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Introduction

1.1 Lattice models in theoretical physics

Amajor part of theoretical physics involves the construction and systematic analy-
sis of mathematical models as a description of the physical world. For microscopic
phenomena, in particular, the reference to models becomes quite explicit. The phe-
nomena are often complex, and any theory that attempts to include every detail soon
becomes intractable. It is more fruitful to develop models which ignore irrelevant
details but, hopefully, capture the essential physics of the phenomena of interest.
Thus we have the Heisenberg model of magnetic order, the Bardeen–Cooper–
Schrieffer (BCS) model of superconductivity, and so on. It is important to note, at
the outset, that the models we shall be discussing describe strongly interacting, and
therefore highly correlated, systems of particles. These are difficult and interest-
ing problems. Where interactions are absent, or weak, elementary treatments are
possible and the resulting phenomena are generally unspectacular.

Why lattice models? In solid-state phenomena there is usually an underlying
lattice structure, and the symmetry properties of this lattice play an important role in
the analysis. Even the process of electrical conduction in metals or semiconductors
can be equally well described in terms of localized quantum states or in terms of
the more usual continuum picture. In quantum field theory, which is formulated in
a space–time continuum, a lattice is often introduced for computational purposes.
One can think of this in two ways: as an approximation to the continuum, which
is then recovered as a limit at the end of the calculations, or as a necessary means
of regulating the theory (i.e. controlling divergences) in calculating the Feynman
path integral.

1.2 Examples and applications

To provide the reader with an overview of the subsequent material, which is
often rather technical, we will introduce some of the models in a qualitative way,
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2 Introduction

explain why they are interesting, and outline some of the important questions to be
addressed.

1.2.1 The Ising model

As is well known, this model was proposed by Lenz to his student Ising in 1925
or so, as a simple model for ferromagnetism. It is defined in terms of a set of
two-valued classical variables (usually termed ‘spins’) σi = ±1, at the N sites of a
lattice, with an interaction energy

E({σ }) = −J
∑
〈i j〉

σiσ j − h
∑
i

σi (1.1)

Here J (> 0) is an interaction constant, the sum is over nearest-neighbour pairs
of sites 〈i j〉 on the lattice, and h is an external magnetic field. The interaction
favours neighbouring spins being in the same state (either ++ or −−) rather than
in different states (+− or −+) because this minimizes the energy.

It is clear then that themost probable state(s), or themacroscopic thermodynamic
state, will change with temperature. At high temperatures, provided that h is zero or
small, the spins will bemore-or-less randomly arranged due to thermal fluctuations,
while at low temperatures they will tend to be aligned. Thus it is at least plausible
that this simple model might reasonably describe the onset of magnetic order below
the Curie temperature of a ferromagnet.

As is also well known, Ising solved the model exactly for a one-dimensional
lattice and found no spontaneous magnetization and no phase transition. Thermal
fluctuations in onedimensiondestroy the possibility of a non-zeromagneticmoment
at any non-zero temperature. In the two-dimensional case, however, Onsager’s
exact solution of the Ising model in zero field, which is regarded as one of the
most important developments in the whole field, demonstrated the existence of a
critical point with a divergent specific heat, and a spontaneous magnetization below
the critical temperature. This showed, for the first time, that a careful statistical
mechanical calculation could yield the kind of spectacular non-analytic behaviour
characteristic of phase transitions in general.

Much of our current understanding of the physics of second-order phase transi-
tions/critical points was first obtained from studies of the Ising model: the existence
of critical exponents and of universality, the concept of a divergent correlation length
at criticality, and the importance of thermal fluctuations at all length scales, lead-
ing to the ideas of renormalization (see e.g. Yeomans, 1992) Figure 1.1 shows
typical configurations of Ising spins on a 64 × 64 square lattice at temperatures
T/Tc = 1.25, 1.0, obtained from a Monte Carlo simulation. The existence of clus-
ters of all sizes at the critical point is evident.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521842425 - Series Expansion Methods for Strongly Interacting Lattice Models
Jaan Oitmaa, Chris Hamer and Weihong Zheng
Excerpt
More information

http://www.cambridge.org/0521842425
http://www.cambridge.org
http://www.cambridge.org


1.2 Examples and applications 3

(a) (b)

Fig. 1.1. A typical configuration of Ising spins on a 64 × 64 square lattice at
temperatures T/Tc = 1.25 (a) and T/Tc = 1 (b), obtained from a Monte Carlo
simulation.
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Fig. 1.2. (a) The temperature dependence of the specific heat of the Ising model in
one (1D), two (SQ) and three-dimensions (SC). (b) The measured magnetization
versus temperature of DyPO4, compared with low-temperature series for the Ising
model. From Rado (1970).

