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The Logic of Defeasible Inference

1.1 first-order logic

It was mentioned that first-order logic (henceforth fol) was originally
developed for the representation of mathematical reasoning. Such a rep-
resentation required the establishment of a high standard of rigor, meant
to guarantee that the conclusion follows from the premises with abso-
lute deductive cogency. In this respect, fol turned out to be nothing but
a stunning success. The account of deductive reasoning provided by fol
enjoys a number of important mathematical properties, which can also
be used as a crucial benchmark for the assessment of alternative logical
frameworks. (The reader interested in an introduction to the nuts and
bolts of fol can consult any of the many excellent introductory texts that
are available, such as Enderton, 1972.)

From the point of view of abstract consequence relations, fol provides
an implementation of the so-called no-counterexample account: A sen-
tence φ is a consequence of a set � of sentences if and only if one cannot
reinterpret the (nonlogical part of the) language in which � and φ are
formulated in such a way as to make all sentences in � true and φ false.
An inference from premises ψ1, . . . , ψk to a conclusion φ is valid if φ is a
consequence of {ψ1, . . . , ψk}, i.e., if the inference has no counterexample.

For this to be a rigorous account of logical consequence, the under-
lying notion of interpretation needs to be made precise, along with a
(noncircular, possibly stipulative) demarcation of the logical and non-
logical vocabulary. This was accomplished by Alfred Tarski in 1935, who
precisely defined the notion of truth of a sentence on an interpretation
(see Tarski, 1956, for a collection of Tarski’s technical papers). In so doing,
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2 1 The Logic of Defeasible Inference

Tarski overcame both a technical and a philosophical problem. The tech-
nical problem had to do with the fact that in fol quantified sentences are
obtained from components that are not, in turn, sentences, so that a direct
recursive definition of truth for sentences breaks down at the quantifier
case. To overcome this problem Tarski introduced the auxiliary notion
of satisfaction. The philosophical obstacle had to do with the fact that
the notion of truth was at the time considered suspiciously metaphysical
among logicians trained within the environment of the Vienna Circle. This
was a factor, for instance, in Gödel’s reluctance to formulate his famous
undecidability results in terms of truth (see, for instance, Feferman, 1998).

Tarski’s analysis yielded a mathematically precise definition for the no-
counterexample consequence relation of fol, which is usually denoted by
the symbol “|=”: We say that φ is a consequence of a set � of sentences,
written � |= φ, if and only if φ is true on every interpretation on which
every sentence in � is true. At first glance, there would appear to be
something intrinsically infinitary about |=. Regardless of whether � is
finite or infinite, to check whether � |= φ one has to “survey” infinitely
many possible interpretations and check whether any of them is a counter-
example to the entailment claim, i.e., whether any of them is such that all
sentences in � are true on it while φ is false.

However, surprisingly, in fol the infinitary nature of |= is only apparent.
As Gödel (1930) showed, the relation |=, although defined by universally
quantifying over all possible interpretations, can be analyzed in terms
of the existence of finite objects of a certain kind, viz., formal proofs. A
formal proof is a finite sequence of sentences, each of which is an axiom,
an assumption, or is obtained from previous ones by means of one of a
finite number of inference rules, such as modus ponens. If a sentence φ

occurs as the last line of a proof, then we say that the proof is a proof of
φ, and we say that φ is provable from �, written � � φ, if and only if there
is a proof of φ all of whose assumptions are drawn from �. In practice,
in fol, one provides a small and clearly defined number of primitive
inferential principles (such as axioms and rules) and then posits that a
conclusion φ follows from a set � of premises if φ can be obtained from
some of the premises by repeated application of the inferential principles.
Many different axiomatizations of fol exist, and a particularly simple and
elegant one can be found in Enderton (1972).

Gödel’s famous completeness theorem of 1930 states that the two re-
lations, |= and �, are extensionally equivalent: For any φ and �, � |= φ

if and only if � � φ. This is a remarkable feature of fol, which has a
number of consequences. One of the deepest consequences follows from
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1.1 First-Order Logic 3

the fact that proofs are finite objects, and hence that � � φ if and only if
there is a finite subset �0 of � such that �0 � φ. This, together with the
completeness theorem, gives us the compactness theorem: � |= φ if and
only if there is a finite subset �0 of � such that �0 |= φ. There are many
interesting equivalent formulations of the theorem, but the following one
is perhaps the most often cited. Say that a set of sentences is consistent
if they can all be made simultaneously true on some interpretation; then
the compactness theorem says that a set � is consistent if and only if each
of its finite subsets is by itself consistent.

