Index

acceleration, 126–127
 relative, 91–92
action, forces of, 13
active force, 219
Adams, G.G., 132, 201
Ahmad, M., 243
Amontons-Coulomb law, 69, 85, 90, 95
 for dry friction, 39–41, 46–47
angle of incidence, 143–144
 intermediate, 99–100, 103
 large, 100, 103
 for maximum friction, 102–103
 normalized, 188
 small, 98, 103
angles
 of deflection, 63
 of incidence, 3
 of obliquity, 314
 rebound, 59
 of slip, 84
angular speeds, 20
 at separation, 87
angular velocity, 14, 195
attractor, 264, 271
 systems with single, 265–267
 systems with two, 267–287
axial displacement, 176
axial impact, 5
on flexible bodies, 9–10
axial wave motion, 166

balls, 224. See also specific balls
 bouncing, 265–267
 classification of, 293–294
 friction and, 312–316
 pressureless, 294
 pressurized, 294
 properties, 311
 spin and, 312–316
 tangential compliance and, 312–316
bar velocity, 149
Barber, J.R., 90, 101
Barron, John D., 293
baseball, xiii, 1, 316
 bat length, 34
 regulation of, 33
basketballs, 308
Billie, J.A., 54, 71, 183–184
beam displacement, 253
beam equation
 comparisons of, 171–172
 Euler-Bernoulli, 167–168, 171–172
 Rayleigh, 168–169, 171–172
 Timoshenko, 169–172
Bertolli, J., 332
bifurcation, 290–292
bilateral constraint, 177
 noncompliant, 178–179
Bilbao, A., 90
bilinear spring model, 106
bilinear viscoplastic model, 234
billiard ball, 31–32, 65, 88
bodies. See specific types
body-fixed Cartesian coordinates, 15
 bounce
 of superbball, 109–112
 of thin-walled balls, 302
boundary conditions
 at dashpot end, 160
 at impact end, 159–160
Brach, R.M., 72–73, 90
Brahe, Tycho, 317
Budd, C.J., 291–292
bulk modulus, 148
bullets, 19
Burgoine, H.A., 206
Calvo, D., 208
Carroll, Lewis, 148
Cartesian coordinates, body-fixed, 15
 center of mass, 21–22, 63, 327–328
 relative velocity of, 62–63
chain reaction, coaxial impact, 209–212
Champneys, A., 186–187
chaos, 287–292
Chatterjee, A., 106, 209, 228
Christophorou, A.P., 242, 261
circular frequency, 250
coaxial impact, 133, 157
chain reaction, 209–212
measurements from, 133–134
coefficient
of friction, 84, 104, 109–110
inertia, 197
of limiting friction, 40, 94
for stick, 41–42
Timoshenko beam, 170
coefficient of restitution, xiv, 93, 101–102, 132–133
composite, 135–136
for direct impact, 136
effective, 135
for elastic-plastic solids, 131–134
energetic, 23, 28, 47–48, 71
kinematic, 28–29, 188–191
kinetic, 188–191
terminal impulse and, 188–191
collapse, 265
collinear collision, 226
collinear configuration, 2
friction in, 55–60
collinear impact, 215
compliant, 102
oblique, 100–102
rigid bodies and, 22
collision. See also impact
of bodies, xiii
collinear, 226
compression phase of, 23–25
by cooperative group, 280–284
elastic, 3–4
energy dissipation in, 62, 271–273
of free bodies, 66–69
hard bodies, 116
inelastic, 3–4
oblique, 72–76
planar, 90–94
reaction force during, 68
restitution phase of, 23–25
between rough bodies, 67
self-similar, 133
of slender rod, 75–77
sliding during, 70–71
common normal direction, 21
common tangent plane, 2, 21
compliance. See also tangential compliance
contact, 10, 92–93
elastic normal, 140–141
Hertz, 257
linear, 93, 256–257, 309
local, 254–260
ratio, 105
structural, 178
viscoelastic, 241
compliant collinear impact, 102
compliant contact point, 9, 217–218
composite coefficient of restitution, 135–136
compound pendulum, 218, 224
compression
of collision, 23–25
contact force during, 66
energetic coefficient of restitution in, 48
impulse for, 52, 188
indentation and, 131
maximum, 214
normal impulse for, 25, 81, 203
quasi-static, 116–123
shape factor for, 309
slip reversal during, 50–51
spherical contact surfaces, 117
termination of, 81
work and, 131, 240
configuration. See specific types
conservation of quantity of motion, 321
constraint
bilateral, 177–179
equation, 177
