntax, Programmer’s

Reference, good programming style

hoc file
executing – see NEURON: starting with a

specific hoc file, nrngui, nrniv
also see load_file(), hoc syntax:

basic input and output: xopen()
hoc syntax

basic input and output
fprint() 361
fscan() 362
getstr() 362
print 361
printf() 361
read() 361
ropen() 362
sprint() 361
wopen() 361
xopen() 362

also see load_file()
xred() 362

comments 130, 355
continuation character 348
expressions 354

logical comparison of real
values – see hoc syntax:
float_epsilon

logical expressions 355
operators 354
precedence – see hoc syntax:

expressions: operators
float_epsilon 355
flow control 356
break 100, 357
continue 100, 357
else 356
for 356
if 356
iterator 356
iterator_statement 356
quit() 357
return 100, 357

also see funcs and procs: return
stop 357
while 356

functions – see funcs and procs
keywords 350
names 350
operators – see hoc syntax: expressions:

operators, hoc syntax: pointer
operator

pointer operator 358
precedence of operations – see hoc syntax:

expressions: operators

430 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

procedures – see funcs and procs
statements 355

compound statement 355
variables 353

arrays – see hoc syntax: variables:
double

built-in constants 353
cannot change type 156
cannot redefine type 354
double 353

also see Vector class
objref – see object reference: objref
scalars 353
strdef 354
strings – see hoc syntax: variables:

strdef
also see hoc: idiom, Programmer’s

Reference
Hodgkin–Huxley delayed rectifier – see

Example 9.4: a voltage-gated current
Hodgkin–Huxley mechanism – see hh

mechanism
hypothesis 1, 24

testing 32–33
also see model: conceptual

I
IClamp class 112

preserving spatial accuracy – see point
process: preserving spatial accuracy

iclamp1.mod – see Example 9.3: an
intracellular stimulating electrode

IDA 172
initialization 187
also see numeric integration: adaptive,

DASPK, SUNDIALS
idiom – see hoc: idiom
if – see hoc syntax: flow control: if
immediate mode – see hoc: immediate mode
implicit Euler method – see backward Euler

method
inequality operator – see hoc syntax:

expressions: operators
information hiding – see object-oriented

programming: information hiding
inheritance – see object-oriented

programming: inheritance
INITIAL block 186, 188, 190, 224

initializing STATE variables – see STATE
variable: initialization

inside NET_RECEIVE block – see
NET_RECEIVE block: INITIAL block

sequence-dependent 186
SOLVE
STEADYSTATE sparse 189, 243, 258
also see initialization: channel model:

kinetic scheme
also see initialization, mechanisms:

initialization sequence, mechanisms:
user-defined: call order

init() – see initialization: init()
initial value problem 48
initialization 24, 28, 140

adaptive integration – see numeric integration:
adaptive: initialization, CVode class:
re_init(), IDA: initialization

active transport – see active transport:
initialization

analysis 183
ASSIGNED variable – see ASSIGNED

variable: initialization
basic 185

also see initialization:
finitialize(), initialization:
default

categories 225
of a chaotic system – see initialization:

categories: to a desired state
of an oscillating system – see

initialization: categories: to a
desired state

overview of custom initialization 185, 188
also see initialization: init(): custom

to a desired state 198
to a particular resting potential 195
to steady state 197
also see initialization: basic, initialization:

default
channel model 188

Hodgkin–Huxley style 188
kinetic scheme 189

also see INITIAL block: SOLVE:
STEADYSTATE sparse, ini-
tialization: strategies: changing a
state variable, initialization:
strategies: changing model
parameters, initialization: strate-
gies: steady state initialization of
complex kinetic schemes

criterion for proper initialization 183
custom 152

also see initialization: categories,
initialization: strategies,
initialization: init(): custom

Index 431

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

initialization (contd)
default 187

also see initialization: init(),
initialization: stdinit(),
initialization: basic

diffusion – see ion accumulation:
initialization

dt – see standard run system: setdt()
event delivery system – see standard run

system: event delivery system:
initialization, initialization:
finitialize()

extracellular mechanism 186
fcurrent() – see standard run system:

fcurrent(): in initialization
finitialize() 160, 164, 175,

185–187, 219, 224
fixed time step integration – see numeric

integration: fixed time step:
initialization

frecord_init() 188
init() 160, 164, 187–188

custom 195–198, 204
also see initialization: strategies:

changing a state variable
initPlot() 164, 180, 187
internal data structures dependent on

topology and geometry 185
also see ion accumulation: initialization:

of model geometry
ion 186, 191–194

accumulation – see ion accumulation:
initialization

also see ion mechanism: default
concentration, ion_style(),
initialization: strategies: changing a
state variable

kinetic scheme 183
also see INITIAL block: SOLVE:

STEADYSTATE sparse,
KINETIC block: CONSERVE: when
is it required for initialization?

linear circuit 183, 186
membrane potential – see initialization:

v_init, membrane potential:
initialization

NetCon object – see NET_RECEIVE
block: INITIAL block

network 183, 186
non-steady state 166
object – see template: variable initialization
random number generator 183

Random.play() 185
recording 183

also see initialization:
frecord_init(), Vector class:
record(): initialization

startsw() 187
also see run time, standard run system:

realtime
STATE variable – see STATE variable:

initialization
state0 – see STATE variable:

initialization
stdinit() 160, 164, 180, 187
steady state – see initialization: categories: to

steady state, initialization: categories: to
a particular resting potential

strategies 225
changing a state variable 187–188

also see STATE variable: initialization,
ion mechanism: initialization,
ion mechanism: defatult concen-
tration: specification in hoc

changing an equilibrium potential 195
changing model parameters 199
groundhog day 199
injecting a constant current 196
jumping back to move forward 197
steady state initialization of complex

kinetic schemes 258
also see initialization: init(): custom

synaptic weight vector – see NET_RECEIVE
block: INITIAL block

t 185
template – see template: variable initialization
v_init 24, 186–188

also see membrane potential: initialization
Vector.play() 186
Vector.record() – see initialization:

frecord_init(), Vector class:
record(): initialization

weight vector – see NET_RECEIVE block:
INITIAL block

also see RunControl GUI: Init, RunControl
GUI: Init & Run, INITIAL block,
NET_RECEIVE block: INITIAL
block, Graph class: begin(),
mechanisms: initialization sequence,
mechanisms: user-defined: call order

initialize microstep – see numeric integration:
adaptive: initialize microstep

also see standard run system: fadvance():
local time step integration

432 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

initPlot() – see initialization:
initPlot()

input and output – see hoc syntax: basic input
and output

input event – see event: external
insert 111, 133

also see uninsert
insight 32, 34, 86
instability – see numeric integration:

instability, KINETIC block: reaction
rates: STATE-dependent, and instability

instrumentation 5, 18, 154
integrate and fire 83, 88

also see artificial spiking cell
integration – see numeric integration
intensive variable – see variable: intensive
intent – see user’s intent
interpolate microstep – see numeric integration:

adaptive: interpolate microstep
also see standard run system: fadvance():

local time step integration
interpolation – see Vector class: play():

with interpolation
interpreter – see hoc
IntFire1 class 290

effect of an input event 292
m – see IntFire1 class: membrane state

variable
M – see IntFire1 class: membrane state

variable: visualizing
membrane state variable 290

time constant 290
visualizing 292, 296

refrac – see IntFire1 class: refractory
period

refractory period 294
tau – see IntFire1 class: membrane

state variable: time constant
also see artificial spiking cell, Example

10.7: IntFire1, a basic integrate
and fire model

IntFire2 class 297
approximate firing rate 298
bias – see IntFire2 class: synaptic

current state variable: bias
constraint on time constants 298
effect of an external event 297, 299
firing time

efficient computation 299
role of self-events 299

i – see IntFire2 class: synaptic current
state variable

ib – see IntFire2 class: synaptic current
state variable: bias

m – see IntFire2 class: membrane state
variable

membrane state variable 297
time constant 297

also see IntFire2 class: constraint
on time constants

synaptic current state variable 297
bias 297
time constant 297

also see IntFire2 class: constraint
on time constants

taum – see IntFire2 class: membrane
state variable: time constant

taus – see IntFire2 class: synaptic
current state variable: time constant

also see artificial spiking cell, Example
10.8: IntFire2, firing rate
proportional to input

