
Introduction

MOTIVATION

The idea for this book arose when the authors discovered, working together on a partic-
ular problem in elastic contact mechanics, that they were making extensive and repeated
use of MathematicaTM as a powerful, convenient, and versatile tool. Critically, the use-
fulness of this tool was not limited to its ability to compute and display complex two-
and three-dimensional fields, but rather it helped in understanding the relationships be-
tween different vector and tensor quantities and the way these quantities transformed
with changes of coordinate systems, orientation of surfaces, and representation.

We could still remember our own experiences of learning about classical elasticity and
tensor analysis, in which grasping the complex nature of the objects being manipulated
was only part of the challenge, the other part being the ability to carry out rather long,
laborious, and therefore error-prone algebraic manipulations.

It was then natural to ask the question: Would it be possible to develop a set of
algebraic instruments, within Mathematica, that would carry out these laborious manipu-
lations in a way that was transparent, invariant of the coordinate system, and error-free?
We started the project by reviewing the existing Mathematica packages, in particular the
VectorAnalysis package, to assess what tools had been already developed by others
before us, and what additions and modifications would be required to enable the manip-
ulation of second-rank tensor field quantities, which are of central importance in classical
elasticity. In this book we present our readers with the result of our effort, in the form of
Mathematica packages, notebooks, and worked examples.

In the course of building up this body of methods and solutions, we were forced
to review much of the well-established body of classical elasticity, looking for areas of
application where our instrumentarium would be most effective. After a while it became
apparently necessary for us to include this review in the text, in order to preserve the logic
and consistency of approach and to achieve a level of completeness – although we did
not aim to reach every region of the vast domain of continuum mechanics, or elasticity in
particular.

This book is intended as a text and reference for those wishing to realise more fully the
benefit of studying and using classical elasticity. The approaches presented here are not
aimed at replacing various other computational techniques that have become successful
and widespread in modern engineering practice. Finite element methods, in particular,
through decades of application and development, have acquired tremendous versatil-
ity and the ability to deliver numerical solutions of complex problems. However, the
power of analytical treatments possible within the framework of elasticity should not be
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2 Introduction

underestimated: true understanding of physical systems often consists of the ability to
identify the relationships and interdependencies between different quantities, and noth-
ing serves this objective more elegantly and efficiently than concise analytical solutions.

It is our hope that any readers who have previous experience of courses in engineering
mechanics and strength of materials will find something useful for themselves in this book.
This might be just a practical tool, such as a symbolic manipulation module; or it might be
an explanation that helps readers to make sense of a more or less sophisticated concept
in elasticity theory, or in the broader context of continuum mechanics. In particular, we
sought to use consistently, insofar as it was possible, the invariant form of operations with
tensor fields. It is of course true that for practical purposes the results always need to be
expressed in some specific coordinate system, to make them understandable to computer
algebra systems and humans. Natural phenomena, however, do not require coordinate
systems to happen – in fact, some of the most successful theories in the natural sciences
are built on the basis of invariance with respect to transformations of spatial and temporal
coordinates. The great benefit of the symbolic manipulation ability of Mathematica is that
it allows the (sometimes heavy) machinery of tensor manipulation in index notation to
be hidden from the user. It is indeed our hope that providing readers with coordinate-
invariant analytical instruments will allow them to concentrate on the intriguing underlying
natural relationships that are the reason many people choose to study this subject in the
first place.

Many books exist that are devoted to similar topics, and many of them are remarkably
good. Some of them show readers in detail how important results in elasticity are derived,
often frightening away beginners with lengthy derivations and numerous indices. Others
select some of the most elegant solutions that can be obtained in a surprisingly concise
way, if the right path to the answer is judiciously chosen, usually on the basis of many years
of practice in algebraic manipulation. This work is unique in that it attempts to place the
focus firmly on the analysis of the mechanics of deformation in terms of tensor fields, but
to take away the fear of ‘long lines,’ freeing the reader to explore, verify, visualise, and
compute.

