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Introduction

by Alan D. Taylor

Notions of obvious breadth and importance should, when possible, be examined

under a number of different disciplinary lenses. This is the spirit in which the

present offering by Julius Barbanel (a mathematician) joins recent books by

Hervé Moulin (an economist) [32] and Nicholas Rescher (a philosopher) [35].

But fairness – or, more explicitly, fair division – comes in a number of different

flavors, and we should begin by setting forth something of a general framework

in which we can place the present book.

One of the more important dichotomies in the treatment of fairness is the ex-

tent to which the treatment is normative. Is the author trying to argue that certain

methods of allocation are superior to others? The treatment of fair division by

economists, philosophers, and political scientists tends to lie in the normative

camp. Mathematicians, on the other hand, focus on what is possible and what

is not, and often leave subjective judgments to others, as Barbanel does here.

Yet there is a normative aspect of the present work that sets it apart from

the great majority of mathematical treatments, and it is revealed in Barbanel’s

choice of title. The work is not called “The Geometry of Fair Division” but “The

Geometry of Efficient Fair Division.” Efficiency – also called Pareto optimal-

ity, after the nineteenth-century Italian scholar Vilfredo Pareto – is, according

to Hervé Moulin, “the single most important tool of normative economics”

[32, pg. 8].

Economists also tend to focus (although not exclusively) on issues of fairness

in the context of a finite collection of divisible homogeneous goods. Mathemati-

cians, however, far more often work with a single divisible heterogeneous good

and typically phrase the discussion in terms of the cake-cutting metaphor that

dates back to the seventeen-century English political theorist James Harrington

[26].

Discussions of cake cutting almost always begin with the procedure known

as divide-and-choose. Historically, this two-person scheme traces its origins
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2 Introduction

back 5000 years to the Bible’s account of land division between Abram (later

to be called Abraham) and Lot, and it resurfaces more explicitly two-and-a-half

millennia ago as Hesiod, in his Theogony, describes the division of meat into

two piles by Prometheus, with Zeus then choosing the pile that he preferred.

But even narrowed to the context of a mathematician’s non-normative treat-

ment of cake cutting, there is an important second dichotomy that sets the present

work apart from earlier efforts such as those by Steven Brams and myself [16]

and by Jack Robertson and William Webb [36]. This dichotomy is, in a sense,

one of process versus product. Is one searching for a constructive procedure – a

process – that will, in a step-by-step fashion, lead to desirable allocations, or is

one trying to establish, by any mathematical means possible, the very existence

of the desired allocation itself – the product?

The Brams–Taylor book and the Roberston–Webb book both focus on

constructive procedures. The present work, on the other hand, is the first one

on fair division to sit squarely in the existence camp. Yet economists will find it

remarkably accessible – and an absolute gem in terms of illustrating how much

insight the hands of an expert can wring from a couple of abstract results.

This distinction between constructive procedures and existence results is

also reflected in the assumptions made in formalizing the preferences of the

various participants in a fair-division situation. But in order to illustrate these

differences, we need a few procedures on which to hang such a discussion. A

quick historical tour will provide what is required.

Mathematical investigations of fair division date from the early 1940s. The

constructive vein was first opened by the Polish mathematician Hugo Steinhaus

(see [40]) and his colleagues Stefan Banach and Bronislaw Knaster. Steinhaus

appears to have been the first to ask if there is an obvious extension of divide-

and-choose to the case wherein there are three participants instead of two, and

he derived the scheme referred to in a number of mathematical texts for non-

majors (see [18] and [42]) as “the lone-divider method.” But extending this

procedure to four or more participants is somewhat complicated, and was not

actually achieved until Harold Kuhn [30] did so in 1967. Banach and Knaster,

however, took an entirely different tack and devised a fair-division scheme for

any number of participants that is known today as the “last-diminisher method.”

Each of these schemes generalizes divide-and-choose in the sense of pro-

viding a finite constructive procedure by which a group of people can allocate

a “cake” among themselves in such a way that each has a strategy that ensures

his or her own “satisfaction” even in the face of a conspiracy by all of the

others. The word “protocol” is often used to capture both the algorithmic and

the strategic aspects of such procedures, and this game-theoretic view results

in the use of “player” in place of “participant.”
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Yet it turns out that the devil is in the details. “Satisfied” in what sense?

For the procedures of Steinhaus, Banach, and Knaster, the answer is something

called “proportionality” – each of n players is assured of receiving a piece that

he or she thinks is at least 1
n

th of the total in size or value. Divide-and-choose is

obviously proportional: if the divider makes it a 50–50 division, he or she will

get exactly one-half; the chooser can’t go wrong. Proportionality, however, is

only the easy answer.

