
Introduction: Defining quantum gravity

In the first section of this chapter we explain why the problem of quantum gravity
cannot be ignored in present-day physics, even though the available accelerator
energies lie way beyond the Planck scale. Then we define what a quantum theory
of gravity and all interactions is widely expected to achieve and point out the two
main directions of research divided into the perturbative and non-perturbative
approaches. In the third section we describe these approaches in more detail and
finally in the fourth motivate our choice of canonical quantum general relativity
as opposed to other approaches.

Why quantum gravity in the twenty-first century?

It is often argued that quantum gravity is not relevant for the physics of this cen-
tury because in our most powerful accelerator, the LHC to be working in 2007,
we obtain energies of the order of a few 103 GeV while the energy scale at which
quantum gravity is believed to become important is the Planck energy of 1019

GeV. While that is true, it is false that nature does not equip us with particles
of energies much beyond the TeV scale; we have already observed astrophysical
particles with energy of up to 1013 GeV, only six orders of magnitude away from
the Planck scale. It thus makes sense to erect future particle microscopes not on
the surface of the Earth any more, but in its orbit. As we will sketch in this book,
even with TeV energy scales one might speculate about quantum gravity effects
in the close future with γ-ray burst physics and the GLAST detector. Next,
quantum gravity effects in the early universe might have left their fingerprint
in the cosmological microwave background radiation (CMBR) and new satellites
such as WMAP and PLANCK which have considerably increased the precision of
experimental cosmology might reveal those. Notice that these data have already
given us new cosmological puzzles recently, namely they have, for the first time,
enabled us to reliably measure the energy budget of the universe: about 70%
is a so-called dark energy component which could be a positive1 cosmological
constant, about 25% is a dark matter component which is commonly believed
to be due to a weakly interacting massive particle (WIMP) (possibly supersym-
metric) and only about 5% is made out of baryonic matter. Here ‘dark’ means

� Recent independent observations all indicate that the expansion of the universe is currently
accelerating.
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2 Introduction: Defining quantum gravity

that these unknown forms of matter do not radiate, they are invisible. Hence we
see that we only understand 5% of the matter in the universe and at least as
far as dark energy is concerned, quantum gravity could have a lot to do with it.
What we want to argue here is that quantum gravity is not at all of academic
interest but possibly touches on brand new observational data which point at
new physics beyond the standard model and are of extreme current interest. See,
for example, [18–20] for recent accounts of modern cosmology.

But even apart from these purely experimental considerations, there are good
theoretical reasons for studying quantum gravity. To see why, let us summarise
our current understanding of the fundamental interactions:

Embarassingly, the only quantum fields that we fully understand to date in
four dimensions are free quantum fields on four-dimensional Minkowski space.
Formulated more provocatively:

In four dimensions we only understand an (infinite) collection of
uncoupled harmonic oscillators on Minkowski space!

In order to leave the domain of these rather trivial and unphysical (since non-
interacting) quantum field theories, physicists have developed two techniques:
perturbation theory and quantum field theory on curved backgrounds. This
means the following: with respect to accelerator experiments, the most important
processes are scattering amplitudes between particles. One can formally write
down a unitary operator that accounts for the scattering interaction between
particles and which maps between the well-understood free quantum field Hilbert
spaces in the far past and future. Famously, by Haag’s theorem [21] whenever
that operator is really unitary, there is no interaction and if it is not unitary,
then it is ill-defined giving rise to the ultraviolet divergences of ordinary QFT. In
fact, one can only define the operator perturbatively by writing down the formal
power expansion in terms of the generator of the would-be unitary transforma-
tion between the free quantum field theory Hilbert spaces. The resulting series is
divergent order by order but if the theory is ‘renormalisable’ then one can make
these orders artificially finite by a regularisation and renormalisation procedure
with, however, no control on convergence of the resulting series. Despite these
drawbacks, this recipe has worked very well so far, at least for the electroweak
interaction.