Although exact solutions exist for Ising models in two dimensions, there are
no exact results for any three-dimensional lattice. Very precise and reliable results
have been obtained, however, from two numerical methods: series expansions,
the subject of this book, and Monte Carlo simulations. Figure 1.2(a) shows the
temperature dependence of the specific heat of the Ising model in one, two and
three dimensions. The one- and two-dimensional results are exact, while the three-
dimensional result is from series expansions (simple cubic lattice). Figure 1.2(b)
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4 Introduction

shows the measured magnetization versus temperature of DyPO4, compared with
low-temperature series for the Ising model. The agreement is impressive.

As well as being a model for (uniaxial) magnets, the Ising model can be used
to model many other kinds of system: binary alloys, lattice fluids and systems
outside physics. We will describe the series expansion approach to the Ising model
in Chapter 2.

1.2.2 The Ising model in a transverse field

In this model the Ising spins σi are replaced by Pauli operators σ z
i , and an external

field couples to the x-component, σ x
i . The resulting Hamiltonian is

H = −J
∑
〈i j〉

σ z
i σ

z
j − �

∑
i

σ x
i (1.2)

This is now a fully quantum mechanical model, as the terms in H do not commute.
We remind the reader of the usual matrix representation

σ x =
(0 1
1 0

)
, σ y =

(0 −i
i 0

)
, σ z =

(1 0
0 −1

)
(1.3)

and the commutation rule

[σα
j , σ

β

k ] = 2iδ jkεαβγ σ
γ

j (1.4)

where εαβγ is the usual Levi–Civita symbol. We also note that many authors use
the spin- 12 operators Sα

j = 1
2
--hσα

j .
Historically this model appears to have been first used by de Gennes, to model

the order–disorder transition in hydrogen bonded ferroelectrics, such as KH2PO4.
Each H atom sits in a double-well potential and the two states can be regarded as the
eigenstates of a ‘pseudospin’ operator σ z . The transverse field term then describes
tunnelling between the two states, and the parameter � is related to the tunnelling
frequency. This is illustrated in Figure 1.3. The model has subsequently been used
to describe a large variety of systems (see e.g. Chakrabarti et al., 1996).

Apart from its role in describing real physical systems, this model is of interest
for a number of fundamental theoretical reasons.

Unlike the classical Ising model discussed in the previous section, which has no
intrinsic dynamics, the Ising model in a transverse field (for brevity the ‘transverse
field Ising model’) is described by a proper Hamiltonian and does have intrin-
sic collective excitation modes (‘spin waves’) with an energy–momentum relation
ω = ω(k).

The transverse field Ising model can be solved exactly in one dimension at
zero temperature (Pfeuty, 1970), and has a quantum phase transition at �/J = 1.
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1.2 Examples and applications 5

(b)

Fig. 1.3. (a) Structure of the ferroelectric material KH2PO4 (schematic). The tilted
squares represent PO4 tetrahedra, connected via hydrogen bonds (dashed lines).
Each bond has a H atom in one of two equilibrium positions (filled and empty
circles); (b) Double-well potential for a H atom. The lowest two eigenstates are
shown as dashed lines, with tunnelling frequency 
 = 2�/--h.

It is the simplest model to show such a transition, which results from strong quan-
tum fluctuations rather than thermal fluctuations. The subject of quantum phase
transitions is a very active one at present (Sachdev, 1999), and we shall investigate
a number of quantum phase transitions in succeeding chapters. Here the transition
is in fact a quantum critical point, with associated critical exponents which are
found to be the same as the thermal critical exponents of the classical Ising model
in two dimensions. This is an example of a rather general correspondence between
ground state properties of a quantum model in d dimensions and thermodynamic
properties of a corresponding classical model in (d + 1) dimensions (Appendix 8).

The transverse field Ising model cannot be solved exactly in dimensions d > 1.
However series expansions can be used to locate the quantum critical point to
high precision, and to study other properties. We will describe this approach in
Chapter 4.

1.2.3 The Heisenberg model

Very soon after the development of quantum mechanics, Heisenberg and Dirac
independently proposed that the phenomenon of magnetic order in solids might be
understood on the basis of a model of exchange coupled quantum angular momenta
(‘spins’), with a Hamiltonian of the form

H = −J
∑
〈i j〉

Si · S j (1.5)

where the Si are spin-S operators, the sum is over nearest-neighbour pairs, and the
dot product is the usual

Si · S j = Sx
i S

x
j + Sy

i S
y
j + Szi S

z
j (1.6)
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6 Introduction
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(a) (b)

Fig. 1.4. (a) Structure of CuO2 planes in cuprate high-Tc superconductors, and
the antiferromagnetic state. The solid and empty circles represent Cu++ and O−−
ions, respectively; (b) Measured spin-wave dispersion curve for a cubic manganite
compound, compared with a model calculation. From Aeppli et al. (1997).