kinematic, 84–85
unilateral, 177, 201–202
contact area, 1–2
contact compliances, 10, 92–93
contact force, 1, 5, 24, 90, 97, 164, 262
during compression, 66
displacement and, 211
hysteresis of, 29
non-dimensional, 238
normal, 26–27, 98–99
for oblique impact, 142–144
tangential components of, 106
tangential non-dimensional, 98–99
work of, 238–244
contact point, 2, 21
compliant, 9, 217–218
impulse at, 179–180
noncompliant, 202–204
relative displacement at, 96–97
relative motion at, 35–37
relative velocity at, 3, 29–30
contact pressure, 1, 121
contact processes, during impact, 43–44
contact stiffness, 209–212
contained plastic deformation, 93, 119–120
convection, 287
cooperative group
collision by, 280–284
intrinsic speed and, 281
Coulomb friction, coefficient of, 109–110
Coulomb’s law, 89–90
Coulomb’s law of friction, 55–57
Cremer, L., 171–172
critical coefficient of friction, 78
for spherical pendulum, 86
cross product, 19
Cundall, P.A., 204, 209
cylinders
circular, 37
prismatic, 20, 267–273
damping, viscous, 241
Daraio, C., 206
dashpot end, boundary conditions at, 160
deflection, angles of, 63
deformable particle, 7
infinitesimal, 129–130
physical construct of, 7, 68
deforstation, xiii
contained plastic, 93, 119–120
of inflated balls, 303–304
local, 1–2
of ping-pong balls, 294–297
uncontained plastic, 142
Delaunay, 137
Deresiewicz, H., 128
Descartes, R., 320–322
deuterons, 33
diacritical marks, 35
differential
of generalized impulse, 194
of generalized momentum, 181–182
dilatational wave speed, 151
Dirac delta function, 69
direct collision, reaction force in, 27
direct impact, 3, 19–20
coefficient of restitution for, 136
defining, 21–22
of elastic bodies, 126–129
relative motion and, 21–23
of solid balls, 307–312
of viscoelastic bodies, 225
of viscoplastic bodies, 233
discontinuities, 155
dispersion, 165
dissipative systems, 167
wave propagation in, 165–166
dispersive waves, 175–176
displacement, 231
axial, 176
force and, 204–206, 211
normal relative, 122
prescribed axial, 150–151
radial, 121
relative, 90
transverse, 168
dissipated energy. See energy dissipation
distal surface, 9–10
DMA. See Dynamic Mechanical
Analysis
domino effect, 273–287
collision in, 273–275
cooperative neighbors in, 277–286
experiments, 277–280, 284–286
speed of, 275
transient solution to, 275
dry friction
Amontons–Coulomb law for, 40–41
effects of, 89–90
ductile metals, 156
DYNA2D, 139–140, 142–145
Dynamic Mechanical Analysis (DMA), 315
dynamics
equations of, xiv
of impact, 306–307
of jam, 54
particle kinetics and, 12–14
of planar collision, 90–94, 126–131
of rigid body impact, 209–212
eccentric configuration, 2, 66
eccentric planar impact, 129–130
Eddington, Arthur, 89, 225
effective mass, 13
eigenfunctions, of uniform beam, 247–248
eigenvalues, 211–212
modal, 248–250
elastic bars, 172
elastic beam, transverse impact on, 251–252
elastic bodies, 92
direct impact of, 126–129
elastic indentation, 146
elastic modulus, 7
elastic normal compliance, 140–141
elastic strain energy, 26–27
in restitution phase, 28
work and, 28
elastic stress, 116–118
elastic unloading, from indentation, 125–126
elastic wave theory, xiii
elastic waves, energy dissipation and, 136–138
elastic–perfectly plastic solids, quasi-static
compression of, 116–123
elastic–plastic analysis, 314–315
elastic–plastic bodies
indentation at yield of, 119
transverse impact of, 139–140
elastic–plastic indentation, 141, 146
synopsis, 145–147
elastic–plastic solids, coefficient of restitution for,
131–134
ellipsoid, 37
ellipsoidal bodies, 74
energetic coefficient of restitution, 23, 47–48, 71
defining, 28, 47
energy dissipation, 7–8
in collision, 62, 271–273
elastic waves and, 136–138
from friction, 108–109
from hysteresis, 107–109
during impact, 107–109
planar collision and, 145
energy dissipation (cont.)