Until now, all we have said applies only to free (or perturbatively interact-
ing) quantum fields on Minkowski spacetime for which the so-called Wightman
axioms [21] can be verified. Let us summarise them for the case of a scalar field
in (D + 1)-dimensional Minkowski space:

W1 Representation
There exists a unitary and continuous representation U : P → B(H) of the
Poincaré group P on a Hilbert space H.
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Why quantum gravity in the twenty-first century? 3

W2 Spectral condition
The momentum operators Pµ have spectrum in the forward lightcone:
ηµνP

µP ν ≤ 0; P 0 ≥ 0.
W3 Vacuum

There is a unique Poincaré invariant vacuum state U(p)Ω = Ω for all
p ∈ P .

W4 Covariance
Consider the smeared field operator-valued tempered distributions φ(f) =∫
RD+1

dD+1xφ(x)f(x) where f ∈ S(RD+1) is a test function of rapid
decrease. Then finite linear combinations of the form φ(f1) . . . φ(fN )Ω lie
dense in H (that is, Ω is a cyclic vector) and U(p)φ(f)U(p)−1 = φ(f ◦ p)
for any p ∈ P .

W5 Locality (causality)
Suppose that the supports (the set of points where a function is differ-
ent from zero) of f, f ′ are spacelike separated (that is, the points of
their supports cannot be connected by a non-spacelike curve) then [φ(f),
φ(f ′)] = 0.

The most important objects in this list are those that are highlighted in
boldface letters: the fixed, non-dynamical Minkowski background metric η with
its well-defined causal structure, its Poincaré symmetry group P , the associated
representation U(p) of its elements, the invariant vacuum state Ω and finally
the fixed, non-dynamical topological, differentiable manifold RD+1. Thus
the Wightman axioms assume the existence of a non-dynamical, Minkowski
background metric which implies that we have a preferred notion of causality
(or locality) and its symmetry group, the Poincaré group from which one builds
the usual Fock Hilbert spaces of the free fields. We see that the whole structure
of the theory is heavily based on the existence of these objects which come with
a fixed, non-dynamical background metric on a fixed, non-dynamical topological
and differentiable manifold.

For a general background spacetime, things are already under much less
control: we still have a notion of causality (locality) but generically no symmetry
group any longer and thus there is no obvious generalisation of the Wightman
axioms and no natural perturbative Fock Hilbert space any longer. These obsta-
cles can partly be overcome by the methods of algebraic quantum field theory [22]
and the so-called microlocal analysis [23–26] (in which the locality axiom is taken
care of pointwise rather than globally), which recently have also been employed
to develop perturbation theory on arbitrary background spacetimes [27–33] by
invoking the mathematically more rigorous implementation of the renormal-
isation programme developed by Epstein and Glaser in which no divergent
expressions ever appear at least order by order (see, e.g., [34]). This way one
manages to construct the interacting fields, at least perturbatively, on arbitrary
backgrounds.
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4 Introduction: Defining quantum gravity

In order to go beyond a fixed background one can consider ‘all backgrounds
simultaneously’ [35, 36]. Namely, the notion of a local quantum field theory
A(M, g) (thought of as a unital C∗-algebra for convenience) on a given curved
background spacetime (M, g) can be generalised in the following way:2 given
an isometric embedding ϕ : (M, g) → (M ′, g′) of one spacetime into another,
one relates A(M, g), A(M ′, g′) by asking that there is a ∗-algebraic homomor-
phism αϕ : A(M, g) → A(M ′, g′). The homomorphisms αψ could for instance
just act geometrically by pulling back the fields. More abstractly, what one
has then is the category Man whose objects are globally hyperbolic spacetimes
(M, g) and whose morphisms are isometric embeddings with unit 1(M,g) := idM ,
the identity diffeomorphism. On the other hand, we have the category Alg
whose objects are unital C∗-algebras A and whose morphisms are injective
∗-homomorphisms with unit 1A = idA, the identity element in the algebra.
A local quantum field is then a covariant functor A : Man → Alg; (M, g) �→
A(M, g), ϕ �→ αϕ which relates objects and morphisms of Man with those of
Alg. The functor is called causal if those quantum field theories A(Mj , gj)
for which there exist isometric embeddings ϕj : (Mj , gj) → (M, g); j = 1, 2 so
that ϕ1(M1), ϕ2(M2) are spacelike separated with respect to g satisfy the
causality axiom [αϕ1(A(M1, g1)), αϕ2(A(M2, g2))] = {0}. The functor is said to
obey the time slice axiom when αϕ(A(M, g)) = A(M ′, g′)) for all isometries
ϕ : (M, g) → (M ′, g′) such that ϕ(M) contains a Cauchy surface for (M ′, g′).
This framework is background-independent because the functor A considers all
backgrounds (M, g) simultaneously.