In 1959, the physicist George Gamow and the mathematician Marvin Stern

published a book [24] in which they pointed out that with divide-and-choose,

each of the two players is assured of getting a piece that he or she thinks is at least

tied for largest (or tied for most valuable). They asked if there were procedures

that would do the same for three or more players. The name attached to such

allocations today is “envy-free” or “no-envy,” a notion that economists trace

back to Duncan Foley [22] in 1967. Envy-freeness is harder to come by than

proportionality, although the existence results we turn to momentarily show

that much more is, in some sense, possible.

Within a year of the Gamow–Stern question, John Conway of Princeton

and John Selfridge of Northern Iowa University independently constructed an

elegant envy-free protocol for three parties (see [16]), although the general

question for four or more parties remained open until it was settled in the

affirmative in 1992 [15]. There is, however, an important issue that still awaits

attention: The three-person scheme never requires more than five cuts, whereas

the general procedure, even if there are only four players, has no upper bound on

the number of cuts needed that is independent of the preferences of the people

involved.

But how do we formalize these “preferences” of the players, and what kind of

an object do we take this “cake” to be? If we begin with the most general context

that suggests itself, the “cake” C would be an arbitrary set and each player’s

preferences over (certain) subsets of C would be given by a binary relation R

that is reflexive, transitive, and complete (with XRY intuitively meaning that

this player finds the subset X to be at least as desirable as the subset Y ). And, as

first pointed out by David Gale [23], discrete cake-cutting protocols implicitly

assume only three additional postulates: (i) a partitioning postulate, asserting

that a player can divide a piece of cake into any number of smaller pieces that

he or she considers equivalent to each other, (ii) a trimming postulate asserting

that if a player prefers one piece of cake to another, then there is a subset of

the former that he or she considers equivalent to the latter, and (iii) a weak-

additivity postulate asserting that if a player prefers piece 1 to piece 2, and

piece 3 to piece 4, and pieces 1 and 3 are disjoint, then that player will prefer

the union of pieces 1 and 3 to the union of pieces 2 and 4.
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The easiest way to obtain such a relation is to let Player i’s preferences be

given by a finitely additive, non-atomic probability measure over some algebra

of subsets of the arbitrary set C . That is, one starts with a collection of subsets of

C that is closed under complementation, finite unions, and finite intersections –

this is what an algebra is – and a function µ that assigns a real number in

the interval [0, 1] to each set in the algebra so that if A1, . . . , An is a finite

collection of pairwise disjoint sets in the algebra, then µ(A1 ∪ · · · ∪ An) =

µ(A1) + · · · + µ(An) – this is finite additivity – and such that, if µ(A) > 0,

then there is some B ⊆ A such that 0 < µ(B) < µ(A) – this is what it means

to be non-atomic.

In point of fact, there is only one difference between working in the general

context of a preference relation satisfying Gale’s three postulates and working

with a finitely additive, non-atomic probability measure: the latter ensures that

the players’ preferences satisfy an Archimedean property asserting that, if a

subset of C is strictly preferred to the empty set, then the entire cake C can be

partitioned into finitely many pieces, all of which are less desirable than the

given piece. This is the only difference in the sense that one can prove [10]

that any Archimedean preference relation satisfying Gale’s three postulates is

induced by a finitely additive, non-atomic probability measure.

Protocols – or, more generally, all cake-division schemes with a legitimate

claim to being finite and constructive – work in the context of finitely additive,

non-atomic probability measures. Existence results, on the other hand, both

assume more and deliver more.

Historically, the first existence result to explicitly address fair division may

have been Jerzy Neyman’s 1946 result [34] asserting that a cake can be divided

among n players in such a way that every player thinks every piece is 1
n

th of the

total. This theorem assumes, as do virtually all of what are called “existence

results” in this context, that the players’ preferences are given by non-atomic

probability measures that are not only finitely additive, but countably additive:

If A1, A2, . . . is a collection of pairwise disjoint sets in the algebra indexed by

the set of natural numbers, then µ(A1 ∪ A2 ∪ · · ·) = µ(A1) + µ(A2) + · · ·.