As in any classical subject (and there are not many fields in hard natural science more
classically established than elasticity), a great body of knowledge has been accumulated
over decades and centuries of research. Detailed description of all of these areas could
fill many volumes. Topics covered in this book were selected because they represent the
common core of concepts and methods that will be useful to any practitioner, whether on
the research or application side of the subject. They also lend themselves well to being
implemented in the form of symbolic manipulation packages and illustrate key principles
that could be applied elsewhere within the broader subject. We made a deliberate effort
to make this book rather concise, aiming to illustrate an approach that can be successfully
applied also to numerous other examples found in the excellent literature on the subject.

The authors’ experience is primarily of teaching continuum mechanics and elasticity
to European students in France and the United Kingdom. Some of the material included
in this book was used to teach advanced mechanics and stress analysis courses. However,
it is also the authors’ belief that, in the context of the U.S. graduate teaching system, the
scope covered in this work would be particularly appropriate for a one-semester course
at the graduate level in departments of engineering mechanics, engineering science, and
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Introduction 3

mechanical, aerospace, and civil engineering. It will equip the listeners with valuable
analytical skills applicable in many contexts of applied research and advanced industrial
development work.

The subject of the book is of particular interest to the authors because both of them
have been involved, for a number of years, in the capacity of researchers, graduate super-
visors, research project leaders, and consultants, in the application of classical methods of
continuum mechanics to modern engineering problems in the aerospace and automotive
industry, power generation, manufacturing optimisation and process modelling, systems
design, and structural integrity assessment, etc.

Classical elasticity is one of the oldest and most complete theories in modern science.
Its development was driven by engineering demands in both civil and military construction
and manufacture and required the invention and refinement of analytical tools that made
crucial contributions to the broader subject of applied mathematics.

In an old and thoroughly researched subject such as elasticity, why does one need yet
another textbook? Elasticity theory has not experienced the kind of revolution brought
about by quantum theory in physics or the discovery of the gene in biology. Development
of elasticity theory largely followed the paradigm established by Cauchy and Kelvin,
Lagrange and Love, without significant revisions. Certainly, one ought not to overlook
the advent of powerful computational techniques such as the boundary element method
and the finite element method. Yet these techniques are entirely numerical in their nature
and cannot be used directly to establish fundamental analytical relations between various
problem parameters.

For the first time in perhaps over 200 years, the practice of performing analytical
manipulations in elasticity is changing from the pen and paper paradigm to something
entirely different: analytical elasticity by computer.

The origins of elasticity are often traced to Hooke’s statement of elasticity in 1679 in the
form of the anagram ceiiinsssttuvo containing the coded Latin message ‘ut tensio, sic vis,’
or ‘as the extension, so the force.’ Development of elasticity theory required generalisation
of the concepts of extension or deformation and of stress to three dimensions. The necessity
of describing elastic fields promoted the development of vector analysis, matrix methods,
and particularly tensor calculus. The modern notation used in tensor calculus is largely
due to Ricci and Levi-Civita, but the term ‘tensor’ itself was first introduced by Voigt in
1903, possibly in reference to Hooke’s ‘tensio.’

The subject of tensor analysis is thus particularly closely related to elasticity theory.
In this book we devote particular attention to the manipulation of second rank tensors
in arbitrary orthogonal curvilinear coordinate systems to derive elastic solutions. Differ-
ential operations with second rank tensors are considered in detail in an appendix. Most
importantly from the practical viewpoint, convenient tools for tensor manipulation are
written as modules or commends and organized in the form of a Mathematica package
supplied with this book.

The theory of potential is another branch of mathematics that stands in a close sym-
biotic relationship with elasticity theory, in that it both was driven by and benefited from
the search for solutions of practical elasticity problems. We devote particular attention
to potential representations of elastic fields, in terms of both stress and displacement
functions.
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4 Introduction

Fundamental theorems of elasticity are indispensible tools needed to establish unique-
ness of solutions and also to develop the techniques for finding approximate solutions.
These are presented in a concise form, and their use is illustrated using Mathematica exam-
ples. Particular attention is given to the development of approximate solution techniques
based on rigorous variational arguments.