Another important consequence of Gödel’s completeness theorem is
the following form of the Löwenheim–Skolem theorem: If all the sen-
tences in � can be made simultaneously true on some interpretation, then
they can also be made simultaneously true on some (other) interpretation
whose universe is no larger than the set N of the natural numbers.

Together, the compactness and the Löwenheim–Skolem theorems are
the beginning of one of the most successful branches of modern symbolic
logic: model theory. The compactness and the Löwenheim–Skolem the-
orems characterize fol; as shown by Per Lindström in 1969, any logical
system (meeting certain “regularity” conditions) for which both com-
pactness and Löwenheim–Skolem hold is no more expressive than fol
(see Ebbinghaus, Flum, and Thomas, 1994, Chap. xiii, for an accessible
treatment).

Gödel’s completeness theorem also reflects on the question of whether
and to what extent one can devise an effective procedure to determine
whether a sentence φ is valid or, more generally, if � |= φ for given � and
φ. First, some terminology. We say that a set � of sentences is decidable
if there is an effective procedure, i.e., a mechanically executable set of
instructions that determines, for each sentence φ, whether φ belongs to �

or not. Notice that such a procedure gives both a positive and a negative
test for membership of a sentence φ in �. A set of sentences is semidecid-
able if there is an effective procedure that determines if a sentence φ is
a member of �, but might not provide an answer in some cases in which
φ is not a member of �. In other words, � is semidecidable if there is a
positive, but not necessarily a negative, test for membership in �. Equiva-
lently, � is semidecidable if it can be given an effective listing, i.e., if it can
be mechanically generated. These notions can be generalized to relations
among sentences of any number of arguments. For instance, it is an impor-
tant feature of the axiomatizations of fol, such as that of Enderton (1972),
that both the set of axioms and the relation that holds among φ1, . . . , φk

and ψ when ψ can be inferred from φ1, . . . , φk by one application of the
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4 1 The Logic of Defeasible Inference

rules, are decidable. As a result, the relation that holds among φ1, . . . , φk

and φ whenever φ1, . . . , φk is a proof of φ is also decidable.
The import of Gödel’s completeness theorem is that if the set � is de-

cidable (or even only semidecidable), then the set of all sentences φ such
that � |= φ is semidecidable. Indeed, one can obtain an effective listing
for such a set by systematically generating all proofs from �. The ques-
tion arises of whether, in addition to this positive test, there might not
be a negative test for a sentence φ being a consequence of �. This deci-
sion problem [Entscheidungsproblem] was originally proposed by David
Hilbert in 1900, and it was solved in 1936 independently by Alonzo Church
and Alan Turing. The Church–Turing theorem states that, in general, it
is not decidable whether � |= φ, or even whether φ is valid. (It’s impor-
tant to know that for many, even quite expressive, fragments of fol the
decision problem is solvable; see Börger, Grädel, and Gurevich, 1997, for
details.) We should also notice the following fact that will be relevant in
Section 1.3; say that a sentence φ is consistent if {φ} is consistent, i.e., if
its negation ¬φ is not valid. Then the set of all sentences φ such that φ

is consistent is not even semidecidable, for a positive test for such a set
would yield a negative test for the set of all valid sentences, which would
so be decidable, against the Church–Turing theorem.

1.2 consequence relations

In the previous section, we considered the no-counterexample conse-
quence relation |= by saying that � |= φ if and only if φ is true on every
interpretation on which every sentence in � is true. In general, it is possible
to consider the abstract properties of a relation of consequence between
sets of sentences and single sentences. Let |∼ be any such relation. We
identify the following properties, all of which are satisfied by the conse-
quence relation |= of fol:

Supraclassicality: If � |= φ then � |∼ φ;
Reflexivity: If φ ∈ � then � |∼ φ;
Cut: If � |∼ φ and �, φ |∼ ψ then � |∼ ψ ;
Monotony: If � |∼ φ and � ⊆ � then � |∼ φ.

Supraclassicality states that if φ follows from � in fol, then it also fol-
lows according to |∼; i.e., |∼ extends |= (the relation |= is trivially supra-
classical). Of the remaining conditions, the most straightforward is Re-
flexivity: It says that if φ belongs to the set �, then φ is a consequence of �.
This is a very minimal requirement on a relation of logical consequence.
We certainly would like all sentences in � to be inferable from �. It’s not
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1.2 Consequence Relations 5

clear in what sense a relation that fails to satisfy this requirement can be
called a consequence relation.