IntFire4 class 301
constraint on time constants 301, 399
convergence tolerance 304
e – see IntFire4 class: synaptic current

state variables: excitatory
effect of an external event 301
eps – see IntFire4 class: convergence

tolerance
firing time

efficient computation 302
role of self-events 303

i1 – see IntFire4 class: synaptic current
state variables: inhibitory

i2 – see IntFire4 class: synaptic current
state variables: inhibitory

m – see IntFire4 class: membrane state
variable

membrane state variable 301
time constant 301, 399

synaptic current state variables
excitatory 302
inhibitory 302
time constants 301, 399

also see IntFire4 class: constraint
on time constants

taue – see IntFire4 class: synaptic
current state variables: time
constants

taui1 – see IntFire4 class: synaptic
current state variables: time constants

taui2 – see IntFire4 class: synaptic
current state variables: time constants

Index 433

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

IntFire4 class (contd)
taum – see IntFire4 class: synaptic

current state variables: time
constants

also see artificial spiking cell, Example
10.9: IntFire4, different synaptic
time constants

intuition 32–33
ion accumulation 199

initialization 200
of model geometry 251
also see ion mechanism: default

concentration, ion_style(),
initialization: strategies: changing a
state variable, initialization:
strategies: changing model
parameters

kinetic scheme 200
also see Example 9.8: calcium diffusion

with buffering, Example 9.9: a
calcium pump

under CVODE 88
also see active transport, buffer, diffusion,

ion mechanism, ion_style(),
equilibrium potential, STATE variable:
ion concentration as, Example 9.6:
extracellular potassium accumulation

ion channel 13
ion concentration – see concentration, ion

accumulation, ion mechanism
ion mechanism
_ion suffix 190
automatically created 190, 235
default concentration

for user-created ion names 194
name 194
specification in hoc 194–195

equilibrium potential – see equilibrium
potential: computation

initialization 194, 236
also see initialization: ion

ion_style() 194
also see ASSIGNED variable, PARAMETER

variable, STATE variable, concentration,
initialization: ion

ionic conductance 18
also see channel: density

isopotential – see membrane potential:
isopotential

iteration
coefficient 61
equation 61

of nonlinear equations – see numeric
integration: iteration of nonlinear
equation

over a List – see List class: iteration
over nodes – see range variable: iterating

over nodes
over sections – see section: iterating over

sections
using iterator – see hoc syntax: flow

control: iterator
iterative development – see good

programming style: iterative development
iterator – see hoc syntax: flow control:

iterator
iterator_statement – see hoc syntax:

flow control: iterator_statement

J
Jacobian 239, 243

analytic 114
approximate 74, 226, 253, 271
computing di/dv elements 168, 189, 262
nearly singular 244
user-supplied 226

judgment 1, 30, 34, 85
also see accuracy, detail, qualitative results

K
k-mole – see units: k-mole
k_ion – see ion mechanism: automatically

created
k3st.mod – see Example 9.7: kinetic

scheme for a voltage-gated current
kd.mod – see Example 9.4: a voltage-gated

current
Keep Lines – see Graph GUI: primary menu:

Keep Lines
Kernighan, B.W. – see hoc: Kernighan and

Pike
kext.mod – see Example 9.6: extracellular

potassium accumulation
keyboard

Alt key – see Graph class: menu_tool()
Control C – see hoc: interrupting execution
Control D – see hoc: starting and exiting
Control key – see Graph class:

menu_tool()
Shift key – see Graph class:

menu_tool()
keywords – see hoc syntax: keywords,

NMODL
ki – see potassium, ion mechanism

434 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

ki0_k_ion – see potassium, ion
mechanism: default concentration:
specification in hoc

KINETIC block 243, 252, 259
–> (sink reaction indicator) 261
~ (tilde) 238
<–> (reaction indicator) 238
<< (explicit flux) 253
and CVODE 88
b_flux 238
COMPARTMENT 247, 253–254
CONSERVE 243–244

when is it required for initialization?
244, 252, 258

dependent variable
is a STATE variable 184
also see KINETIC block: reactants:

ASSIGNED or PARAMETER
variables as

f_flux 238
initialization – see initialization: channel

model: kinetic scheme, INITIAL
block: SOLVE: STEADYSTATE
sparse

LONGITUDINAL_DIFFUSION 253
radial diffusion – see Example 9.8: calcium

diffusion with buffering
reactants 238
ASSIGNED or PARAMETER variables as

242
also see KINETIC block: dependent

variable: is a STATE variable
reaction rates 238
STATE-dependent, and instability 239
voltage-sensitive 239

reaction statement 238
also see Crank–Nicholson method: local

error: kinetic scheme, BREAKPOINT
block: SOLVE: sparse

kinetic scheme 36–37
compartment size 41
also see scale factor, NMODL: units

conversion factor, KINETIC block:
COMPARTMENT

conservation rules 39
also see scale factor, NMODL: units

conversion factor, KINETIC block:
COMPARTMENT

equivalent differential equations 38
initialization – see initialization: channel

model: kinetic scheme, initialization:
strategies: changing a state variable,

initialization: strategies: changing
model parameters, KINETIC block:
CONSERVE: when is it required for
initialization?

reactants – see KINETIC block: reactants
reaction rates – see KINETIC block:

reaction rates
also see KINETIC block

Kirchhoff’s current law 44
also see charge: conservation, equation:

current balance
ko – see potassium, ion mechanism
ko0_k_ion – see potassium, ion

mechanism: default concentration:
specification in hoc

L
� – see length constant
L 13, 94, 132

calculation from 3-D data – see 3-D
specification of geometry: calculation
of L, diam, area(), and ri()

change flag 168
default value 103
specifying

stylized specification 104
3-D specification – see 3-D specification

of geometry: calculation of L,
diam, area(), and ri()

updating from 3-D data 109
also see length

lambda_f() 123
leak current – see pas mechanism, leak.mod
leak.mod – see Example 9.1: a passive

“leak” current
legacy code – see troubleshooting: legacy

code
length 3, 94

arc – see range
also see L

length constant 13–14
AC 122
DC 121
also see d_lambda rule

less than operator – see hoc syntax:
expressions: operators

less than or equal to operator – see hoc
syntax: expressions: operators

linear algebra 65
LINEAR block 223

dependent variable
is a STATE variable 184

Index 435

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

linear circuit 56, 74, 87
computational efficiency 167
initialization – see initialization: linear circuit
also see system equations: matrix form:

linear circuit
linear taper – see range variable: linear taper
LinearCircuitBuilder

for gap junctions 272
linearity – see channel: linear, channel: gating

model: HH-type
LinearMechanism class 101
list

of objects – see List class
of sections – see SectionList class

List class 373
append() 335, 373
count() 325, 330, 373
iteration 373
object stack 374
object() 325, 330, 373
remove_all() 330
remove() 375

List object
managing network cells with 327
managing network connections with 279, 327

load_file() 124, 362
also see hoc syntax: basic input and output:

xopen(), hoc: idiom:
load_file("nrngui.hoc")

loc() – see point process: loc()
local – see hoc syntax: names, funcs and

procs: local variable, LOCAL variable
also see object: public members: vs. private

members, template: writing a template:
public

local absolute error – see absolute error: local
local error – see numerical error: local
local relative error – see relative error: local
local time step – see numeric integration:

adaptive: local time step
LOCAL variable

declared outside an equation block
initial value 251
scope and persistence 251
also see NEURON block: GLOBAL

declared within an equation block
scope and persistence 227

local variable – see hoc syntax: names, funcs
and procs: local variable, LOCAL variable

also see object: public members: vs. private
members, template: writing a template:
public

logical comparison of real values – see hoc
syntax: float_epsilon

logical comparison operators – see hoc
syntax: expressions: operators

logical expressions – see hoc syntax:
expressions: logical expressions

logical operators – see hoc syntax:
expressions: operators

LONGITUDINAL_DIFFUSION – see
KINETIC block:
LONGITUDINAL_DIFFUSION

longitudinal diffusion – see diffusion: kinetic
scheme: longitudinal, KINETIC block:
LONGITUDINAL_DIFFUSION

loop statement – see NMODL: FROM . . .
TO . . . (loop statement)

also see hoc syntax: flow control: for,
hoc syntax: flow control: while

M
mapping to the screen – see GUI: screen:

mapping to the screen
Markov process

kinetic scheme 238
mass 50

also see material
mass balance – see material: conservation
material 36

amount 36, 42
concentration 36
conservation 36, 238, 242–244, 259
density 36

mechanisms
adding new – see mechanisms: user-defined
initialization sequence 186
involving delay – see standard run system:

event delivery system: implementing
deferred computation

user-defined 113
call order 186
also see nrniv: adding new

mechanisms, NMODL
also see distributed mechanism, point process

membrane area 51
also see area(), surface area

membrane capacitance 15, 53, 91
also see cm, specific membrane capacitance

membrane conductance – see specific
membrane conductance

membrane current
capacitive 53, 122
ionic 53, 122

436 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

accuracy 169
positive current convention 51

membrane potential 20–21, 49, 54, 94
initialization 186–188

also see initialization: v_init,
initialization: categories,
initialization: strategies

isopotential 53
also see v, membrane state variable

membrane resistance 16, 121
membrane state variable – see IntFire1

class: membrane state variable,
IntFire2 class: membrane state
variable, IntFire4 class: membrane
state variable

membrane time constant 122
and attenuation of fast signals 123

METHOD – see BREAKPOINT block: SOLVE
microelectrode – see electrode
MicroEMACS 362

also see em, emacs
microstep – see numeric integration: adaptive:

advance microstep, numeric integration:
adaptive: initialize microstep, numeric
integration: adaptive: interpolate
microstep

miscellaneous_add() – see
NEURONMainMenu class:
miscellaneous_add()

mistake
programming – see hoc: error handling

mknrndll – see NMODL: translator:
mknrndll

mod file 207, 345
compiling

under MSWindows – see NMODL:
translator: mknrndll

under UNIX/Linux – see NMODL:
translator: nrnivmodl

also see NMODL
model

3-D 110
also see 3-D specification of geometry

ball and stick 34
compartmental 92, 96
computational 1, 5, 33

analysis 24
essential steps 128
implementation 34, 98

also see computational model:
implementing with hoc

model specification 16

conceptual 1, 3, 28, 33, 36, 118
correspondence between conceptual and

computational 128, 130
also see discrepancy: between conceptual

model and compartmental model
network – see network model
purpose – see judgment, user’s intent
simulation control – see simulation control
stylized 104

also see stylized specification of geometry
testing 141

also see topology: checking
MOdel Description Language – see MODL
model coordinates – see GUI: model

coordinates
vs. screen coordinates – see GUI: scene

coordinates: vs. screen coordinates
model description language – see NMODL
model properties

specifying 98
also see anatomical properties:

specifying, biophysical properties:
specifying

model specification 5, 16, 154
as virtual experimental preparation 154
vs. user interface – see good programming

style: separating model specification
from user interface

also see model properties: specifying
modeling 73, 79

empirically-based 32, 61
rationale 33

modified Euler method 271
also see backward Euler method

modifying standard functions and procedures
– see standard run library: redefining
functions and procedures, standard GUI
library: redefining functions and
procedures