Themodel describes a ferromagnet (antiferromagnet) for J > 0 (< 0) respectively.
Note that the Hamiltonian (1.5) is fully symmetric under rotations in spin space,
with symmetry group O(3). This model has been intensively studied as the generic
prototype for magnetic materials. The first systematic use of the model to describe
real magnetic materials appears to be due to Van Vleck (1965). Figure 1.4 shows
examples of two magnetic systems of current interest that are well described by the
Heisenberg model.

The Heisenberg model (1.5) can be generalized to

H = −
∑
〈i j〉

[
Jx S

x
i S

x
j + Jy S

y
i S

y
j + Jz S

z
i S

z
j

]
(1.7)

when it is known as the XYZ model (or the XXZ model when Jx = Jy �= Jz). The
special case Jz = 0, Jx = Jy is known as the XYmodel, and has been used as a lat-
ticemodel of superfluid helium (for S = 1

2 ). Obviously, with the freedom to vary the
spin value, the degree of exchange anisotropy, the sign of the exchange constant, and
the inclusion of further neighbour interactions we have a multi-dimensional space
of possible Hamiltonians, with a resulting variety of properties and applications.

The isotropic Hamiltonian (1.5) has no long range order at finite temperatures
in less than three dimensions. In three dimensions there is a critical point for both
ferromagnetic (Curie point) and antiferromagnetic (Néel point) interactions. Unlike
the case of the classical Isingmodel, the Curie andNéel temperatures differ slightly.
The ground state of the ferromagnet is simple, with all spins aligned in an arbitrary
direction, but for the anti-ferromagnet the situation is considerably more complex.
In one dimension the famous solution of Bethe gives the wavefunction, and leads
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1.2 Examples and applications 7

to an exact result for the ground state energy (see e.g. Takahashi, 1999). Very
limited results are known, however, for general correlations or for thermodynamic
properties. In two dimensions there are rigorous results for the existence of long-
range order in the ground state for S ≥ 1, and strong numerical evidence that this
also the case for S = 1

2 .
The Heisenberg model also has interesting dynamical properties, including

collective spin-wave excitations, which determine the low-temperature thermo-
dynamics, higher energy bound states and time-dependent correlations which can
be compared with neutron scattering studies of real materials.

Interesting recent developments, which have kept the Heisenberg model at the
forefront of research, include the following.

� The discovery that, for the S = 1
2 antiferromagnetic chain, the true elementary exci-

tations are S = 1
2 objects, termed ‘spinons’, rather than S = 1 magnons as previously

supposed.
� The discovery that integer-spin antiferromagnetic chains differ in an essential way from
half-integer spin chains, the former having an energy gap between the ground state and
the lowest excitations (‘Haldane gap’) while the latter are gapless. This leads, inter alia,
to fundamentally different low-temperature thermodynamics for the two cases, which is
confirmed experimentally.

� The discovery of various compounds, usually low-dimensional, which have energy
gaps, and attempts to understand these through Heisenberg models with competing
interactions.

Series expansion methods have played an important role in understanding the
Heisenberg model. This work will be described in Chapters 5, 6.

1.2.4 The Hubbard model

While models with localized spins do successfully describe an important class of
real magnetic materials, it is nevertheless a restricted class since there are no charge
degrees of freedom, i.e. no conduction electrons. A number of relatively recent
discoveries, such as ‘heavy fermion’ behaviour in actinides, quantized Hall effects
in high-mobility two-dimensional electronic systems, and the high-temperature
cuprate superconductors, have pointed to the need for a better understanding of
strongly correlated electron systems.

Perhaps the simplest generic model for strongly correlated electron systems is
the Hubbard model, which arose from work of Hubbard and others in the 1960s on
narrow-band metals. For a single band, the Hamiltonian is

H = −t
∑
〈i j〉,σ

(c†iσ c jσ + c†jσ ciσ ) +U
∑
i

ni↑ni↓ (1.8)
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8 Introduction

(b)

Fig. 1.5. (a) The Hubbard model. The large circles represent orbitals at atomic
sites, which may hold up to two electrons of opposite spin. Process A, in which a
spin down electron hops from a doubly occupied site to an empty site decreases
the energy by U ; process B results in no energy change. (b) Electron density of
states (schematic) showing the evolution of a ‘Mott–Hubbard’ gap for large U ,
and the origin of a metal-insulator transition.

where c†iσ , ciσ are creation and destruction operators, respectively, for electrons of
spin σ on site i , and niσ = c†iσ ciσ is the number of electrons of spin σ on site i . The
first term represents non-interacting electrons of spin σ (↑, ↓) ‘hopping’ between
localized Wannier orbitals on nearest-neighbour sites of a lattice, the parameter t
being determined by an overlap integral. This is just a one-electron theory, giving
rise to a bandofwidthW ∝ t . The second termmimics themost important part of the
Coulomb repulsion between electrons, giving a positive energyU for two electrons
of opposite spin on the same site. Figure 1.5 shows the model pictorially and the
development of a gap in the density of states arising from the Coulomb repulsion
term.Many generalizations of this model have been proposed including multi-band
models, the case of negativeU , and the so-called ‘extended Hubbardmodel’, which
includes a nearest-neighbour Coulomb repulsion. We shall not consider such cases
here.