Unfortunately, QFT on curved spacetimes, even stated in this background-
independent way, is only an approximation to the real world because it com-
pletely neglects the backreaction between matter and geometry which classi-
cally is expressed in Einstein’s equations. Moreover, it neglects the fact that
the gravitational field must be quantised as well, as we will argue below. One
can try to rescue the framework of ordinary QFT by studying the quantum
excitations around a given classical background metric, possibly generalised in
the above background-independent way. However, not only does this result in a
non-renormalisable theory without predictive power when treating the gravita-
tional field in the same fashion, it is also unclear whether the procedure leads
to (unitarily) equivalent results when using backgrounds which are physically
different, such as two Schwarzschild spacetimes with different mass (the cor-
responding spacetimes are not isometric). More seriously, it is expected that
especially in extreme astrophysical or cosmological situations (black holes, big
bang) the notion of a classical, smooth spacetime breaks down altogether!
In other words, the fluctuations of the metric operator become deeply quantum
and there is no semiclassical notion of a spacetime any more, similarly to the

� The following paragraph can be skipped on a first reading, however, the appearing notions
are all explained in this book (see, e.g., Definition 6.2.6 and Chapter 29).
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Why quantum gravity in the twenty-first century? 5

energy spectrum of the hydrogen atom far away from the continuum limit. It is
precisely here where a full-fledged quantum theory of gravity is needed: we must
be able to treat all backgrounds on a common footing, otherwise we will never
understand what really happens in a Hawking process when a black hole loses
mass due to radiation. Moreover, we need a background-independent theory of
GR where the lightcones themselves start fluctuating and hence locality becomes
a fuzzy notion. Let us phrase this again, provocatively, as:

The whole framework of ordinary quantum field theory breaks down
once we make the gravitational field (and the differentiable manifold)
dynamical, once there is no background metric any longer!

Combining these issues, one can say that we have a working understanding of
scattering processes between elementary particles in arbitrary spacetimes as long
as the backreaction of matter on geometry can be neglected and that the cou-
pling constant between non-gravitational interactions is small enough (with QCD
being an important exception) since then the classical Einstein equation, which
says that curvature of geometry is proportional to the stress energy of matter,
can be approximately solved by neglecting matter altogether. Thus, in this limit,
it seems fully sufficient to have only a classical theory of general relativity and
perturbative quantum field theory on curved spacetimes.

From a fundamental point of view, however, this state of affairs is unsatisfac-
tory for many reasons among which we have the following:

(i) Classical geometry – quantum matter inconsistency
There are two kinds of problem with the idea of keeping geometry classical
while matter is quantum:
(i1) Backreaction

At a fundamental level, the backreaction of matter on geometry cannot
be neglected. Namely, geometry couples to matter through Einstein’s
equations

Rµν − 1
2
R · gµν = κ Tµν [g]

and since matter underlies the rules of quantum mechanics, the right-
hand side of this equation, the stress–energy tensor Tµν [g], becomes
an operator. One has tried to keep geometry classical while matter is
quantum mechanical by replacing Tµν [g] by the Minkowski vacuum Ωη

expectation value < Ωη, T̂µν [η]Ωη >, but the solution of this equation
will give g 	= η which one then has to feed back into the definition
of the vacuum expectation value, and so on. Notice that the notion
of vacuum itself depends on the background metric, so that this is a
highly non-trivial iteration process. The resulting iteration does not
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6 Introduction: Defining quantum gravity

converge in general [37]. Thus, such a procedure is also inconsistent,
whence we must quantise the gravitational field as well. This leads to
the quantum Einstein equations

R̂µν − 1
2
R̂ · ĝµν = κ T̂µν [ĝ]

Of course, this equation is only formal at this point and must be
embedded into an appropriate Hilbert space context.