MODL 208
vs. NMODL 208, 210

modlunit 216, 231
also see units: checking

modular programming – see good
programming style: modular
programming

modulus operator – see hoc syntax:
expressions: operators

mole – see units: mole
mole equivalents 39
morphometric data – see quantitative

morphometric data

Index 437

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

mouse
button – see mouse: events
cursor – see focus: cursor
events 379

Alt, Control, or Shift key – see Graph
class: menu_tool()

cursor coordinates 380, 392
handling 380, 392
also see Graph class: menu_tool()

which view contains the mouse – see
Graph class: view_info()

movie – see Vector: movie
multiplication operator – see hoc syntax:

expressions: operators

N
n3d() – see 3-D specification of geometry:

n3d()
na_ion – see ion mechanism: automatically

created
nai – see ion mechanism
nai0_na_ion – see ion mechanism: default

concentration: specification in hoc
nao – see ion mechanism
nao0_na_ion – see ion mechanism: default

concentration: specification in hoc
National Biomedical Simulation Resource

project 208
Nernst equation – see initialization: ion,

ion_style()
Nernst potential – see equilibrium potential,

initialization: ion, ion_style()
net_event() – see NET_RECEIVE block:

net_event()
net_move() – see NET_RECEIVE block:

net_move()
NET_RECEIVE block 275, 278

arguments are call by reference 283
flag – see event: flag
handling abrupt changes and discontinuities

262
INITIAL block 186, 224, 283

also see NetCon class: weight vector
net_event() 292, 299, 303
net_move() 289, 299
net_send() 289, 295
state_discontinuity() 262
also see Examples 10.3–10.9

net_send() – see NET_RECEIVE block:
net_send()

NetCon
and standard run system 166

NetCon class 272, 274
delay 274
event() 263
record() 335
source variable 274
states – see NetCon class: weight vector
stream-specificity 274, 279
target 275
threshold 274
weight 274
weight vector 275

initialization 283
NetCon object

as a channel for a stream of events 289
initialization – see NET_RECEIVE block:

INITIAL block
netcvode.cpp 166
NetGUI class – see NetWork Builder
NetReadyCellGUI

bringing up a NetReadyCellGUI 322
cell names – see NetWork Builder: cells:

names
changing cell parameters – see NetWork

Builder: caveats
NetWork Builder

adjusting model parameters 318
bringing up a NetWork Builder 313
buttons

Create 318, 323
Delays – see NetWork Builder:

specifying delays and weights
Hoc File – see NetWork Builder:

exporting reusable code
Locate – see NetWork Builder: cells:

creating
Show Cell Map – see NetWork Builder:

cells: Cell Map
SpikePlot 318
Src–> Tar – see NetWork Builder: setting

up network architecture
Weights – see NetWork Builder:

specifying delays and weights
canvas 314

dragging 315
caveats 322
cells

Cell Map 324
connecting – see NetWork Builder:

setting up network architecture,
NetWork Builder: specifying delays
and weights

creating 314

438 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

names 314, 323
also see NetWork Builder: cells: Cell Map

types – see NetWork Builder: palette of cell
types, ArtCellGUI, NetReadyCellGUI

changing a network – see NetWork Builder:
caveats

changing cell parameters – see NetWork
Builder: caveats

creating an instance of a network – see
NetWork Builder: buttons: Create

default section – see NetWork Builder:
exporting reusable code: acell_home_

delays and weights – see NetWork Builder:
specifying delays and weights

exploiting reusable code 328
exporting reusable code 324
acell_home_ 326
network cell templates 326
network instantiation 328
network specification interface 327

hints 314
network architecture – see NetWork Builder:

setting up network architecture
palette of cell types 314
plotting spikes – see NetWork Builder:

buttons: SpikePlot
reusable code – see NetWork Builder:

exploiting reusable code
saving a hoc file – see NetWork Builder:

exporting reusable code
setting up network architecture 315
specifying delays and weights 316

network model
architecture – see convergence, divergence

also see NetCon, List object:
managing network connections with

building with GUI – see ArtCellGUI,
NetReadyCellGUI, NetWork Builder

connectivity – see NetCon, List object:
managing network connections with

creating algorithmically 329
initialization – see initialization: network,

NET_RECEIVE block: INITIAL block
neurite 51, 92, 105

also see section
NEURON

adding new mechanisms – see mechanisms:
user-defined, nrniv: adding new
mechanisms, NMODL

last change date – see NEURON: startup
banner

starting and exiting 6

starting with a specific hoc file 133
startup banner 347
version number – see NEURON: startup

banner
also see hoc: starting and exiting

NEURON block 210
ARTIFICIAL_CELL 291

also see artificial spiking cell, IntFire1
class, IntFire2 class, IntFire4
class

ELECTRODE_CURRENT 218
effect on extracellular mechanism

218
GLOBAL 190, 211

also see ASSIGNED variable: GLOBAL,
PARAMETER variable: is GLOBAL
by default

NONSPECIFIC_CURRENT 211
equilibrium potential 223
also see active transport: pump current:

countering with a NONSPECIFIC_
CURRENT

POINT_PROCESS 215
also see point process

POINTER 268
also see POINTER variable

RANGE 190, 211, 218
also see range, range variable,

ASSIGNED variable: GLOBAL: vs.
RANGE, ASSIGNED variable: is a
range variable by default,
PARAMETER variable: GLOBAL vs.
RANGE, STATE variable: is
automatically RANGE

SUFFIX 211
also see distributed mechanism

USEION 222, 230
effect on initialization sequence 186
READ ex (reading an equilibrium

potential) 222
READ ix (reading an ionic current)

235, 250
READ xi (reading an intracellular

concentration) 230, 250
READ xo (reading an extracellular

concentration) 255
WRITE ix (writing an ionic current)

222, 230, 233, 255, 259
WRITE xi (writing an intracellular

concentration) 193, 250
WRITE xo (writing an extracellular

concentration) 193, 235

Index 439

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

NEURON demonstration program – see
neurondemo

NEURON Main Menu 6
adding items – see NEURONMainMenu

class: miscellaneous_add()
creating 142, 155

NEURON Main Menu GUI
Build

CellBuilder 6
NetWork Builder 313

File
load session 18
Quit 347
save session 17, 23

Graph
Current axis 180
Phase Plane 180
Shape plot 22
State axis 180
Voltage axis 21, 180

Tools
Miscellaneous 384
Point Processes 19

also see PointProcessGroupManager,
PointProcessManager

RunControl 24
VariableStepControl 165, 319

also see VariableTimeStep GUI
NEURON MOdel Description Language – see

NMODL
NEURON program group 6
neuron.exe 345
neurondemo 345
NEURONMainMenu class
miscellaneous_add() 384

NEURONMainMenu object
is always NEURONMainMenu[0] 384

NEURON’s interpreter – see hoc
new – see object: new
NMODL 113

abrupt change of a variable – see variable:
abrupt change of, NET_RECEIVE
block: handling abrupt changes and
discontinuities

arrays
are not dynamic 250, 255
index starts at 0 250
STATE variable – see STATE variable:

array in NMODL
COMMENT . . . ENDCOMMENT – see

NMODL: comments
comments 209

declaring variables 211
specifying units 212
also see NMODL: named blocks:

variable declaration, ASSIGNED
block, CONSTANT block,
PARAMETER block, STATE block,
LOCAL variable, NMODL: DEFINE

DEFINE 250
dt – see dt: use in NMODL
FROM . . . TO . . . (loop statement) 252
function – see FUNCTION block
FUNCTION_TABLE 244
loop statement – see NMODL: FROM . . .