Appendices contain some reference information, which we hope readers will find
useful, on tensor calculus and Mathematica commands employed throughout the text.

WHAT WILL AND WILL NOT BE FOUND IN THIS BOOK

The particular emphasis in this text is placed on developing a Mathematica instrumen-
tarium for manipulating vector and tensor fields in invariant form, but also allowing the
user to inspect and dissect the expressions for tensor components in explicit, coordinate-
system-specific forms. To this end, at relevant points in the presentation, the appropriate
modules are constructed. This includes the definition of differential operators (Grad,
Div, Curl, Laplacian, Biharmonic, Inc) applicable to scalars, vectors, and tensors.
Importantly, in the case of tensor fields, definitions of right (post-) and left (pre-) forms
of the Grad operator are made available. Analysis of biharmonic functions is addressed in
some detail, and tools for the reduction of differential operators in arbitrary orthogonal
curvilinear coordinate systems are provided to help the reader reveal and appreciate their
nature. The modules IntegrateGrad and IntegrateStrain have particular significance
in the context of linear elastic theory and are explained in some detail, together with their
connection with the Saint Venant strain compatibility conditions. All packages, example
notebooks, and solutions to exercises can be downloaded freely from the publisher’s web
site at www.cambridge.org/9780521842013

The development of Mathematica tools happens against the backdrop of the presen-
tation of the classical linear elastic theory. To keep the presentation concise, some care
was taken to select the topics included in this treatment.

Chapter 1 is devoted to the kinematics of motion and serves as a vehicle for introducing
the concept of deformation as a transformation map, leading naturally to the concept
of deformation gradient and its polar decomposition into rotation and translation. The
definition of strain then follows, and particular attention is focused on the concept of small
strain. The procedure for reconstituting the displacement field from a given distribution of
small strains is constructed based on rigorous arguments and implemented in the form of
an efficient Mathematica module. In the process of developing this constructive approach,
the conditions for small strain integrability are identified (also known as the Saint Venant
strain compatibility conditions).

The significance of some differential operators applied to tensor fields becomes imme-
diately apparent from the analysis of Chapter 1. In particular, the second-order incompat-
ibility operator, inc , is introduced, allowing the Saint Venant condition for compatibility
of small strain εεε to be written concisely:

incεεε = 000.

This operator has particular significance in the theory of elasticity, and further attention
is devoted to it in subsequent chapters, as well as to its relationship with the laplacian and
biharmonic operators.
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Introduction 5

Chapter 2 is devoted to the analysis of forces. Particular attention is given to elasto-
statics, that is, the study of stresses and the conditions of their equilibrium. We show how
the principle of virtual power offers a rational starting point for the analysis of equilibria
of continua. The concept of stress appears naturally in this approach as dual to small strain
in a continuum solid. Furthermore, the equations of stress equilibrium, together with the
traction boundary conditions, follow from this variational formulation in the most con-
venient invariant form. An interesting aside here is the discussion of the expressions for
virtual power arising within different kinematical descriptions of deformation (e.g., invis-
cid fluid, beams under bending) and the modifications of the concept of stress that are
appropriate for these cases.

The classical stress definition according to Cauchy is also presented, and its equiva-
lence to the definition arising from the principle of virtual power is noted. The Cauchy–
Poisson theorem then establishes the form of equilibrium equations and traction boundary
conditions. (Discussion of the index form of equilibrium equations and boundary condi-
tions that is specific to coordinate systems is addressed by demonstration in the exercises
at the end of this chapter.) Some elementary stress states are considered in detail.

Having established the fact that equlibrium stress states in continuum solids in the ab-
sence of body forces are represented by divergence-free tensors, we address the question
of efficient representation of such tensor fields. The Beltrami potential representation is
introduced, in which the operator inc once again makes its appearance. Donati’s theo-
rem is then quoted, which establishes a certain duality between the conditions of stress
equilibrium and strain compatibility.