There is another important parameter in the model, the total electron density
n = number of electrons per site. When n = 1, an average of one electron per site,
the band is half-filled. For large U at half-filling the motion of the electrons is
strongly suppressed and it can be shown that the lowest energy state has electrons
of opposite spin at alternating sites, effectively a Heisenberg antiferromagnet, with
exchange constant J = 4t2/U . The removal of a fraction of the electrons from
half-filling (generally referred to as ‘doping’ since this is precisely what happens
in many real materials) allows the charge degrees of freedom to become active and
leads to major changes in the physics of the model.

It is the presence of theU -termwhich introduces strong electron correlations, and
makes the model much more difficult to analyse. Apart from some exact solutions
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1.2 Examples and applications 9

in one dimension we have no really comprehensive knowledge of the physics of the
model in the space of U/t , electron density n and temperature T . Much work has
been done, using a variety of techniques including series expansions. Each method
has its own strengths and weaknesses, and it is important to compare results from
different approaches. We will describe the series approach to the Hubbard model
and other models of strongly correlated electrons in Chapter 8.

1.2.5 Lattice gauge models

The lattice approach to gauge field theories was pioneered by Wilson (1974) as
a non-perturbative approach to Quantum Chromodynamics (QCD), the standard
theory of the strong interactions in particle physics. Subsequently, Monte Carlo
simulations of lattice gauge models have become the preferred method for a priori
calculations of the properties of QCD at low energies or large distances. Spin
versions of these lattice gauge models were discussed even earlier, by Wegner
(1971).

A lattice gauge model is primarily defined in terms of link variables or ‘parallel
transporters’ Ui j , defined on the links between neighbouring sites i and j of the
lattice. One may also introduce site variables or ‘matter fields’ φi residing on sites
of the lattice. The link variables are taken to be elements of some gauge group G,
and under gauge transformations the variables transform as

Ui j → U ′
i j = ViUi j V

†
j (1.9a)

φi → φ′
i = Viφi (1.9b)

where Uji = U †
i j , and Vi is a unitary transformation belonging to the group G,

which may vary according to the site i . This is an example of a ‘local’ or gauge
transformation which may vary from one site to another, as opposed to a ‘global’
transformation which is the same at all sites.

We are interested inmodels where the terms in the lattice Hamiltonian (or action)
are invariant under gauge transformations. Terms involving only link variables
(‘pure gauge’ terms) will be invariant if they consist of ordered strings of link
variables around a closed path on the lattice. The simplest example is a ‘plaquette’
interaction

P = Tr{Ui jU jkUklUli } (1.10)

where i , j , k, l form the corners of an elementary square of the lattice [Figure 1.6(a)].
The trace is taken because for a general group theUi j will be matrix variables. It is
easy to check that a term such as (1.10) is invariant under the transformation (1.9a).
Invariant interactions can also be constructed from open strings of link variables
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10 Introduction

i j

kl

(a) A closed path.

i j

(b) An open path. (c) The static quark potential.

x

V

Fig. 1.6. (a), (b): Interaction terms corresponding to different paths on the lattice.
Link variables are denoted by directed arrows, and site variables by filled points.
(c) The static quark potential for SU(3) Yang–Mills theory. From Stack (1984).

terminated by a matter field at each end, such as the nearest-neighbour interaction
[Figure 1.6(b)]

φ
†
i Ui jφ j (1.11)

The invariance of this term may also be verified by inspection.
The simplest example of a lattice gauge model is the Ising or Z2 gauge model

introduced by Wegner (1971)

H = β
∑

plaquettes

σi jσ jkσklσli (1.12)

where σi j is an Ising spin variable taking values ±1 on each link (i j). This
Hamiltonian is invariant under the Z2 gauge group, where the transformation Vi

either reverses the spin or leaves it unchanged on every link connected to site i .
A primary object of lattice gauge theory is to explain phenomena such as con-

finement of quark and gluons in QCD. Figure 1.6(c) shows a Monte Carlo calcu-
lation of the potential between static quarks by Stack (1984). The linear rise of the
potential at large radii provides convincing evidence that the quarks cannot escape
from one another. We shall postpone further discussion of the physics of lattice
gauge models, and their correspondence with continuum gauge field theories, until
Chapter 9.

1.3 The important questions

In the previous section we introduced a number of generic models which will be the
subjects of study in later chapters. In this section we will briefly discuss some of the
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