Cut, a form of transitivity, is another crucial feature of consequence
relations. Cut is as a conservativity principle: If φ is a consequence of
�, then ψ is a consequence of � together with φ only if it is already a
consequence of � alone. In other words, adjoining to � something that is
already a consequence of � does not lead to any increase in inferential
power. Cut can be regarded as the statement that the “length” of a proof
does not affect the degree to which the assumptions support the conclu-
sion. Where φ is already a consequence of �, if ψ can be inferred from �

together with φ, then ψ can also be obtained by means of a longer “proof”
that proceeds indirectly by first inferring φ. It is immediate to check that
fol satisfies Cut.

It is worth noting that many forms of probabilistic reasoning fail to
satisfy Cut, precisely because the degree to which the premises support
the conclusion is inversely correlated to the length of the proof. To see
this, we adapt a well-known example. Let Ax stand for “x was born in
Pennsylvania Dutch country,” Bx stand for “x is a native speaker of
German,” and Cx stand for “x was born in Germany.” Further, let �

comprise the statements “most As are Bs,” “most Bs are Cs,” and Ax.
Statements of the form “most As are Bs” are interpreted probabilistically
as saying that the conditional probability of B given A is, say, greater
than 50%; likewise, we say that � supports a statement φ if � assigns φ a
probability p > 50%.

Then � supports Bx, and � together with Bx supports Cx, but � by
itself does not support Cx. Because � contains “most As are Bs” and
Ax, it supports Bx (in the sense that the probability of Bx is greater
than 50%); similarly, � together with Bx supports Cx; but � by itself
cannot support Cx. Indeed, the probability of someone who was born in
Pennsylvania Dutch country being born in Germany is arbitrarily close
to zero. Examples of inductive reasoning such as the one just given cast
some doubt on the possibility of coming up with a logically well-behaved
relation of probabilistic consequence.

Special considerations apply to Monotony. Monotony states that if φ is
a consequence of � then it is also a consequence of any set containing �

(as a subset). The import of Monotony is that one cannot preempt conclu-
sions by adding new premises to the inference. It is clear why fol satisfies
Monotony: Semantically, if φ is true on every interpretation on which all
sentences of � are true, then φ is also true on every interpretation on
which all sentences in a larger set � are true (similarly, proof theoreti-
cally, if there is a proof of φ, all of whose assumptions are drawn from �,
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6 1 The Logic of Defeasible Inference

then there is also a proof of φ – indeed, the same proof – all of whose
assumptions are drawn from �).

Many people consider this feature of fol as inadequate to capture a
whole class of inferences typical of everyday (as opposed to mathematical
or formal) reasoning and therefore question the descriptive adequacy of
fol when it comes to representing commonsense inferences. In everyday
life, we quite often reach conclusions tentatively, only to retract them
in the light of further information. Here are some typical examples of
essentially nonmonotonic reasoning patterns.

taxonomies. Taxonomic knowledge is essentially hierarchical, with
superclasses subsuming smaller ones: Poodles are dogs, and dogs are
mammals. In general, subclasses inherit features from superclasses: All
mammals have lungs, and because dogs are mammals, dogs have lungs
as well. However, taxonomic knowledge is seldom strict, in that feature
inheritance is prone to exceptions: Birds fly, but penguins (a special kind
of bird) are an exception. Similarly, mammals don’t fly, but bats (a special
kind of mammal) are an exception.

It would be unwieldy (to say the least) to provide an exhaustive listing
of all the exceptions for each subclass–superclass pair. It is therefore nat-
ural to interpret inheritance defeasibly, on the assumption that subclasses
inherit features from their superclasses, unless this is explicitly blocked.
For instance, when told that Stellaluna is a mammal, we infer that she
does not fly, because mammals, by and large, don’t fly. But the conclusion
that Stellaluna doesn’t fly can be retracted when we learn that Stellaluna
is a bat, because bats are a specific kind of mammal, and they do fly. So
we infer that Stellaluna does fly after all. This process can be further it-
erated. We can learn, for instance, that Stellaluna is a baby bat and that
therefore she does not know how to fly yet. Such complex patterns of
defeasible reasoning are beyond the reach of fol, which is, by its very
nature, monotonic.

closed world. Some of the earliest examples motivating defeasible
inference come from database theory. Suppose you want to travel from
Oshkosh to Minsk and therefore talk with your travel agent who, af-
ter querying the airline database, informs you that there are no direct
flights. The travel agent doesn’t actually know this, as the airline database
contains explicit information only about existing flights. However, the
database incorporates a closed-world assumption to the effect that the
database is complete. But the conclusion that there are no direct connec-
tions between Oshkosh and Minsk is defeasible, as it could be retracted
on expansion of the database.
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1.2 Consequence Relations 7

diagnostics. When complex devices fail, it is reasonable to assume
that the failure of a smallest set of components is responsible for the
observed behavior. If the failure of any two out of three components A,
B, and C, can explain the device’s failure, it is assumed that not all three
components simultaneously fail, an assumption that can be retracted in
the light of further information (e.g., if replacement of A and B fails to
restore the expected performance).