(i2) UV regime
There is another piece of evidence for the need to quantise geometry:
recall that in perturbative QFT one integrates over virtual particles
in higher loop diagrams with arbitrarily large energy. Suppose that
such a particle has energy E and momentum P ≈ E/c in some rest
frame. According to quantum mechanics, such a particle has a lifetime
τ ≈ h̄/E and a spatial extension given by the Compton radius λ ≈
h̄c/E. According to classical GR, such a lump of energy collapses to a
black hole if the Compton radius drops below the Schwarzschild radius
r ≈ GE/c4, in other words, when the energy exceeds the Planck energy
Ep =

√
h̄c/Gc2. The problem is now not only that in ordinary QFT this

general relativistic effect is neglected, but moreover that this effect leads
to new processes: according to the Hawking effect, after the lifetime τ

the black hole evaporates. However, it evaporates into particles of all
possible species. Suppose for instance that the original particle was a
neutrino. All that the resulting black hole remembers is its mass and
spin. Now while the neutrino only interacts electroweakly according to
the standard model, the black hole can produce gluons and quarks,
which is impossible within the standard model.

Of course, all of these arguments are only heuristic, however, they reveal
that it is problematic to combine classical geometry with quantum matter.
They suggest that it is problematic or even inconsistent to resolve spacetime
distances below the Planck scale �p =

√
h̄cG/c2. It is due to considerations

of this kind that one expects that gravity provides a natural UV cutoff for
QFT. If that is the case, then it is natural to expect that the quantum
spacetime structure reveals a discrete structure at Planck scale. We will see
a particular incarnation of this idea in LQG.

(ii) Inherent classical geometry inconsistency
Even without quantum theory at all Einstein’s field equations predict space-
time singularities (black holes, big bang singularities, etc.) at which the
equations become meaningless. In a truly fundamental theory, there is no
room for such breakdowns and it is suspected by many that the theory cures
itself upon quantisation in analogy to the hydrogen atom whose stability is
classically a miracle (the electron should fall into the nucleus after a finite
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Why quantum gravity in the twenty-first century? 7

time lapse due to emission of Bremsstrahlung) but is easily explained by
quantum theory which bounds the electron’s energy from below.

(iii) Inherent quantum matter inconsistency
As outlined above, perturbative quantum field theory on curved spacetimes
is itself also ill-defined due to its UV (short distance) singularities which
can be cured only with an ad hoc recipe order by order which lacks a
fundamental explanation; moreover, the perturbation series is usually diver-
gent. Besides that, the corresponding infinite vacuum energies being usually
neglected in such a procedure contribute to the cosmological constant and
should have a large gravitational backreaction effect. That such energy sub-
tractions are quite significant is maybe best demonstrated by the Casimir
effect. Now, since general relativity possesses a fundamental length scale,
the Planck length �p ≈ 10−33 cm, it has been argued ever since that grav-
itation plus matter should give a finite quantum theory since gravitation
provides the necessary, built-in, short distance cutoff.

(iv) Cosmological constant problem
However, that cutoff cannot work naively: consider for simplicity a free mass-
less scalar field on Minkowski space. The difference between the Hamiltonian
and its normal ordered version is given by the divergent expression

Ĥ− : Ĥ := h̄

∫
d3x[

√−∆δ(x, y)]y=x = h̄

∫
d3x

∫
d3k |k|

where ∆ is the flat space Laplacian. If we assume a naive momentum cut-
off due to quantum gravity at |k| ≤ 1/�P the divergent momentum integral
becomes proportional to �−4

P . Comparing this with the cosmological con-
stant Hamiltonian Λ

G

∫
d3x

√
det(q) where Λ is the cosmological constant, G

is Newton’s constant and q is the spatial metric (which is flat on Minkowski
space) then we conclude that Λ�2P ≈ 1 where h̄G = �2P was used. However,
experimentally we find Λ�2P ≈ 10−120. Thus the cosmological constant is
unnaturally small and presents the worst fine-tuning problem ever encoun-
tered in physics. Notice that the cosmological constant is a possible candi-
date for dark energy.