TO . . . (loop statement)
mknrndll – see NMODL: translator:

mknrndll
named blocks 208
ASSIGNED – see ASSIGNED block
BREAKPOINT – see BREAKPOINT block
CONSTANT – see CONSTANT block
DERIVATIVE – see DERIVATIVE block
equation definition 208

also see BREAKPOINT block,
DERIVATIVE block, FUNC-
TION block, INITIAL block,
KINETIC block, PROCEDURE
block

FUNCTION – see FUNCTION block
general form 210
INITIAL – see INITIAL block
KINETIC – see KINETIC block
NEURON – see NEURON block
NONLINEAR – see NONLINEAR block
PARAMETER – see PARAMETER block
PROCEDURE – see PROCEDURE block
variable declaration 208

also see ASSIGNED block, PARAME-
TER block, STATE block, LOCAL
variable

nocmodl – see NMODL: translator:
nocmodl

nrnivmodl – see NMODL: translator:
nrnivmodl

procedure – see PROCEDURE block
t – see t: use in NMODL
translator 207, 209, 239–240, 244
mknrndll 186, 191, 346

also see nrnmech.dll
nmodl 211
nocmodl 192, 211, 346
nocmodl.exe 211
nrnivmodl 186, 191, 345

440 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

units conversion factor 216, 231, 237,
250–251, 259

parentheses 216–217
also see UNITS block: units scaling,

scale factor
UNITSOFF . . . UNITSON 227
user-defined variable 210
VERBATIM . . . ENDVERBATIM 209
vs. MODL – see MODL: vs. NMODL
also see mod file

nmodl – see NMODL: translator: nmodl
nocmodl – see NMODL: translator:

nocmodl
nocmodl.exe – see NMODL: translator:

nocmodl.exe
node

circuit – see circuit: node
equation – see equation: current balance,

Kirchhoff’s current law
section – see section: nodes

“nonbiological” model – see artificial spiking
cell, integrate and fire

NONLINEAR block 223
dependent variable

is a STATE variable 184
nonlinearity – see system: nonlinear, channel:

nonlinear
noninteractive simulations – see GUI: vs. hoc
NONSPECIFIC_CURRENT – see NEURON

block: NONSPECIFIC_CURRENT
normalized distance along a section – see range
NOT operator – see hoc syntax: expressions:

operators
notation

chemical reaction – see kinetic scheme
circuit – see circuit

nrngui 6, 133
loads GUI and standard run library 142

nrniv 133, 345
adding new mechanisms 345

also see mechanisms: user-defined,
NMODL

also see nrngui
nrniv.exe 345

also see nrniv, neuron.exe
nrnivmodl – see NMODL: translator:

nrnivmodl
nrnmech.dll 346

also see mknrndll
nrnunits.lib 212, 231

also see units: database
nseg 95, 132

effect on spatial accuracy and resolution 96
effect on range variable – see range

variable: effect of changing nseg,
range variable: inhomogeneous:
reassert after changing nseg

may reposition internally attached sections
and point processes 102, 112

vs. number of 3-D points 106
why triple nseg? 97
why use odd values? 97
also see spatial grid, discretization, segment

nstep_steprun – see standard run system:
setdt(), RunControl GUI: Points
plotted/ms

NULLobject – see object: NULLobject
numarg() – see funcs and procs:

arguments: numarg()
numeric integration 28, 56, 62, 86

accuracy – see accuracy, numeric
integration: order of accuracy

adaptive 72, 87, 224, 226, 236, 243,
260–261, 263

advance microstep 173
and events – see event: times: with

adaptive integration, standard run
system: event delivery system:
adaptive integration and, standard
run system: fadvance(): global
time step integration, standard run
system: fadvance(): local time
step integration

and the standard run system – see
standard run system: event delivery
system: adaptive integration and,
standard run system: fadvance():
global time step integration, standard
run system: fadvance(): local
time step integration

error control – see numerical error: control
global time step 81–82, 88

also see standard run system: fad-
vance(): global time step inte-
gration, VariableTimeStep
GUI–global vs. local time steps

global variable time step – see numeric
integration: adaptive: global time step

GUI control – see VariableTimeStep GUI
initialization 187

also see CVode class: re_init(),
initialization

initialize microstep 173
interpolate microstep 173

Index 441

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

numeric integration (contd)
interpolation formulas 174
local time step 74, 80–82, 88, 166

also see standard run system: fad-
vance(): local time step inte-
gration, standard run system:
event time queue, standard run
system: cell time queue, CVode
class: record(),
VariableTimeStep GUI–global
vs. local time steps

local variable time step – see numeric
integration: adaptive: local time step

microstep – see numeric integration:
adaptive: advance microstep,
numeric integration: adaptive:
initialize microstep, numeric
integration: adaptive: interpolate
microstep

switching to fixed time step 88
toggling on and off – see

VariableTimeStep GUI: toggling
adaptive integration on and off

with discrete events – see standard run
system: event delivery system:
adaptive integration and, standard
run system: fadvance(): global
time step integration, standard run
system: fadvance(): local time
step integration, event: times: with
adaptive integration

also see CVODE, CVODES, DASPK,
IDA, SUNDIALS, standard run
system: fadvance(): global time
step integration, standard run
system: fadvance(): local time
step integration

analytic integration of channel states 72,
165, 170

central difference method – see Crank–
Nicholson method

error – see accuracy, numerical error,
numeric integration: order of accuracy

explicit 63, 86, 243
also see forward Euler method

fixed time step 75, 86, 225, 236, 263
event aggregation 81, 166, 171,

218, 260
also see event: times: with adaptive

integration
initialization 186

also see initialization
switching to adaptive 88

also see backward Euler method, forward
Euler method, Crank–Nicholson
method, standard run system:
fadvance(): fixed time step

implicit 63, 86–87, 243
also see backward Euler method, Crank–

Nicholson method
initialization – see numeric integration:

adaptive: initialization, numeric
integration: fixed time step:
initialization, initialization

instability 62, 64
also see numeric integration: stability

iteration of nonlinear equations 70, 87
NEURON’s default method – see backward

Euler method
order of accuracy 71, 75, 83

first 226, 243
also see backward Euler method,

forward Euler method
second 225, 246

also see Crank–Nicholson method,
spatial accuracy: second
order

variable 226
also see numeric integration: adaptive,

CVODE, DASPK
precision – see numeric integration: order

of accuracy
stability 74, 86, 91

effect of signal sources 66, 86
also see system equations: effect of

signal sources
also see numeric integration: instability,

system: stiff, backward Euler
method, forward Euler method,
Crank–Nicholson method

summary 86
numeric solution – see numeric integration
numerical error 83

absolute – see absolute error
caused by changing nseg – see nseg: may

reposition internally attached sections
and point processes

chaotic system 84
control 62, 79

also see absolute error: local: tolerance,
relative error: local: tolerance

criterion – see absolute error: local:
tolerance, relative error: local:
tolerance

cumulative – see numerical error: global
global 76, 83

442 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

integrated 166
also see numerical error: global

local 64, 68, 75, 83, 171
also see absolute error: local, relative

error: local
message – see error message, hoc: error

handling
oscillations 67, 70
programming – see hoc: error handling
relative – see relative error
roundoff 65, 97
spatial 56, 60, 96

also see spatial accuracy
temporal 56

effect of spatial discretization 60, 119
also see temporal accuracy

tolerance – see absolute error: local:
tolerance, relative error: local: tolerance

total – see numerical error: global
also see parameters: sensitivity to, accuracy:

physiological, accuracy: qualitative
numerical oscillations – see numerical error:

oscillations, numeric integration:
instability

Nyquist sampling theorem 59

O
object 363

array 372
as an argument – see funcs and procs:

arguments: objects and objrefs
calling a method – see object: public

members: accessing from hoc
collection – see object: array, List class
creating 365
destroying 365
dot notation – see object: public members:

dot notation
incorporating into plotting system – see

standard run system: plotting system:
incorporating Graphs and objects

initializing variables – see template:
variable initialization

list – see List class
methods 366, 368

calling – see object: public members:
accessing from hoc

name
how generated 370
vs. object reference 370

new 365
notifying at every step – see standard run

system: plotting system: notifying
Graphs and objects

NULLobject 365, 371, 372
using the NULLobject 372

objref – see object reference: objref
passing to a func or proc – see funcs

and procs: arguments: objects and
objrefs

private vs. public – see object: public
members: vs. private members,
template: writing a template: public

public members
accessing from hoc 366
dot notation 366
vs. private members 366
also see template: writing a template:

public
reference – see object reference, object:

reference count
reference count 366, 370, 383
set – see object: array, List class
specifying attributes – see template: writing,

object: public members: dot notation
stack – see List class: object stack
state 363, 366
this – see object reference: this
vs. class 363
vs. object reference 364
also see object reference, class, template,

object-oriented programming
object name – see object: name
object name vs. object reference – see object

reference: vs. object name
object reference 112, 364

as an argument – see funcs and procs:
arguments: objects and objrefs

cannot be redefined as scalar, double, or
string 365

count – see object: reference count
declaring 364
objectvar 364

also see object reference: cannot redefine
as scalar, double, or string

objref 112, 365
also see object reference: cannot redefine

as scalar, double, or string
passing to a func or proc – see funcs

and procs: arguments: objects and
objrefs

points to an object 364, 366
this 383
vs. object 364
vs. object name 370

object variable – see object reference:
objectvar

Index 443

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

object_pop() – see session file:
object_pop()

object_push() – see session file:
object_push()

object-oriented programming
encapsulating code 375
information hiding 363
inheritance 327, 363, 376

also see class: base class, class: subclass
polymorphism 181, 363, 376

also see class: base class, class: subclass
also see object, object reference, class,

template
objectvar – see object reference:

objectvar
objref – see object reference: objref
oc 346

also see nrniv
ocbox_ – see session file: ocbox_
Ohm’s law 52
online Programmer’s Reference – see