terminal normal impulse and, 28
work and, 191–193
energy loss factor, 261
equilateral triangle
 collisions of, 78–80
 hodograph for, 80–82
 inclined, 80–82
 Euler, L., 331–334
 Euler-Bernoulli beam equation, 167–168, 171–172
 flow-lines, 167
 flexural wave, 167
fixed ends
 distal, 162
 reflection from, 154–155
flexible bodies
 axial impact on, 5, 9–10
 impact against, 246
 transverse impact on, 5, 9
 fricition, 3
 coefficient for stick, 41–42
 coefficient of, 84, 104
 coefficient of limiting, 40, 94
 in collinear configuration, 55–60
 Coulomb’s law of, 55–57
 critical coefficient of, 78, 86
 dry, 40–41, 89–90
 dynamic coefficients of, 69, 142
 effects of, 94
 energy dissipation from, 108–109
 force, 40–41, 65, 94, 105
 law of, 41, 69–70
 oblique impact and, 60–64, 143
 static coefficients of, 69, 142
 work of, 192–193
 fully plastic indentation, 123–124, 146
 Galilei, G., 1, 318–320
 gas force, 306
 generalized impulse, 194
differentials of, 218
generalized momentum, 85
 Gilmore, B.J., 201
 global response, 260–263
 Glockner, 201
 Goldsmith, W., xv, 244
 golf ball, 13, 232, 313, 315–316
 gravity, 21–22
 grazing incidence, 54–55
 gross slip, 191, 193
 group velocity, 166–167
 gyration, radius of, 37, 91
 Haake, S.J., 233
 hard bodies
 collisions, 116
 small compliance of, 6
 Heckl, M., 171–172
 Hertz, H., 116–117
 contact force, xiii
 Hertz compliance, 257
 Hertz pressure distribution, 119
 Hertz theory, 127
 quasi-static, 139
 Hertzian contact, 116–118, 208
 high frequency waves, 206
 Hill, R., 121
 hockey stick, 7–8
 hodograph, 77–78
 for inclined equilateral triangle, 80–82
 Hopkinson, B., 162
 Hopkinson, J., 162
 Horak, Z., 72–73
 Hunter, S.C., 137–138
 Hurmuzlu, Y., 61, 228
 Huyghens, C., 33, 325–327
 hysteresis, 27
 of contact force, 29
 energy dissipation from, 107–109
 of normal force, 92
 impact, 259. See also rigid body impact
 axial, 5, 9–10
 coaxial, 133–134, 157
 collinear, 22, 215
 contact processes during, 43–44
direct, 3, 19–20, 136, 233
eccentric planar, 129–130
elastic, 263
energy, absorption of, 135–136
energy dissipation during, 107–109
against flexible structure, 246
local deformations and, 1–2
on mechanisms, 178–179
non-collinear, 112–114
oblique, 3, 38–39, 142–144
oblique collinear, 100–102
particle, 5
planar, 56, 61–62, 159, 184–188
radial, 9
simultaneous, 221
of smooth bodies, 37–40
speed, 243–244
structural responses, 254–260
three-dimensional, 65, 87–88
transverse, 5, 9, 139–140, 258
waves and, 162–165
impact configuration, 6. See also collinear configuration
impedance ratio, 156
impulse, xiii–xiv
components of, 7, 46–47, 58
for compression, 52, 188
at contact point, 179–180
continuous function of, 22
defining, 23
differential of generalized, 194
generalized, 194, 218
normal, 13, 25, 70, 81, 203
partial work and, 46–47
reaction, 65–66, 191–192
terminal, 48–55, 82, 188–191
terminal normal, 28, 56
impulse ratio, at separation, 106
impulsive forces, 46–47
work of, 191–193
incidence, 2
angle of, 3, 106–107, 143–144, 188
grazing, 54–55
intermediate angle of, 99–100, 103
large angle of, 100, 103
oblique, 33–34
relative velocity at, 62
small angle of, 98, 103
incident kinetic energy, 138
incident relative velocity, 3
indentation
compression phase and, 131
elastic, 146
elastic unloading from, 125–126
elastic-plastic, 141, 145–147
force, 127
fully plastic, 123–124, 141–144, 146
local, 255
maximum, 131
quasi-static elastic-plastic, 119–123
ranges, 126
restitution phase and, 131
of spherical contact surfaces, 117
work and, 131
at yield of elastic-plastic bodies, 119
independent interaction theory, 273–287
indicial notation, 19, 36
inertia
center of, 30–31
coefficients, 197
dyadic, 15
matrix, 37, 76
moment of, 20
rotary, 168
inertial reference frame, 12
moment of momentum and, 17–18
infinitesimal compliant elements, 7
inflated balls, deformation of, 303–304
initial conditions, 149
longitudinal waves, 150
initial normal relative speed, 226
initial slip, 60, 182, 188
initial stick
relative displacement for, 95
slip and, 95
initial velocities, 32, 97
interaction force, 3–4
interface, 1
reflection at, 155–156
transmission at, 155–156
interface pressure, 116
intermediate angle of incidence,
99–100, 103