(v) Perturbative quantum gravity inconsistency
Given the fact that perturbation theory works reasonably well if the coupling
constant is small for the non-gravitational interactions on a background
metric it is natural to try whether the methods of quantum field theory
on curved spacetime work as well for the gravitational field. Roughly, the
procedure is to write the dynamical metric tensor as g = η + h where η is
the Minkowski metric and h is the deviation of g from it (the graviton) and
then to expand the Lagrangian as an infinite power series in h. One arrives
at a formal, infinite series with finite radius of convergence which becomes
meaningless if the fluctuations are large. Although the naive power counting
argument implies that general relativity so defined is a non-renormalisable

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-84263-1 - Modern Canonical Quantum General Relativity
Thomas Thiemann
Excerpt
More information

http://www.cambridge.org/0521842638
http://www.cambridge.org
http://www.cambridge.org


8 Introduction: Defining quantum gravity

theory, it was hoped that due to cancellations of divergences the perturba-
tion theory could actually be finite. However, that this hope was unjustified
was shown in [38, 39] where calculations demonstrated the appearance of
divergences at the two-loop level, which suggests that at every order of
perturbation theory one must introduce new coupling constants which the
classical theory did not know about and one loses predictability.

It is well known that the (locally) supersymmetric extension of a given
non-supersymmetric field theory usually improves the ultraviolet conver-
gence of the resulting theory as compared with the original one due to
fermionic cancellations [40]. It was therefore natural to hope that quantised
supergravity might be finite. However, in [41] a serious argument against the
expected cancellation of perturbative divergences was raised and recently
even the again popular (due to its M-theory context) most supersymmet-
ric 11D ‘last hope’ supergravity theory was shown not to have the magical
cancellation property [42–44].

Summarising, although a definite proof is still missing up to date (mainly
due to the highly complicated algebraic structure of the Feynman rules
for quantised supergravity) it is today widely believed that perturbative
quantum field theory approaches to quantum gravity are meaningless.

The upshot of these considerations is that our understanding of quantum field
theory and therefore fundamental physics is quite limited unless one quantises
the gravitational field as well. Being very sharply critical one could say:

The current situation in fundamental physics can be compared with
the one at the end of the nineteenth century: while one had a success-
ful theory of electromagnetism, one could not explain the stability of
atoms. One did not need to worry about this from a practical point of
view since atomic length scales could not be resolved at that time but
from a fundamental point of view, Maxwell’s theory was incomplete.
The discovery of the mechanism for this stability, quantum mechanics,
revolutionised not only physics. Similarly, today we still have no thor-
ough understanding for the stability of nature in the sense discussed
above and it is similarly expected that the more complete theory of
quantum gravity will radically change our view of the world. That
is, considering the metric as a quantum operator will bring us beyond
standard model physics even without the discovery of new forces, par-
ticles or extra dimensions.

The role of background independence

The twentieth century has dramatically changed our understanding of nature: it
revealed that physics is based on two profound principles, quantum mechanics
and general relativity. Both principles revolutionise two pivotal structures of
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The role of background independence 9

Newtonian physics. First, the determinism of Newton’s equations of motion evap-
orates at a fundamental level, rather dynamics is reigned by probabilities under-
lying the Heisenberg uncertainty obstruction. Second, the notion of absolute time
and space has to be corrected; space and time and distances between points of
the spacetime manifold, that is, the metric, become themselves dynamical, geom-
etry is no longer just an observer. The usual Minkowski metric ceases to be a
distinguished, externally prescribed, background structure. Rather, the laws of
physics are background-independent, mathematically expressed by the classical
Einstein equations which are generally (or four-diffeomorphism) covariant. As we
have argued, it is this new element of background independence brought in with
Einstein’s theory of gravity which completely changes our present understanding
of quantum field theory.