For these and similar reasons, people have striven, over the past
25 years or so, to devise nonmonotonic formalisms capable of represent-
ing defeasible inference. We will take a closer look at these formalisms
in Section 1.3, but for now we want to consider the issue from a more
abstract point of view.

When one gives up Monotony in favor of descriptive adequacy, the
question arises of what formal properties of the consequence relation are
to take the place of Monotony. Two such properties have been considered
in the literature for an arbitrary consequence relation |∼:

Cautious Monotony: If � |∼ φ and � |∼ ψ , then �, φ |∼ ψ ;
Rational Monotony: If � �|∼ ¬φ and � |∼ ψ , then �, φ |∼ ψ .

Both Cautious Monotony and the stronger principle of Rational
Monotony are special cases of Monotony and are therefore not in the
foreground as long as we restrict ourselves to the classical consequence
relation |= of fol.

Although superficially similar, these principles are quite different. Cau-
tious Monotony is the converse of Cut: It states that adding a consequence
φ back into the premise set � does not lead to any decrease in inferential
power. Cautious Monotony tells us that inference is a cumulative enter-
prise: We can keep drawing consequences that can in turn be used as ad-
ditional premises, without affecting the set of conclusions. Together with
Cut, Cautious Monotony says that if φ is a consequence of � then for any
proposition ψ , ψ is a consequence of � if and only if it is a consequence of
� together with φ. In other words, as pointed out by Kraus, Lehman, and
Magidor (1990, p. 178), if the new facts turned out already to be expected
to be true, nothing should change in our belief system. It also turns out
that Cautious Monotony has a nice semantic characterization: The just-
cited article by Kraus et al. (1990) provides a system C (with Cautious
Monotony among its axioms), which is proved sound and complete with
respect to entailment over suitably defined preferential models, having a
preferential ordering ≺ between states. In fact, it has been often pointed
out that Reflexivity, Cut, and Cautious Monotony are critical properties
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8 1 The Logic of Defeasible Inference

for any well-behaved nonmonotonic consequence relation (see Gabbay,
Hogger, and Robinson, 1994; Stalnaker, 1994).

The status of Rational Monotony is much more problematic. As we
observed, Rational Monotony can be regarded as a strengthening of
Cautious Monotony, and, like the latter, it is a special case of Monotony.
A case for Rational Monotony is forcefully made in Lehman and Magidor
(1992, p. 20), as follows. Let p, q, and r be distinct propositional variables,
and suppose that p |∼ q (for instance, because it is explicitly contained in
our knowledge base); then we would intuitively expect also p, r |∼ q, as r
cannot possibly provide any information about whether p is satisfied or
not (and in particular p �|∼ ¬r). Observe that there are relevance consid-
erations at work here. The reason that p, r |∼ q appears plausible to us
is that the sentences involved are atomic and therefore none of them is
relevant for the truth of any of the others.

We will come back to this issue of relevance in Section 1.6, but for
now we observe that there are reasons to think that Rational Monotony
might not be a correct feature of a nonmonotonic consequence relation
after all. Stalnaker (1994, p. 19) adapts a counterexample drawn from
the literature on conditionals. Consider three composers: Verdi, Bizet,
and Satie. Suppose that we initially accept (correctly but defeasibly) that
Verdi is Italian, whereas Bizet and Satie are French. Suppose now that
we are told by a reliable source of information that Verdi and Bizet are
compatriots. This leads us no longer to endorse the propositions that Verdi
is Italian (because he could be French), and that Bizet is French (because
he could be Italian); but we would still draw the defeasible consequence
that Satie is French, because nothing that we have learned conflicts with
it. By letting I(v), F(b), and F(s) represent our initial beliefs about the
nationality of the three composers, and C(v, b) represent that Verdi and
Bizet are compatriots, the situation could be represented as follows:

C(v, b) |∼ F(s).

Now consider the proposition C(v, s) that Verdi and Satie are compatriots.
Before learning that C(v, b) we would be inclined to reject the proposition
C(v, s) because we endorse I(v) and F(s), but after learning that Verdi
and Bizet are compatriots, we can no longer endorse I(v), and therefore
we no longer reject C(v, s). The situation then is as follows:

C(v, b) �|∼ ¬C(v, s).