Chapter 3 is devoted to the discussion of general anisotropic elasticity tensors. Impor-
tant properties of elastic tensors are introduced, and the relationships between tensor and
matrix representations are rigorously considered, together with efficient Mathematica
implementations of conversion between different forms. Next, classes of material elastic
sysmmetry are considered, and the implications for the form of elastic stiffness matrices
are clarified. Elastic isotropy is discussed in detail as a particularly important case that is
treated in more detail in subsequent chapters.

Mathematica tools for displaying elastic symmetry planes are presented, along with
ways of visualising the results of extension experiments on anisotropic materials.

The methods of solution of elasticity problems for anisotropic materials are not con-
sidered in the present treatment, as the authors felt that this important subject deserved
special treatment.

Modifications and perturbations to the liniear elastic theory are briefly discussed,
including thermal strain effects and residual stresses. The chapter is concluded with a brief
discussion of the limitations of the linear elastic theory and the formulation of Tresca and
von Mises yield criteria.

Chapter 4 is devoted to the formulation of the complete problem of elasticity and
the discussion of general theorems and principles. First, the formulation of a well-posed,
or regular problem of thermoelasticity is introduced. Next, the displacement formula-
tion (Navier equation) and the stress formulation (Beltrami–Michell equations) are in-
troduced. As a demonstration of the application of elasticity problem formulation, the
problem of the spherical vessel is solved directly by considering the radial displacement
field in the spherical coordinate system, computing strains and stresses, and satisfying the
equilibrium and boundary conditions.
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6 Introduction

Next, the principle of superposition is introduced, followed by the virtual work theo-
rem. This allows the nature and the conditions for the uniqueness of elastic solution to be
established. This is followed by the proof of existence of the strain energy potential and the
complementary energy potential and of reciprocity theorems. Saint Venant torsion is next
considered in detail with the help of Mathematica implementation, serving as the vehicle
for the introduction of the more general Saint Venant principle. The counterexample due
to Hoff is given as an illustration, and a rigorous formulation of the principle, following
von Mises and Sternberg, is given.

Chapter 5 is devoted to the solution of elastic problems using the stress function
approach. The Beltrami potential introduced previously provides a convenient represen-
tation of self-equilibrated stress fields. The Airy stress function corresponds to a particular
case of this representation and is of special importance in the context of plane elasticity
due to its simplicity, and for historical reasons. Particular care is therefore taken to intro-
duce this approach and to discuss the precise nature of strain compatibility conditions that
must be imposed in this formulation to complement stress equilibrium. This allows the
elucidation of the strain incompatibility that arises in the plane stress approximation. In
passing, an important issue of verifying the biharmonic property of expressions in an ar-
bitrary coordinate system is addressed symbolically through the analysis of reducibility of
differential operators. It is then demonstrated how strain compatibility in plane stress can
be enforced through the introduction of a corrective term. Plane strain is also considered,
and the simple relationship with plane stress is pointed out.

The properties of Airy stress functions in cylindrical polar coordinates are addressed
next. The general form of biharmonic functions of two coordinates, due to Goursat, serves
as the basis for obtaining various forms of Airy stress functions as suitable candidate solu-
tions of the plane elasticity problem. The Michell solution, although originally incomplete
and amplified with additional terms by various contributors, is introduced and discussed
due to its historical importance. Furthermore, it allows the identification of some impor-
tant fundamental solutions that serve as nuclei of strain within the elasticity theory. In this
way the solutions for disclination, dislocation, and other associated problems are analysed.

The Airy stress function solution is derived next for a concentrated force applied at
the apex of an infinitely extended wedge. This important solution serves to introduce the
Flamant solution for the concentrated force at the surface of an elastic half-plane. The
combination of the appropriate wedge solution with the dislocation solution allows the
Kelvin solution for a concentrated force acting in an infinite elastic plane to be derived
by enforcing displacement continuity. The derivation makes use of the strain integration
procedure presented earlier.

Williams eigenfunction analysis of the stress state in an elastic wedge under homoge-
neous loading is presented next. On the basis of this solution, the elastic stress fields can
be found around the tip of a sharp crack subjected either to opening or to shear mode
loading. Finally, two further important problems are treated, namely the Kirsch problem
of remote loading of a circular hole in an infinite plate and the Inglis problem of remote
loading of an elliptical hole in an infinite plate.