A satisfactory physical theory must combine both of these fundamental prin-
ciples, quantum mechanics and general relativity, in a consistent way and will be
called ‘Quantum Gravity’. However, the quantisation of the gravitational field
has turned out to be one of the most challenging unsolved problems in theoretical
and mathematical physics. Although numerous proposals towards a quantisation
have been made since the birth of general relativity and quantum theory, none
of them can be called successful so far. This is in sharp contrast to what we see
with respect to the other three interactions whose description has culminated
in the so-called standard model of matter, in particular, the spectacular success
of perturbative quantum electrodynamics whose theoretical predictions could be
verified to all digits within the experimental error bars until today.

Today we do not have a theory of quantum gravity, what we have is:

1. The Standard Model, a quantum theory of the non-gravitational interactions
(electromagnetic, weak and strong) or matter which, however, completely
ignores General Relativity.

2. Classical General Relativity or geometry, which is a background-independent
theory of all interactions but completely ignores quantum mechanics.

What is so special about the gravitational force that it has persisted in its
quantisation for about 70 years already? As outlined in the previous section, the
answer is simply that today we only know how to do QFT on fixed background
metrics. The whole formalism of ordinary QFT relies heavily on this background
structure and collapses to nothing when it is missing. It is already much more
difficult to formulate a QFT on a non-Minkowski (curved) background but it
seems to become a completely hopeless task when the metric is a dynamical,
even fluctuating quantum field itself. This underlines once more the source of
our current problem of quantising gravity: we have to learn how to do QFT on
a differential manifold (or something even more rudimentary, not even relying
on a fixed topological, differentiable manifold) rather than a spacetime.

In order to proceed, today a high-energy physicist has the choice between
the following two, extreme approaches. Either the particle physicist’s, who
prefers to take over the well-established mathematical machinery from QFT
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10 Introduction: Defining quantum gravity

on a background at the price of dropping background independence altogether
to begin with and then tries to find the true background-independent theory
by summing the perturbation series (summing over all possible backgrounds).
Or the quantum geometer’s, who believes that background independence lies at
the heart of the solution to the problem and pays the price to have to invent
mathematical tools that go beyond the framework of ordinary QFT right from
the beginning. Both approaches try to unravel the truly deep features that are
unique to Einstein’s theory associated with background independence from dif-
ferent ends.

The particle physicist’s language is perturbation theory, that is, one writes
the quantum metric operator as a sum consisting of a background piece and a
perturbation piece around it, the graviton, thus obtaining a graviton QFT on a
Minkowski background. We see that perturbation theory, by its very definition,
breaks background independence and diffeomorphism invariance at every finite
order of perturbation theory. Thus one can restore background independence
only by summing up the entire perturbation series, which is of course not easy.
Not surprisingly, as already mentioned, since h̄κ = �2p has negative mass dimen-
sion in Planck units, applying this programme to Einstein’s theory itself results
in a mathematical disaster, a so-called non-renormalisable theory without any
predictive power. In order to employ perturbation theory, it seems that one has
to go to string theory which, however, requires the introduction of new additional
structures that Einstein’s classical theory did not know about: supersymmetry,
extra dimensions and an infinite tower of new and very heavy particles next to
the graviton. This is a fascinating but extremely drastic modification of general
relativity and one must be careful not to be in conflict with phenomenology as
superparticles, Kaluza Klein modes from the dimensional reduction and those
heavy particles have not been observed until today. On the other hand, string
theory has a good chance to be a unified theory of the perturbative aspects of
all interactions in the sense that all interactions follow from a common object,
the string, thereby explaining the particle content of the world.

The quantum geometer’s language is a non-perturbative one, keeping back-
ground independence as a guiding principle at every stage of the construction of
the theory, resulting in mathematical structures drastically different from the
ones of ordinary QFT on a background metric. One takes Einstein’s theory
absolutely seriously, uses only the principles of General Relativity and quantum
mechanics and lets the theory build itself, driven by mathematical consistency.
Any theory meeting these standards will be called Quantum General Relativity
(QGR). Since QGR does not modify the matter content of the known interac-
tions, QGR is therefore not in conflict with phenomenology but also it does not
obviously explain the particle content of the world. However, it tries to unify all
interactions in a different sense: all interactions must transform under a com-
mon gauge group, the four-dimensional diffeomorphism group which on the other
hand is almost completely broken in perturbative approaches.
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