There are stepping stones between protocols and existence results that

deserve mention. These are the so-called “moving-knife schemes” that date

back to the observation of Lester Dubins and E. H. Spanier [20] that the

Banach–Knaster scheme can be envisioned as one in which a knife is slowly

moved across the cake, with each player having the option to call “cut” at any

time and to exit the game with the resulting piece. A moving-knife alterna-

tive to the three-player envy-free Selfridge–Conway procedure was found by

Walter Stromquist [41] in 1980, and, in 1982, A. K. Austin [3] introduced a
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moving-knife version of the n = 2 case of Neyman’s theorem. A number of

questions in the context of moving-knife schemes remain open (see [17] and

[9]). The reader seeking an additional challenge can try to extend to the moving-

knife arena the myriad of results set forth by Barbanel in what follows.

So now we have the context: Barbanel is giving a non-normative, mathemat-

ical treatment of existence results that deal with efficiency as well as fairness,

in the context of a single heterogeneous good with the preferences of players

given by countably additive, non-atomic, probability measures. All that remains

is to address the question of how geometry enters the picture.

Geometry is the study of size and shape. Thus, one might expect Barbanel

to study the size and shape of, well, the cake (or at least pieces thereof). But

that’s not at all what he does. His study of the geometry of fair division is much

more in the spirit of Donald Saari’s study of the geometry of voting [39]. For

Saari, a ballot in an election corresponds to a point in n-space. For Barbanel, an

allocation of the cake corresponds to a point of n-space in one of the two main

geometric objects considered. In the other, each point of the cake corresponds

to a point in n-space, but in a non-obvious manner. Either way, once he has a

set of points in n-space, he is geometrically off and running.

The book is laid out as follows. After introducing some basic notation,

terminology, and background in Chapter 1, Barbanel defines the first geometric

object on which he focuses: the Individual Pieces Set (IPS). He introduces the

IPS for two players in Chapter 2 and then exploits it in the context of fairness

and efficiency in Chapter 3.

In Chapter 4, Barbanel moves on to the general case of n players, where he

generalizes the IPS to the FIPS, the Full Individual Pieces Set, and he proves

an important result concerning the possible shapes of the FIPS. In Chapter 5,

he considers what the IPS and FIPS reveal about fairness and efficiency in the

general n-player context.

Barbanel next focuses exclusively on efficiency, and he presents three quite

different characterizations of Pareto optimality. After some introductory notions

in Chapter 6, he characterizes Pareto optimality using the optimization of con-

vex combinations of measures (Chapter 7) and partition ratios (Chapter 8).

In Chapter 9, Barbanel introduces the second of his two main geometric

objects: the Radon–Nikodym Set (RNS), and he uses it, together with an idea

of Dietrich Weller, to present a third characterization of Pareto optimality in

Chapter 10.

In Chapter 11, Barbanel considers the possible shapes of the IPS, and he

provides a complete characterization in the case of two players and a partial

result in the general n-player context. In Chapters 12 and 13, he studies the
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6 Introduction

relationship between the IPS and the RNS, and he provides a new presentation

of the fundamental result that ensures the existence of a partition that is both

Pareto optimal and envy-free.

In Chapter 14, Barbanel introduces a strengthening of Pareto optimality

that he calls “strong Pareto optimality,” and he presents both characterization

theorems and existence results. He also discusses the relationships between the

number of strongly Pareto optimal partitions and the number of Pareto optimal

partitions that are not strongly Pareto optimal.

Barbanel’s characterizations of Pareto optimality in Chapters 7 and 10

involve what is essentially an iterative procedure. In Chapter 15, he shows

that these ideas can be greatly simplified by the use of hyperreal numbers and

non-standard analysis.

Finally, in Chapter 16, Barbanel shows that the IPS can be viewed as a piece

of a larger structure that he calls the Multicake Individual Pieces Set (MIPS).

Earlier chapters reveal certain peculiarly non-symmetric possibilities for the

IPS; symmetry reasserts itself in the MIPS.
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Notation and Preliminaries

Our “cake” C is some set. We wish to partition C among n players, whom

we shall refer to as Player 1, Player 2, . . . , Player n. For each i = 1, 2, . . . , n,

Player i uses a measure mi to evaluate the size of pieces of cake (i.e., subsets

of C). Unless otherwise noted, we shall always assume that C is non-empty.

Definition 1.1 A σ -algebra on C is a collection of subsets W of C satisfying

that

a. C ∈ W ,

b. if A ∈ W then C\A ∈ W , and

c. if Ai ∈ W for every i ∈ N, then (
⋃

i∈N Ai ) ∈ W (where N denotes the set of

natural numbers).

Definition 1.2 Assume that some σ -algebra W has been defined on C .