Chapter 6 is devoted to the introduction and use of the method of displacement
potential. First, the harmonic scalar and vector Papkovich–Neuber potentials are intro-
duced and the representations of simple deformation states in terms of these potentials are
found. Next, the fundamental solution of three-dimensional elasticity is derived, the Kelvin
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Introduction 7

solution for a force concentrated at a point within an infinitely extended isotropic elastic
solid. The Kelvin solution serves as the basis for deriving solutions for force doublets, or
dipoles, with or without moment, and also for centres of dilatation and rotation. These are
further examples of strain nuclei, already introduced earlier in the context of plane elastic
problems.

Solutions presented next are for the Boussinesq and Cerruti problems about concen-
trated forces applied normally or tangentially to the surface of an elastic half-space. The
solution for a concentrated force applied at the tip of an elastic cone is given next. General
solutions in spherical and cylindrical coordinates are discussed, and the use of spherical
harmonics illustrated. The Galerkin vector is introduced as an equivalent displacement
potential formulation, and Love strain function presented as a particular case. The chapter
is concluded with a brief note on the integral transform methods and contact problems.

Chapter 7 deals with the subject of energy principles and variational formulations,
which are of particular importance for many applications, because they provide the basis
for most numerical methods of approximate solutions for problems in continuum solid
mechanics. Using strain energy and complementary energy potentials introduced earlier,
a suite of extremum theorems is introduced. On this basis approximate solutions (bounds)
in the theory of elasticity are introduced, using the notions of kinematically and statically
admissible fields. The problem of the compression of a cylinder between rigid platens
provides an example of application of the method.

Next, extremal properties of free vibrations and approximate spectra are considered.
Analysis of vibration of a cantilever beam serves as an example.

Appendices contain some background information on linear differential operators,
particularly in application to tensor fields studied with respect to general orthogonal
curvilinear coordinate systems. Also explained is the implementation of these operators
within the Tensor2Analysis package. Some important Mathematica constructs used
in the text, such as the IntegrateGrad module, are also explained, along with other
Mathematica tricks and utilities developed by the authors for the visualisation of results.

This book does not dwell in any detail on many important problems in elasticity and
continuum solid mechanics. Anisotropic elasticity problems are not addressed here in any
detail, nor are the complex variable methods in plane elasticity. Contact mechanics forms
another large section of elasticity that is not treated here. Elastic waves, dispersion, and
interaction with boundaries are not addressed in this text, again due to the fact that the
authors thought it impossible to give a fair exposition of this subject within the limited
space available.

It is the authors’ hope, however, that many of the methods and approaches developed
and presented in this book will provide the reader with transferable techniques that can
be applied to many other interesting and complex problems in continuum mechanics. To
help achieve this purpose, the book contains over 60 exercises that are most efficiently
solved using Mathematica tools developed in the corresponding chapters. Many of these
exercises are not original, and, whenever possible, explicit reference is made to the source.
The authors’ hope is, however, that in solving all of these exercises readers will be able to
appreciate the advantages offered by symbolic manipulation.
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1 Kinematics: displacements and strains

OUTLINE

This chapter is devoted to the introduction of the fundamental concepts used to describe
continuum deformation. This is probably most naturally done using examples from fluid
dynamics, by considering the description of particle motion either with reference to the
initial particle positions, or with reference to the current (actual) configuration. The rela-
tionship between the two approaches is illustrated using examples, and further illustrations
are provided in the exercises at the end of the chapter. Some methods of flow visualisation
(streamlines and streaklines) are described and are illustrated using simple examples. The
concepts are then clarified further using the example of inviscid potential flow.

Placing the focus on the description of deformation, the fundamental concept of
deformation gradient is introduced. The polar decomposition theorem is used to separate
deformation into rotation and stretch using appropriate tensor forms, with particular
attention being devoted to the analysis of the stretch tensor and the principal stretches,
using pure shear as an illustrative example. Trigonometric representation of stretch and
rotation is discussed briefly.