Programmer’s Reference
operators – see hoc syntax: expressions:

operators
operator precedence – see hoc syntax:

expressions: operators
optimization 30
OR operator – see hoc syntax: expressions:

operators
ordinary differential equation – see equation:

differential: ordinary
oscillating system – see initialization:

categories: to a desired state
oscillations – see numerical error: oscillations
oscilloscope 23
oxymoron 306

P
panel – see xpanel()
PARAMETER block 212

assigning default PARAMETER values 212
default value of state0 190

also see STATE variable: state0,
STATE block: START

specifying minimum and maximum limits
212

PARAMETER variable 184, 212
abrupt change of – see variable: abrupt change

of, NET_RECEIVE block: handling
abrupt changes and discontinuities

default value – see PARAMETER block:
assigning default PARAMETER values

GLOBAL vs. RANGE 212, 235, 256
also see NEURON block: RANGE

is GLOBAL by default 254
also see NEURON block: GLOBAL

RANGE 218
specifying minimum and maximum

limits – see PARAMETER block:
specifying minimum and maximum
limits

time-dependent 161, 263
visibility at the hoc level 212
when to use for an equilbrium potential

223
also see ASSIGNED variable, STATE

variable, ion_style()
parameters

biophysical 15–16
geometric 13–14
sensitivity to 84
also see PARAMETER variable

parent section – see section: parent
parentheses – see hoc syntax: expressions:

operators, NMODL: units conversion
factor: parentheses, UNITS block: units
scaling

parse errors – see hoc: error handling
partial differential equation – see equation:

differential: partial
pas mechanism 15
e_pas 16
g_pas 16

passive cylindrical cable – see cable: passive
cylindrical

passive leak current – see Example 9.1: a
passive “leak” current

PFWM 16
is implemented in C 344
saving and retrieving session files – see

session file: saving: from PFWM,
session file: loading: from PFWM

physical distance – see distance
physical system 33

representing by a model 33–34
physiological accuracy – see accuracy:

physiological
piecewise linear approximation – see range

variable: estimating by linear
interpolation between nodes

piecewise linear function – see function:
piecewise linear

Pike, R. – see hoc: Kernighan and Pike
plain text file 130

444 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

plasticity
synaptic – see synaptic plasticity

Plot what? GUI 228, 233
also see variable browser

Plot() – see standard run system: Plot()
plot lists – see standard run system: plotting

system: fast_flush_list, standard
run system: plotting system:
flush_list, standard run system:
plotting system: graphLists

plotting spike trains – see spike trains:
recording and plotting, NetWork Builder:
buttons: SpikePlot

plotting system – see standard run system:
plotting system

point process 18, 112, 214, 217
adding new – see mechanisms: user-

defined, NMODL
attaching – see point process: inserting
changing location with hoc code – see

point process: loc()
creating 112
destroying 112
effect of nseg on location 112
inserting 112
loc() 113
preserving spatial accuracy 97
specifying attributes 112
vs. distributed mechanism 113
also see NEURON block:

POINT_PROCESS, artificial spiking
cell, NEURON block:
ARTIFICIAL_CELL

Point Process Viewer GUI 217
POINTER – see POINTER variable, NEURON

block: POINTER, setpointer
pointer – see hoc syntax: pointer operator,

NEURON block: POINTER, POINTER
variable

pointer operator – see hoc syntax: pointer
operator

Pointer class 359
POINTER variable 268

effect on Jacobian – see Jacobian:
approximate

also see NEURON block: POINTER,
setpointer, variable: local vs.
nonlocal

PointProcessGroupManager
bringing up a PointProcessGroupManager

319
PointProcessManager 18

configuring as
AlphaSynapse 19

creating 19, 148
location 20, 27

changing 27
parameters 20

PointProcessManager GUI
SelectPointProcess 19
Show

Shape 27
Points plotted/ms – see RunControl GUI:

Points plotted/ms
polymorphism – see object-oriented

programming: polymorphism
potassium

concentration – see Example 9.6:
extracellular potassium accumulation

current – see Example 9.4: a voltage-gated
current, Example 9.5: a calcium-
activated, voltage-gated current

also see ion mechanism
potential

reversal – see equilibrium potential
also see membrane potential, voltage

precedence of operations – see hoc syntax:
expressions: operators

prediction 33
print – see hoc syntax: basic input and

output: print
Print & File Window Manager – see PFWM
printf() – see hoc syntax: basic input and

output: printf()
private vs. public – see object: public

members: vs. private members, template:
writing a template: public

proc – see funcs and procs
PROCEDURE

calling from hoc – see hoc: calling an
NMODL FUNCTION or PROCEDURE

also see PROCEDURE block, BREAKPOINT
block: and PROCEDUREs

procedure – see funcs and procs, PROCEDURE
PROCEDURE block 232

arguments are call by value 283
program organization – see good

programming style: program organization
Programmer’s Reference 343
programming – see hoc

good practices – see good programming style
mistake – see hoc: error handling

project management 154
also see good programming style

Index 445

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

proper initialization – see initialization:
criterion for proper initialization

psection() 103
pt3d – see 3-D specification of geometry
pt3d data – see 3-D specification of geometry:

3-D information
pt3d list – see 3-D specification of geometry:

3-D information
pt3dadd() – see 3-D specification of

geometry: pt3dadd()
public – see object: public members,

template: writing a template: public
pump

calcium – see calcium: pump
also see active transport

purpose of computing – see insight
purpose of the model – see user’s intent
push_section() 100

Q
qualitative results 67

also see accuracy, judgment
quantitative morphometric data 98, 105, 126,

144
bad diameter values – see diameter: zero or

narrow diameter
also see 3-D specification of geometry

queue
cell time – see standard run system: event

delivery system: cell time queue
event time – see standard run system: event

delivery system: event time queue
Quiet – see RunControl GUI: Quiet
quit() – see hoc syntax: flow control:

quit()
quitting NEURON – see NEURON: exiting,

hoc syntax: flow control: quit()

R
Ra 13, 15, 94

default value 16, 103
also see cytoplasmic resistivity

radial diffusion – see diffusion: radial
ramp clamp – see voltage clamp: ramp clamp
Random class
play()

initialization – see initialization:
Random.play()

random number generator
initialization – see initialization: random

number generator

RANGE – see NEURON block: RANGE, range,
range variable

range 93
RANGE variable – see range variable
range variable 93

dot notation – see section: currently
accessed: dot notation

effect of changing nseg 115–117
estimating by linear interpolation between

nodes 97
inhomogeneous

reassert after changing nseg 116
in which section? – see section: currently

accessed
iterating over nodes 114
linear taper 115
linear variation along a section – see range

variable: linear taper
rangevar(x) returns value at nearest

internal node 94
also see range, NEURON block: RANGE,

ASSIGNED variable: is a range
variable by default, PARAMETER
variable: RANGE, STATE variable: is
automatically RANGE

raster plot – see spike trains: recording and
plotting, NetWork Builder: buttons:
SpikePlot

rate constant 37
rate functions – see BREAKPOINT block: and

rate functions, KINETIC block: reaction
rates: voltage-sensitive

re_init() – see CVode class: re_init()
reactants – see KINETIC block: reactants
reaction – see kinetic scheme

chemical – see kinetic scheme
rates – see KINETIC block: reaction rates
reactants – see KINETIC block: reactants
scheme – see kinetic scheme, KINETIC

block
statement – see KINETIC block: reaction

statement
also see KINETIC block: <–> (reaction

indicator)
READ – see NEURON block: USEION
read() – see hoc syntax: basic input and

output: read()
reading an ion concentration – see NEURON

block: USEION
reading and writing files – see hoc syntax:

basic input and output

446 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

real model neuron – see oxymoron
realtime – see standard run system:

realtime
recording – see CVode class: record(),

NetCon class: record(), Vector
class: record()

recording spike trains – see NetCon class:
record(), spike trains: recording and
plotting, NetWork Builder: buttons:
SpikePlot

recursion – see funcs and procs: recursion
redefining standard functions and

procedures – see standard run library:
redefining functions and procedures,
standard GUI library: redefining
functions and procedures

reference count – see object: reference
count

refractory period – see IntFire1 class:
refractory period

relative error
local 75, 79

tolerance 75
also see absolute error: local, numerical

error: local
also see absolute error

relative local error – see relative error: local
relative tolerance – see relative error: local:

tolerance
remainder operator – see hoc syntax:

expressions: operators
resistance

axial – see axial resistance
also see ri(), Ra, cytoplasmic resistivity

electrode – see electrode: resistance
membrane – see specific membrane

resistance
resistivity – see cytoplasmic resistivity, Ra
resistor – see circuit: element: resistor
restore() – see SaveState class:

restore()
restricted diffusion – see Example 9.6:

extracellular potassium accumulation
return – see hoc syntax: flow control:

return
also see funcs and procs: return

returned value – see funcs and procs:
return

reusable code – see good programming style:
exploiting reusable code

reversal potential – see equilibrium potential

ri()
calculation of – see stylized specification of

geometry: calculation of area() and
ri(), 3-D specification of geometry:
calculation of L, diam, area(), and
ri()

effect of creating a Shape – see Shape
object: creating: effect on diam,
area(), and ri()

effect of define_shape() – see
define_shape(): effect on diam,
area(), and ri()

infinite 107, 115
also see diameter: zero or narrow

diameter
also see axial resistance

rise time 122
Rm – see specific membrane resistance
root section – see section: root section
ropen() – see hoc syntax: basic input and

output: ropen()
roundoff error – see numerical error:

roundoff
run control – see RunControl GUI, simulation

control, standard run system
run time 98, 158, 171

also see RunControl GUI: Real Time,
standard run system: realtime,
initialization: startsw()

run time system – see standard run system
run-time errors – see hoc: error handling
run() – see standard run system: run()
RunControl 21

creating 24, 151, 157
RunControl GUI

Continue for 158–159, 162
also see standard run system:

continuerun()
Continue til 158–159, 162

also see standard run system:
continuerun()

dt 24, 158
also see RunControl GUI: Points

plotted/ms, standard run system:
setdt()