However, if we added C(v, s) to our stock of beliefs, we would lose the
inference to F(s): In the context of C(v, b), the proposition C(v, s) is
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1.3 Nonmonotonic Logics 9

equivalent to the statement that all three composers have the same na-
tionality, and this leads us to suspend our assent to the proposition F(s).
In other words, and contrary to Rational Monotony,

C(v, b), C(v, s) �|∼ F(s).

Thus we have a counterexample to Rational Monotony. On the other
hand, there appear to be no reasons to reject Cautious Monotony, which
is in fact a characteristic feature of our reasoning process. In this way we
come to identify four crucial properties of a nonmonotonic consequence
relation: Supraclassicality, Reflexivity, Cut, and Cautious Monotony.

1.3 nonmonotonic logics

As was mentioned, over the past 25 years or so, a number of socalled
nonmonotonic logical frameworks have emerged, expressly devised for
the purpose of representing defeasible reasoning. The development of
such frameworks represents one of the most significant developments
both in logic and artificial intelligence and has wide-ranging consequences
for our philosophical understanding of argumentation and inference.

Pioneering work in the field of nonmonotonic logics was carried out be-
ginning in the late 1970s by (among others) J. McCarthy, D. McDermott,
J. Doyle, and R. Reiter (see Ginsberg, 1987, for a collection of early pa-
pers in the field). With these efforts, the realization (which was hardly
new) that ordinary fol was inadequate to represent defeasible reason-
ing was for the first time accompanied by several proposals of formal
frameworks within which one could at least begin to talk about defea-
sible inferences in a precise way, with the long-term goal of providing
for defeasible reasoning an account that could at least approximate the
degree of success achieved by fol in the formalization of mathematical
reasoning. The publication of a monographic issue of the Artificial Intelli-
gence Journal in 1980 can be regarded as the “coming of age” of defeasible
formalisms.

The development of nonmonotonic logics has been guided all along by
a rich supply of examples. Many of these examples share the feature of
an attempted minimization of the extension of a particular predicate (a
minimization that is not, in general, representable in fol, or at least not
in a natural way). For instance, recall the travel agent example that was
used in the preceding section in discussing the closed-world assumption:
What we have in this example is an attempt to minimize the extension of
the predicate “flight between.” And, of course, such a minimization needs
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10 1 The Logic of Defeasible Inference

to take place not with respect to what the database explicitly contains but
with respect to what it implies.

The idea of minimization is at the basis of one of the earliest nonmono-
tonic formalisms, McCarthy’s circumscription. Circumscription makes ex-
plicit the intuition that, all other things being equal, extensions of pred-
icates should be minimal. Again, consider principles such as “all normal
birds fly.” Here we are trying to minimize the extension of the abnor-
mality predicate and assume that a given bird is normal unless we have
positive information to the contrary. Formally, this can be represented
using second-order logic. In second-order logic, in contrast to fol, one
is allowed to explicitly quantify over predicates, forming sentences such
as ∃P∀xPx (“there is a universal predicate”) or ∀P(Pa ↔ Pb) (“a and
b are indiscernible”). In circumscription, given predicates P and Q, we
abbreviate ∀x(Px → Qx) (“all Ps are Qs”) as P ≤ Q, and likewise we
abbreviate P ≤ Q ∧ Q �≤ P as P < Q. If A(P) is a formula containing
occurrences of a predicate P, then the circumscription of P in A is the
following second-order sentence A∗(P):

A(P) ∧ ¬∃Q [A(Q) ∧ Q < P ].

A∗(P) says that P satisfies Aand that no smaller predicate does. Let Px
be the predicate “x is abnormal,” and let A(P) be the sentence “all nor-
mal birds fly.” Then the sentence “Tweety is a bird,” together with A∗(P)
implies the sentence “Tweety flies,” for the circumscription axiom forces
the extension of P to be empty, so that “Tweety is normal” is automat-
ically true. In terms of consequence relations, circumscription allows us
to define, for each predicate P, a nonmonotonic relation A(P) |∼ φ that
holds precisely when A∗(P) |= φ. (This basic form of circumscription has
been generalized, for in practice, one needs to minimize the extension
of a predicate while allowing the extension of certain other predicates to
vary.) From the point of view of applications, however, circumscription
has a major shortcoming because of the second-order nature of A∗(P).
In general, second-order logic does not have a complete inference proce-
dure: The price one pays for the greater expressive power of second-order
logic is that there are no complete axiomatizations, as we have for fol.
It follows that it is impossible to determine whether A(P) |∼ φ [except
in special cases in which A∗(P) happens to be in fact equivalent to a
first-order sentence (see Lifschitz, 1987)].

There is another family of approaches to defeasible reasoning that
makes use of a modal apparatus, most notably autoepistemic logics. Modal
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