A countably additive measure on W is a function µ : W → R (where R de-

notes the set of real numbers) satisfying that

a. µ(A) ≥ 0 for every A ∈ W ,

b. µ(∅) = 0, and

c. if A1, A2, . . . is a countable collection of elements of W and this collection

is pairwise disjoint, then µ(
⋃

i∈N Ai ) =
∑

i∈N µ(Ai ).

In addition, µ is

d. non-atomic if and only if, for any A ∈ W , if µ(A) > 0 then for some B ⊆

A, B ∈ W and 0 < µ(B) < µ(A) and

e. a probability measure if and only if µ(C) = 1.

Unless otherwise noted, all measures that we shall consider will be countably

additive, non-atomic probability measures, and we shall simply use the term

“measure” to refer to them. Notice that for any measure µ and any a ∈ C, the

non-atomic nature of µ implies that µ(a) = 0.
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8 1. Notation and Preliminaries

Also, unless otherwise specified, C shall denote an arbitrary cake. We assume

that there are n players, Player 1, Player 2, . . . , Player n, with corresponding

measures m1, m2, . . . , mn , respectively. At times, we shall work with specific

examples and shall give specific definitions of C and m1, m2, . . . , mn .

Whenever a subset of C is mentioned, we assume it is a member of some

common σ -algebra on which all of the measures are defined. We shall never

explicitly define a specific σ -algebra.

We will be concerned with partitions of the cake C among the players. When

we consider an ordered partition 〈P1, P2, . . . , Pn〉 of C , our intention is that P1

goes to Player 1, P2 goes to Player 2, etc. The term “partition” always means

“ordered partition.” Part denotes the set of all partitions of the appropriated

size, which will always be clear by context.

Consider the set {(m1(A), m2(A), . . . , mn(A)) : A ⊆ C}, which is a subset

of Rn . This set will be important for us. A central tool concerning this set is

Lyapounov’s theorem.

Theorem 1.3 (Lyapounov’s Theorem [31]) {(m1(A), m2(A), . . . , mn(A)) :

A ⊆ C} is a closed and convex subset of Rn .

Another important set is {[mi (Pj )]i, j≤n : 〈P1, P2, . . . , Pn〉 is a partition of

C}. This is a subset of the set of all n × n matrices and can be viewed as a

subset of R(n2). An element of this set gives each player’s evaluation of the size

of each piece of cake in a given partition. A central tool concerning this set is

Dvoretsky, Wald, and Wolfovitz’s theorem.

Theorem 1.4 (Dvoretsky, Wald, and Wolfovitz’s Theorem [21])

{[mi (Pj )]i, j≤n : 〈P1, P2, . . . , Pn〉 is a partition of C} is a closed and convex

subset of the set of all n × n matrices.

(Dvoretsky, Wald, and Wolfovitz’s theorem actually is more general than

the preceding statement. The number of players need not equal the number of

pieces of the partition, and thus the set under consideration is {[mi (Pj )]i≤m; j≤n :

〈P1, P2, . . . , Pn〉 is a partition of C}. The theorem says that this set is a closed

and compact subset of the set of all m × n matrices. We shall always have the

number of players equal to the number of pieces of partitions, and so we have

stated the theorem in this more restricted form.)

Notice that {(m1(A), m2(A), . . . , mn(A)) : A ⊆ C} is the set of all first (or

second, or third, etc.) columns of {[mi (Pj )]i, j≤n : 〈P1, P2, . . . , Pn〉 is a parti-

tion of C}. This tells us that Lyapounov’s theorem follows immediately from

Dvoretsky, Wald, and Wolfovitz’s theorem.

We shall frequently need to find subsets of C having certain sizes on which

all players agree. The following corollary to Lyapounov’s theorem will often

provide exactly what we need.
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Corollary 1.5 Fix non-negative real numbers p1, p2, . . . , pn such that p1 +

p2 + · · · + pn = 1. There is a partition P = 〈P1, P2, . . . , Pn〉 of C such that

for all i, j = 1, 2, . . . , n, mi (Pj ) = p j .

Proof: Fix p1, p2, . . . , pn as in the statement of the corollary and let

G = {[mi (Pj )]i, j≤n : 〈P1, P2, . . . , Pn〉 is a partition of C}. For each i =

1, 2, . . . , n, let Mi be the matrix with all ones in column i and zeros

everywhere else. Then, by considering the partitions 〈C, ∅, ∅, . . . , ∅, ∅〉,

〈∅, C, ∅, . . . ,∅, ∅〉, . . . , 〈∅, ∅, ∅, . . . , ∅, C〉, we see that each Mi is in G. By

Dvoretsky, Wald, and Wolfovitz’s theorem, G is convex and hence p1 M1 +

p2 M2 + · · · + pn Mn ∈ G. But p1 M1 + p2 M2 + · · · + pn Mn is the matrix with

every entry in the first column equal to p1, every entry in the second column

equal to p2, etc. This implies that there is a partition P = 〈P1, P2, . . . , Pn〉 of

C such that for all i, j = 1, 2, . . . , n, mi (Pj ) = p j , as desired. �

Corollary 1.5 has many simple applications. Two are given by the following

two corollaries.