Init 24, 158–159
Init & Run 24, 152, 158–159, 163

also see standard run system: run()
Points plotted/ms 24, 158–159, 162

also see standard run system: setdt(),
standard run system: step()

Index 447

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

RunControl GUI (contd)
Quiet 158–159, 162

also see standard run system:
stdrun_quiet

Real Time 158, 163
also see standard run system:

continuerun(), standard run
system: realtime

Single Step 158–159, 162
also see standard run system: step()

Stop 158, 162–163
also see standard run system: stoprun

t 24, 158
Tstop 24, 152, 158, 163

also see standard run system: tstop
Runge-Kutta method

stability 243
running a simulation 26
runtime

error – see hoc: error handling
system – see standard run system
also see run time

S
sacred runes – see equation: sacred runes
sampling theorem – see Nyquist sampling

theorem
SaveState class
fread() 198
fwrite() 198
restore() 199
save() 198
also see initialization: categories: to a

desired state
scalar – see hoc syntax: variables: scalars
scale factor 43

also see NMODL: units conversion factor,
UNITS block: units scaling

scene – see GUI: scene
scene coordinates – see GUI: scene coordinates
scene coordinates vs. screen coordinates – see

GUI: scene coordinates: vs. screen
coordinates

screen – see GUI: screen
screen coordinates – see GUI: screen

coordinates
SCoP 208, 213
scope – see hoc syntax: names, funcs and

procs: local variable, variable: local vs.
nonlocal, LOCAL variable, ASSIGNED
variable: GLOBAL, NEURON block:
GLOBAL, PARAMETER variable: is
GLOBAL by default

also see object: public members, template:
writing a template: public, template:
writing a template: external

sealed end – see boundary conditions: sealed
end

SEClamp
preserving spatial accuracy – see point

process: preserving spatial accuracy
also see voltage clamp

secname() 108
second messenger – see Example 10.5: use-

dependent synaptic plasticity
also see calcium

secondorder 86, 169, 180
also see Crank–Nicholson method,

backward Euler method
section 8, 92
access – see access, section: currently

accessed: default section
arc length – see range
area – see segment: surface area
array 103
as argument or variable – see

SectionRef class
attaching – see connect
child 101

connect 0 end to parent 105, 148
connecting – see connect
creating – see create
currently accessed

default section 21, 23, 100, 143–144
dot notation 94–95, 99
section stack 99

daughter – see section: child
default parameter values – see cm, diam,

L, Ra
default section – see section: currently

accessed: default section
vs. root section – see section: root

section: vs. default section
detaching – see disconnect()
diam – see diam
diameter – see diameter, diam, 3-D

specification of geometry: diam3d()
disconnecting – see disconnect()
equivalent circuit 106–107
iterating over nodes – see range variable:

iterating over nodes
iterating over sections 108, 123
L – see L
length – see L
nodes 96

448 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

internal vs. terminal 95
iterating over – see range variable:

iterating over nodes
locations 95

also see nseg: why use odd values?
zero area 74, 97

normalized distance along a section – see range
nseg – see nseg
orientation 138, 145, 147
parent 101
properties

specifying – see section: currently accessed,
3-D specification of geometry, stylized
specification of geometry, biophysical
properties: specifying

Ra – see Ra
root section 8, 101, 134

is 3-D origin of cell 146, 149
vs. default section 102, 134

sets – see SectionList class
stack – see section: currently accessed:

section stack
variable – see section variable

section variable 93
also see L, nseg, Ra

section.h 169
SectionList class 138
SectionRef class 100
segment 95

diameter – see diam
surface area – see area, area()
also see compartment, nseg, section: nodes

self-event – see event: self-event
sensitivity – see parameters: sensitivity to
separating biology from numerical issues 92

also see section, range, range variable
ses file – see session file
session file 16

loading
from NEURON Main Menu 18
from PFWM 16

object_pop() 388
object_push() 388
ocbox_ 388

also see VBox class: map()
saving

from NEURON Main Menu 17
from PFWM 16

set
of numbers – see hoc syntax: variables:

double, Vector class
of objects – see object: array, List class

of sections – see SectionList class,
CellBuilder GUI: Subsets page

setdata_ – see hoc: calling an NMODL
FUNCTION or PROCEDURE: specifying
proper instance with setdata_

setdt() – see standard run system:
setdt()

setpointer 269
also see POINTER variable

Shape object
creating

effect on diam, area(), and ri() 108
Shape plot 9, 103

creating 22, 145
effect on diam, area(), and ri()

108
Shape Plot 180
Shape plot GUI

primary menu
Space Plot 22
also see Space Plot

Shape Style
Show Diam 145

shared object – see NMODL: translator:
nrnivmodl, nrniv

shell 41
Shift key – see Graph class: menu_tool()
shunt.mod – see Example 9.2: a localized

shunt
sign convention – see membrane current:

positive current convention, axial current:
positive current convention, circuit:
positive current convention

signal
chemical 50, 119
electrical 50, 119

signal monitors 20
vs. signal sources 20

signal sources 18
effect on system equations – see system

equations: effect of signal sources,
numeric integration: stability: effect of
signal sources

load – see system equations: effect of signal
sources, numeric integration: stability:
effect of signal sources

also see distributed mechanism, point
process

simplification 33–35
simulation

control – see simulation control
event-driven – see discrete event simulation

Index 449

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

simulation (contd)
interactive vs. noninteractive – see GUI: vs.

hoc
time 24

also see t, elapsed simulation time
simulation control 5, 21, 139, 154

running 26
starting 26
stopping – see standard run system:

tstop, RunControl GUI: Tstop,
RunControl GUI: Stop, hoc:
interrupting execution

also see standard run system, good
programming style: modular
programming, good programming
style: program organization

Simulation Control Program – see SCoP
simulation environment

utility of 32, 34
sink reaction – see KINETIC block: –>(sink

reaction indicator)
size – see compartment: size, discretization,

nseg
slope conductance – see conductance: slope
sodium – see ion mechanism
solution

analytic – see analytic solution
computational – see numeric integration
numeric – see numeric integration

SOLVE – see BREAKPOINT block: SOLVE,
INITIAL block: SOLVE:
STEADYSTATE sparse

solve.c 169
source

current – see current: source, circuit:
element: current source

NetCon class: source variable
signal – see signal sources
voltage – see circuit: element: voltage source

space 21–22, 25, 32
space constant – see �, length constant,

d_lambda rule
space plot 20
Space Plot 180

creating 22
sparse – see KINETIC block, BREAKPOINT

block: SOLVE: sparse, INITIAL block:
SOLVE: STEADYSTATE sparse

spatial accuracy 96
checking 97
second order 57, 96

preserving 97, 102

also see discretization: spatial, nseg: effect
on spatial accuracy and resolution

spatial decay of fast signals 122
spatial discretization – see discretization:

spatial, spatial grid
spatial error – see numerical error: spatial,

spatial accuracy
spatial frequency – see frequency: spatial
spatial grid 57

checking 97
choosing – see discretization: guidelines,

d_lambda rule, d_X rule, CellBuilder
GUI: Geometry page: specifying
strategy

also see discretization: spatial
spatial resolution – see discretization: spatial,

numerical error: spatial, spatial accuracy,
spatial grid

specific membrane capacitance 53, 56, 91–92,
94

also see cm
specific membrane conductance 56
specific membrane resistance 122

also see specific membrane conductance
specifying geometry – see 3-D specification of

geometry, stylized specification of
geometry

also see geometry, anatomical properties
specifying model properties – see model

properties: specifying
specifying object attributes – see template:

writing, object: public members: dot
notation

specifying section properties – see section:
currently accessed, 3-D specification of
geometry, stylized specification of
geometry, biophysical properties:
specifying

specifying the current section – see section:
currently accessed

specifying the spatial grid – see discretization:
spatial grid, nseg, spatial grid

specifying topology – see topology: specifying
speed – see computational efficiency
speed vs. accuracy – see accuracy: vs. speed
spike event – see event: external
spike trains

recording and plotting 335
also see NetCon class: record(),

NetWork Builder: buttons: SpikePlot
SpikePlot – see NetWork Builder: buttons:

SpikePlot

450 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

sprint() – see hoc syntax: basic input and
output: sprint()

squid axon 28
also see hh mechanism

stability – see numeric integration: stability
stack of objects – see List class: object stack
staggered time steps – see Crank–Nicholson

method: staggered time steps
standard GUI library

changing functions and procedures – see
standard GUI library: redefining
functions and procedures

hoc source accompanies NEURON 344
loading – see nrngui, hoc: idiom:

load_file("nrngui.hoc")
not loading – see nrniv
redefining functions and procedures 344

standard run library
changing functions and procedures – see

standard run library: redefining
functions and procedures

hoc source accompanies NEURON 344
redefining functions and procedures 344

standard run system 152
addplot() 152, 181
advance() 160, 181
continuerun() 160, 162–163, 181
CVODE 164
DASPK 165
discrete events – see standard run system:

fadvance(): global time step
integration, standard run system:
fadvance(): local time step
integration

doEvents() 163
event delivery system 165

adaptive integration and 171, 179
and models with discontinuities – see

variable: abrupt change of, event:
times

cell time queue 173
also see numeric integration: adaptive:

local time step, standard run sys-
tem: fadvance(): global time
step integration, standard run sys-
tem: fadvance(): local time
step integration

event time queue 173, 292
also see numeric integration: adaptive:

local time step, standard run
system: fadvance(): global
time step integration, standard run

system: fadvance(): local
time step integration

event times – see event: times, standard
run system: event time queue

external event – see event: external
implementing deferred computation 289,

296, 302
also see event: self-event

initialization 183, 185–186
input event – see event: external
self event – see event: self-event
also see event, standard run system:

fadvance(): global time step
integration, standard run system:
fadvance(): local time step
integration

fadvance() 81, 158, 160, 164, 184, 243,
263

discrete events – see standard run system:
fadvance(): global time step
integration, standard run system:
fadvance(): local time step
integration

fixed time step 165
global time step integration 179
local time step integration 166, 173

fast_flushPlot() 181
fcurrent() 164, 170, 186

in initialization 188–189, 196
finitialize() – see initialization:

finitialize()
flushPlot() 162, 180–181
graph lists – see standard run system:

plotting system: graphLists
Graphs and objects

incorporating – see standard run system:
plotting system: incorporating
Graphs and objects

notifying – see standard run system:
plotting system: notifying Graphs
and objects

init() – see initialization: init()
initialization – see initialization, numeric

integration: adaptive: initialize microstep
initPlot() – see initialization:

initPlot()
is implemented in hoc 344
NetCon – see NetCon: and standard run

system
nstep_steprun – see standard run

system: setdt(), RunControl GUI:
Points plotted/ms

Index 451

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

standard run system (contd)
Plot() 162, 180

also see standard run system: step
plot lists – see standard run system: plotting

system: fast_flush_list,
standard run system: plotting system:
flush_list, standard run system:
plotting system: graphLists

plotting system 179
fast_flush_list 180
flush_list 180
graphLists 179
incorporating Graphs and objects 181

also see standard run system: plotting
system: graphLists, standard
run system: addplot()

notifying Graphs and objects 179
also see standard run system: plotting

system: graphLists
special uses 162

realtime 163–164, 187
run() 159–160, 163, 179
setdt() 161, 164, 187
stdinit() – see initialization:

stdinit()
stdrun_quiet 163, 180
step 158, 162
step() 160–162

under CVODE 162
steprun() 160, 162
steps_per_ms – see standard run system:

setdt(), standard run system: step,
RunControl GUI: Points plotted/ms

stoprun 162–163
tstop 152, 163, 181
also see RunControl GUI, standard run

library
START – see STATE block: START, STATE

variable: initialization
starting hoc – see hoc: starting and exiting,

NEURON: starting and exiting
starting NEURON – see NEURON: starting

and exiting, hoc: starting and exiting
startsw() – see initialization: startsw()
state 36, 38, 41

as amount of material 36
as concentration 36
as density 36
as probability 36
restoring – see SaveState class:

restore(), initialization: categories:
to a desired state

saving – see SaveState class: save()
STATE block 223

specifying local absolute error tolerance
251

START 190
also see STATE variable: initialization,

PARAMETER block: default value of
state0

also see ASSIGNED block, PARAMETER
block

state variable 67, 70, 73
as an ASSIGNED variable 185
changing after finitialize() – see

initialization: strategies: changing a
state variable

custom initialization – see initialization:
strategies: changing a state
variable

initialization – see STATE variable:
initialization, initialization

of a mechanism vs. state variable of a
model 213

vs. STATE variable – see STATE variable:
vs. state variable

STATE variable 168, 184, 223
abrupt change of – see variable: abrupt

change of, NetCon class: event(),
NET_RECEIVE block: handling
abrupt changes and discontinuities

and COMPARTMENT statement – see
KINETIC block: COMPARTMENT

array in NMODL 244
conservation – see KINETIC block:

CONSERVE
initialization 224

default vs. explicit 190
state0 190, 237

also see PARAMETER block: default
value of state0, STATE block:
START

also see initialization, KINETIC block:
CONSERVE

ion concentration as 236
is automatically RANGE 223

also see NEURON block: RANGE
specifying local absolute error tolerance –

see STATE block: specifying local
absolute error tolerance

vs. state variable 184, 242
also see ASSIGNED variable, PARAMETER

variable, ion_style(), state
variable

452 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

state_discontinuity() – see
CVODE: and model descriptions:
state_discontinuity(), variable:
abrupt change of, NET_RECEIVE block:
state_discontinuity()

state0 – see STATE variable: initialization,
INITIAL block

stdgui.hoc – see standard GUI library
stdinit() – see initialization:

stdinit()
stdlib.hoc 123, 357, 373

also see standard run system
stdrun.hoc 159

also see standard run system, standard run
library

stdrun_quiet – see standard run system:
stdrun_quiet

steady state
initialization – see initialization: steady

state, initialization: non-steady state
of complex kinetic schemes – see

initialization: strategies: steady state
initialization of complex kinetic
schemes, INITIAL block: SOLVE:
STEADYSTATE sparse

STEADYSTATE – see INITIAL block: SOLVE:
STEADYSTATE sparse, initialization

step – see standard run system: step
step() – see standard run system: step()
steprun() – see standard run system:

steprun()
stiffness – see system: stiff
stoichiometry 39
stop – see hoc syntax: flow control: stop
stopping hoc – see hoc: interrupting

execution, hoc: starting and exiting
stopping NEURON – see NEURON: starting

and exiting, hoc: interrupting execution
stoprun – see standard run system: stoprun
storage oscilloscope 23
strange shapes – see stylilzed specification of

geometry: strange shapes
strdef – see hoc syntax: variables:

strdef
string – see hoc syntax: variables: strdef
String class 373
stylized model – see model: stylized, stylized

specification of geometry
stylized specification of geometry 103–104,

132
calculation of area() and ri() 104
diam – see diam

L – see L
reinterpretation as 3-D specification 108
strange shapes 144
also see 3-D specification of geometry

subclass – see class: subclass, object-oriented
programming: polymorphism, object-
oriented programming: inheritance

subtraction operator – see hoc syntax:
expressions: operators

SUFFIX – see NEURON block: SUFFIX
SUNDIALS 172

also see CVODES, IDA
surface area 52

also see area(), membrane area
synapse

alpha function – see AlphaSynapse,
Exp2Syn, Example 10.4: alpha
function synapse

AlphaSynapse 19
AMPAergic – see Example 10.3: synapse

with exponential decay
also see Example 10.6: saturating

synapses
as instrumentation 139
conductance change 19

alpha function – see AlphaSynapse,
Exp2Syn, Example 10.4: alpha
function synapse

exponentially decaying – see ExpSyn,
Example 10.3: synapse with
exponential decay

also see Example 10.5: use-dependent
synaptic plasticity, Example 10.6:
saturating synapses

electrical – see gap junction, synapse:
ephaptic

ephaptic 265
graded – see synaptic transmission: graded
plasticity – see synaptic plasticity
saturating – see Example 10.6: saturating

synapses
strength – see NetCon class: weight
weight – see NetCon class: weight
also see AlphaSynapse, ExpSyn,

Exp2Syn
synaptic connection – see NetCon class
synaptic convergence – see convergence

also see synaptic transmission: spike-
triggered

synaptic delay – see NetCon class: delay
synaptic divergence – see divergence

also see synaptic transmission: spike-triggered

Index 453

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

synaptic latency – see NetCon class: delay
synaptic plasticity 83

stream-specific – see Example 10.5: use-
dependent synaptic plasticity, Example
10.6: saturating synapses

synaptic strength – see NetCon class: weight
synaptic transmission

delay – see NetCon class: delay
graded 265

conceptual model 266
implementation in NMODL 268
also see Example 10.1: graded synaptic

transmission
latency – see NetCon class: delay
saturating – see Example 10.6: saturating

synapses
spike-triggered

computational efficiency in NEURON 275
conceptual model 273
event-based implementation 273

also see NetCon class,
NET_RECEIVE block, event:
external, event: self-event,
Example 10.3: synapse with
exponential decay, Example 10.4:
alpha function synapse, Example
10.5: use-dependent synaptic
plasticity, Example 10.6: saturat-
ing synapses

weight – see NetCon class: weight
also see gap junction

synaptic weight – see NetCon class: weight
syntax – see hoc syntax, NMODL

also see Programmer’s Reference
syntax error

example 100
also see hoc: error handling

system
chaotic – see initialization: categories: to a

desired state
continuous 55–58, 60, 96

piecewise linear approximation – see
range variable: estimating by linear
interpolation between nodes

discretized 57, 60
also see discretization

linear 65, 71, 86
nonlinear 71, 87
oscillating – see initialization: categories: to

a desired state
stiff 66, 73, 86–87, 169

also see numeric integration: stability

system equations
effect of signal sources 20

also see numeric integration: stability:
effect of signal sources

matrix form 73
extracellular field 74
linear circuit 74
also see equation: algebraic

stiff – see system: stiff
also see eigenfunction, eigenvalue

T
t 24, 26

as an ASSIGNED variable – see
ASSIGNED variable: v, celsius, t,
dt, diam, and area

also see t: use in NMODL
initialization – see initialization: t
the independent variable in NEURON 213
use in NMODL 213
also see time