Discussion is further specialised to the consideration of small strains. Analysis of
integrability of strain fields then leads to the identification of the invariant form of com-
patibility conditions. This subject is important for many applications within elastic theory
and is therefore dwelt on in some detail. Strain integration is implemented as a generic
module in Mathematica, allowing displacement field reconstruction within any properly
defined orthogonal curvilinear system.

1.1 PARTICLE MOTION: TRAJECTORIES AND STREAMLINES

Lagrangian description

Let us suppose that the material body under observation occupies the domain � ∈ R
3 in

a reference configuration C. Each material point is identified by its spatial position XXX in
the reference configuration.

Let us assume that the motion of a particle is described by a function

xxx = FFF(XXX, t) (1.1)

which maps each point XXX of the reference configuration onto its position xxx at time t.
The mapping FFF is therefore defined,

FFF : � × [0, T] −→ R
3,
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1.1 Particle motion: trajectories and streamlines 9

X
x

Figure 1.1. The initial and the actual configuration of a body and the position of a particle on its path.

where � denotes the initial configuration of the body. The domain �t = FFF(�, t) is referred
to as the actual configuration at time t.

This description of motion is referred to as the Lagrangian description.
We shall assume that matter is neither created nor removed, that noninterpenetrability

of particles is respected, and that the continuity of material orientation is conserved during
motion.

These assumptions imply that there exists a one-to-one relation between material
particles and points XXX in the reference configuration, as well as between the initial and
actual positions of particles XXX and xxx, respectively.

Particle path

The trajectory of a given particle in the fixed laboratory frame is the curve that is also
referred to as the particle path (see Figure 1.1). The particle path is the geometrical locus
of the points occupied by the material particle at different times during deformation and
can be mathematically expressed as the following set:

P(XXX) = {FFF(XXX, t)|t ∈ [0, T]}. (1.2)

Consider as an example the particle paths of points on a rigid ‘railway’ wheel that is rolling
without slipping along a surface represented by a straight horizontal line.

In order to illustrate particle paths in Mathematica, first define the transformation F
that at time t is given by the superposition of translation of the wheel centre by the
distance vvvt and rotation of the wheel around its centre by the angle ωt. This is done by
introducing vector positions of the wheel centre cent, the particle point a and velocity
vector v, and the rotation matrix rot.

a = {a1, a2, a3}; v = {v1, 0, 0};

rot[phi_] :=
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10 Kinematics: displacements and strains
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Figure 1.2. Trajectories of points on a rigid ‘railway’ wheel rolling along a horizontal surface without
slipping.

{{ Cos[phi], Sin[phi], 0},

{-Sin[phi], Cos[phi], 0},

{ 0, 0, 1}}

F[a_, t_]:= v t + cent + rot[omega t].(a - center)

F[a, t]

The condition of rolling without slipping is ensured by the fact that the total velocity of
the point in instantaneous contact with the surface is equal to zero, due to the fact that
the contributions to this velocity from the translation and rotation parts of the motion
are equal and opposite; that is,

v1 = ωR.

The points selected for particle path tracking are obtained as a double-indexed list
using Table. Flatten transforms the double-indexed list into a single-indexed list.

The wheel and wheel1 represent the ‘railway’ wheel with an outsized ‘tyre’ that
is allowed to pass below the surface. The traject set of particle paths is obtained
using the standard ParametricPlot command. The form of the command represents
the application (Map) of the ParametricPlot command to all initial points. The Drop

command eliminates the third coordinate for two-dimensional plotting.
All trajectories and the wheel and tyre are displayed in Figure 1.2 using Show. The

particle paths can be recognised as cycloids. Classical implicit equations for these curves
can be obtained after some additional manipulations.

cent = {0, R, 0};

R = 1; omega = 1; v1 = R omega;

points = Flatten[

Table[

center + r {Cos[alpha], Sin[alpha], 0},

{r, 0.2, 1.6, 0.2}, {alpha, 0, 0}], 1]

wheel = ParametricPlot[

{R Cos[theta], 1 + R Sin[theta]},
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