Corollary 1.6 For any A ⊆ C and non-negative real numbers q1, q2, . . . , qn

with q1 + q2 + · · · + qn = 1, there is a partition Q = 〈Q1, Q2, . . . , Qn〉 of A

such that for all i, j = 1, 2, . . . , n, mi (Q j ) = q j mi (A).

Proof: Fix A and q1, q2, . . . , qn as in the statement of the corollary and let

δ = {i ≤ n : mi (A) > 0}. For each i ∈ δ, we define m ′
i on A as follows:

for each B ⊆ A, m ′
i (B) =

mi (B)

mi (A)

Each such m ′
i is a measure on A. For each i /∈ δ, let m ′

i be any measure

on A.

It follows from Corollary 1.5, with A playing the role of C , that there is

a partition Q = 〈Q1, Q2, . . . , Qn〉 of A satisfying that m ′
i (Q j ) = q j for all

i, j = 1, 2, . . . , n. We claim that for all i, j = 1, 2, . . . , n, mi (Q j ) = q j mi (A).

Fix such an i and j . We consider two cases.

Case 1: i ∈ δ. Then mi (Q j ) = m ′
i (Q j )mi (A) = q j mi (A).

Case 2: i /∈ δ. Then mi (A) = 0 and hence, since Q j ⊆ A, mi (Q j ) = 0.

Therefore, mi (Q j ) = 0 = (q j )(0) = q j mi (A).

This establishes that for all i, j = 1, 2, . . . , n, mi (Q j ) = q j mi (A), as

desired. �
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10 1. Notation and Preliminaries

Corollary 1.7 Fix some A ⊆ C and k = 1, 2, . . . , n. If mk(A) > 0, then for

any r with 0 ≤ r ≤ mk(A), there is a B ⊆ A with mk(B) = r .

Proof: Let A and k be as in the statement of the corollary, assume that mk(A) >

0, and fix some r with 0 ≤ r ≤ mk(A). Set qk = r
mk (A)

. Then 0 ≤ qk ≤ 1. For

each i = 1, 2, . . . , n with i 
= k, let qi be an arbitrary non-negative real number,

subject to the condition that q1 + q2 + · · · + qn = 1. By Corollary 1.6, there

is a partition Q = 〈Q1, Q2, . . . , Qn〉 of A such that for all i, j = 1, 2, . . . , n,

mi (Q j ) = q j mi (A). Set B = Qk . Then mk(B) = mk(Qk) = qkmk(A) = r , as

desired. �

We will be interested in what it means for a partition of C to be a “good”

partition. Various notions of what good means in this context have been

considered. These notions are of two types. One is concerned with fairness

and the other with efficiency. Before we can define fairness and efficiency

properties, we must first consider a more basic question: Do players want as

much cake as possible or do they want as little cake as possible? For example,

if the cake represents money to be distributed among the players, then it is

reasonable to assume that each player wants as much of the cake as possible.

On the other hand, if the cake represents some task that all players view as

unpleasant, then each player wants as little of the cake as possible. We shall

refer to the first setting, in which “bigger is better,” as the standard setting,

and shall refer to the latter setting, in which “smaller is better,” as the chores

setting (since, in this case, pieces of cake may be viewed as “chores”). Unless

otherwise noted, we shall assume that we are working in the standard setting.

Our approach for most sections is to first concentrate on the standard setting

and then on the chores setting. (However, there will be some sections where we

find it most convenient to consider the standard setting and the chores setting

at the same time.) Most of the time, results about the chores setting will simply

be symmetric adjustments of results about the standard setting. However, there

will be important exceptions.

What does it mean to say that a partition of the cake is fair? We shall say

that a partition is fair if and only if every player thinks that it is fair, and so the

question becomes: When does a player think that a partition is fair? Consider the

following five answers for the standard setting. A player thinks that a partition

is fair if and only if that player thinks that his or her piece of cake is

a. at least of average size.

b. of bigger-than-average size.

c. at least as big as every other piece.
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