� – see time constant
�m – see membrane time constant
table – see function table
table_ – see NMODL: FUNCTION_TABLE
tapering – see diam: tapering, range variable:

linear taper
Taylor’s series 66, 83
temperature – see celsius
template 363

cannot be redefined 156, 367
direct commands 368
names cannot redefine hoc keywords 369
this – see object reference: this
variable initialization

default initialization 368
init() procedure 368

visibility – see template: writing a template:
public, object: public members

writing a template 367
begintemplate 367
endtemplate 368
external 368
public 367

also see object: public members
also see class, object, object-oriented

programming
temporal accuracy

empty 87
also see discretization: temporal

temporal discretization – see discretization:
temporal

454 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

temporal frequency – see frequency: temporal
temporal resolution – see temporal accuracy,

discretization: temporal
this – see object reference: this
three dimensional specification – see 3-D

specification of geometry
tilde – see KINETIC block: ~ (tilde)
time 21, 24–26, 32

rise – see rise time
also see t

time constant 48
also see membrane time constant

time-dependent variable – see PARAMETER
variable: time-dependent, variable: time-
dependent, Vector class: play()

time step
and stability – see numeric integration:

stability, backward Euler method,
forward Euler method, Crank–
Nicholson method

choosing – see discretization: temporal
fixed – see numeric integration: fixed time

step
also see dt,
t, discretization: temporal,

numeric integration: adaptive
time stream – see numeric integration: local

time step
tolerance

error – see absolute error: local: tolerance,
relative error: local: tolerance

top level of the interpreter – see hoc: top level
of the interpreter

topology 8, 35, 98
checking 102–103, 134, 150
loops of sections 101
specifying 101, 130
viewing 103
also see branched architecture

topology, subsets, geometry, biophysics 138
topology() 102, 150
total error – see numerical error: global
total ionic current – see membrane current:

ionic
transient signals

spatial decay – see spatial decay of fast signals
transmembrane current – see membrane current
treeset.c 167
troubleshooting

conflicts between hoc and GUI – see GUI:
conflicts with hoc or other GUI tools

disappearing section 148
Graphs don’t work 151

legacy code 142
no default section 142
no NEURON Main Menu toolbar 142
strange shapes – see stylized specification

of geometry: strange shapes
TRUE – see hoc syntax: expressions: logical

expressions
tstop – see standard run system: tstop
Tstop – see RunControl GUI: Tstop, standard

run system: tstop

U
unaryminus operator – see hoc syntax:

expressions: operators
understanding 32, 33
uninsert 153
units 36

checking 212, 216, 254
also see modlunit

consistency 40, 42–43, 247, 254
conversion factor – see scale factor,

NMODL: units conversion factor,
UNITS block: units scaling

database 212
also see nrnunits.lib

defining new names – see UNITS block:
defining new names

dimensionless
(1) 250
by default 212

e 231
also see e: electronic charge vs. units

conversion factor
faraday 231
k-mole 231
mole 256
scaling – see UNITS block: units scaling
specifying 227

also see NMODL: declaring variables:
specifying units

UNITS block 222
defining new names 222
units scaling 231, 250

units scaling – see UNITS block: units scaling
UNITSOFF . . . UNITSON – see NMODL:

UNITSOFF . . . UNITSON
UNITSON – see NMODL: UNITSOFF . . .

UNITSON
use-dependent synaptic plasticity – see

Example 10.5: use-dependent synaptic
plasticity, Example 10.6: saturating
synapses

Index 455

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

USEION – see NEURON block: USEION
user-defined mechanisms – see mechanisms:

user-defined
user interface 154

as virtual experimental rig 23, 154
custom GUI 22, 29
vs. model specification – see good

programming style: separating model
specification from user interface

user’s intent 81

V
v 21, 94, 168

as an ASSIGNED variable – see
ASSIGNED variable: v, celsius, t,
dt, diam, and area

is a RANGE variable 211
also see membrane potential

v_init – see initialization: v_init
variable

abrupt change of 161, 171, 260–262,
277–278, 280, 291–292, 294,
297–298, 301–302

also see CVODE: and model
descriptions: at_time(), CVODE:
and model descriptions:
state_discontinuity(),
NetCon class: event(),
NET_RECEIVE block: handling
abrupt changes and discontinuities

ASSIGNED – see ASSIGNED variable
changing in mid-run – see variable: abrupt

change of, PARAMETER variable:
time-dependent

CONSTANT – see CONSTANT
continuous – see continuous variable
declaring in NMODL – see NMODL:

declaring variables, NMODL: named
blocks: variable declaration,
ASSIGNED block, CONSTANT block,
PARAMETER block, STATE block,
LOCAL variable, NMODL: DEFINE

dimensionless – see units: dimensionless
extensive 247
global – see variable: local vs. nonlocal,

hoc syntax: names, template: writing
a template: external, NEURON
block: GLOBAL, ASSIGNED variable:
GLOBAL, PARAMETER variable: is
GLOBAL by default

initializing – see initialization, template:
variable initialization

intensive 247
LOCAL – see LOCAL variable
local vs. nonlocal 266

also see POINTER variable
names – see hoc syntax: names
object – see object, object reference
PARAMETER – see PARAMETER variable
POINTER – see POINTER variable
range – see range variable
scope – see hoc syntax: names, funcs and

procs: local variable, variable: local
vs. nonlocal, LOCAL variable,
ASSIGNED variable: GLOBAL,
NEURON block: GLOBAL,
PARAMETER variable: is GLOBAL by
default

also see object: public members,
template: writing a template:
public, template: writing a
template: external

section – see section variable
state – see state variable
state vs. STATE – see STATE variable: vs.

state variable
STATE – see STATE variable
string – see hoc syntax: variables: strdef
time-dependent – see PARAMETER

variable: time-dependent, Vector
class: play()

user-defined
in hoc – see hoc syntax: names
in NMODL – see NMODL: user-defined

variable
variable browser 29

also see Plot what? GUI
variable order integration – see numeric

integration: adaptive
variable order, variable time step

integration – see numeric integration:
adaptive

variable time step method – see numeric
integration: adaptive

VariableTimeStep GUI
bringing up – see NEURON Main Menu:

Tools: VariableStepControl
Details

Local step – see VariableTimeStep GUI:
global vs. local time steps

global vs. local time steps 319
also see numeric integration: adaptive:

global time step, numeric
integration: adaptive: local time step

456 Index

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

toggling adaptive integration on and off 320
Use variable dt checkbox – see

VariableTimeStep GUI: toggling
adaptive integration on and off

VBox 383
VBox class

intercept() 383
map() 383–384, 386

also see session file: ocbox_
mapping to the screen

window title 384
ref() 383
save() 385

Vector
movie 180

Vector class
c() 337
fill() 337
mark() 337
play() 77

at specific times 167
initialization – see initialization:

Vector.play()
under adaptive integration 78
under fixed time step integration 78
with interpolation 78, 161, 167, 263

record() 171, 187
at specific times 167
initialization 187

also see initialization:
frecord_init()

also see CVode class: record()
VERBATIM – see NMODL: VERBATIM . . .

ENDVERBATIM
verification 28
version number – see NEURON: startup banner
vext – see extracellular mechanism:

vext
view – see GUI: view
virtual experimental preparation – see model

specification: as “virtual experimental
preparation”

virtual experimental rig – see user interface: as
virtual experimental rig

visibility – see template: writing a template:
public, object: public members

Vm 20
also see membrane potential, v

voltage 44

gradient 50
membrane – see membrane potential, v

voltage clamp
and stability – see numeric integration:

stability: effect of signal sources,
system equations: effect of signal
sources

current
accuracy 169

preserving spatial accuracy – see point
process: preserving spatial accuracy

ramp clamp 77
voltage-gated current – see channel: voltage-

gated
volume – see compartment: size

W
weight – see NetCon class: weight
weight vector – see NetCon class: weight

vector
what are the names of things? 29
which view contains the mouse? – see Graph

class: view_info()
while – see hoc syntax: flow control: while
why is NEURON fast? – see computational

efficiency: why is NEURON fast?
window title – see GUI tool development:

mapping to the screen: window title
wopen() – see hoc syntax: basic input and

output: wopen()
WRITE – see NEURON block: USEION
writing an ion concentration – see NEURON

block: USEION
writing files – see hoc syntax: basic input and

output

X
x-expression – see standard run system:

plotting system: graphLists
xopen() – see hoc syntax: basic input and

output: xopen()
xpanel() 334, 395
xpvalue() 395
xred() – see hoc syntax: basic input and

output: xred()
xvalue() 334, 395

Z
zero area node – see section: nodes: zero area

Index 457

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521843219 - The Neuron Book
Ted Carnevale and Michael Hines
Index
More information

http://www.cambridge.org/0521843219
http://www.cambridge.org
http://www.cambridge.org