internal pressure effect, 297–298
intrinsic speed, 275
cooperative group and, 281
Ismail, K.A., 315
isochlinic, 71, 80, 182
defining, 77
Ivanov, A.P., 210
jam, 53, 186–187
dynamics of, 54
relative velocity and, 55
Job, S., 208
Johnson, K.L., 69, 101, 109, 120, 122, 201
Johnson, W., 132
Kalnins, A., 294–295
Kane, T.R., 188–189, 195
Karagiozova, D., 294–295
Keller, J.B., 68, 201
Kelvin-Voight solid, 225
Kepler, 317
Khulief, Y.A., 201
kinematic coefficient of restitution, 188–191
definition of, 28–29
kinematic constraints, 84–85
Index

kinetic energy
change in, 45
during compression, 24–25
initial, 17, 138, 198, 200
of normal relative motion, 29
partition of loss of, 30–32
of relative motion, 24–26, 31
rotational, 33
terminal, 29
work and, 45
kinetics
particle, 12–14
for set of particles, 14

Lagrange’s equation, 211
large angle of incidence, 100, 103
law of friction, 41
Lenzer, J., 256
Lewis, A.D., 90, 105
Lim, C.T., 106, 145
linear compliance, 93, 256–257, 309
linear stiffness, 136
linear viscoelasticity, 225–228
local compliance, 254–260
local deformations, impact and, 1–2
local indentation, 255
logistic map, 283–284
longitudinal waves
initial conditions, 150
in uniform elastic rods, 148–150
Love, A.E.H., 139
low-speed impact, 10
Mariotte, E., 327–329
Mason, 130
mass. See also center of mass
effective, 13
of particle, 23
ratio, 13
Maw, N., 90, 101
maximum compression, 214
maximum friction, angle of incidence for, 102–103
maximum indentation, 131
Maxwell solids, 244
Maxwell viscoelastic model, 225–228
McDonald, B.E., 208
mean pressure, 122
mechanisms, impact on, 178–179
modal eigenvalues, 248–250
modal frequencies, 215, 254
mode, fundamental, 211–212
moment of momentum, 14–15
inertial reference frame and, 17–18
rate of change for, 17–18
momentum, 12
differential of generalized, 181–182
flux, 303
generalized, 85
translational, 64, 210
Mooney-Rivlin nonlinear hyperelastic materials, 314–315
Morin, R.O., 41
motion. See also relative motion
conservation of quantity of, 321
equations of, as function of normal impulse, 70
Newton’s 3rd law of, 329–330
normal relative, 25–26
planar, 7, 41–42, 196
three-dimensional impact and, 180–183
Mulhearn, T.O., 120
multi-body problems, rigid body impact in, 10
multi-body systems, 200–201
numerical simulation of, 206–209
with unilateral constraints, 201–202
natural frequency, 215, 274
neural network, 273
Newton, I., 28–29, 317, 329–331
Newton’s 2nd law, 12, 36, 202
Newton’s 3rd law of motion, 329–330
Newton’s cradle, 203
Nikravesh, P., 201
non-collinear impact, oblique, 90, 112–114
nonlinear viscoelastic deformable elements, 228–230
hybrid, 230–232
normal contact force, 98–99
during compression, 27
during restitution, 27
work of, 26
normal displacement, 102
normal force, hysteresis of, 92
normal impulse, 13
for compression, 25, 81, 203
equation of motion as function of, 70
terminal, 28, 56
normal relative displacement, 122
normal relative motion, 25–26
kinetic energy of, 29
normal relative velocity, 23
normal velocity, 143, 186
notation
indicial, 19, 36
vectorial, 19
numerical simulation, 85–88, 142
of multi-body systems, 206–209
oblique collinear impact, 100–102
oblique impact, 3
contact forces for, 142–144
friction and, 143
of spheres, 38–39, 72–76
oblique non-collinear impact, 112–114
obliquity, angle of, 314
orbit stability, 290–292
Index

Painlevé paradox, 53–62, 186–187
Pal, R.K., 206
parallel axis shift theorem, 268
partial work, 46–47
defining, 46
impulse and, 46–47
particle, 292
definable, 7, 68
infinitesimal defensible, 129–130
kinetics for sets of, 14
mass of, 23
system of, 18
two-particle system, 20
velocity, 160–162
particle kinetics, dynamics and, 12–14
partition of loss, of kinetic energy, 30–32
pendulum
compound, 218, 224
double, 195, 198–199, 224
spherical, 82–85
Pereira, M.S., 201
period 1 orbits, 289
permute tensor, 19, 36
Pfeiffer, F., 201
phase velocity, 166, 205
piezoelectric force transducers, 105
ping-pong balls, 294
planar collision
dynamics of, 90–94
energy dissipation and, 145
planar impact, 184
analytical model for, 91
eccentric, 129–130
resolved dynamics of, 126–131
of rigid bar, 61–62
of rigid body, 159
slip processes for, 184–188
terminal normal impulse for, 56
planar motion, 7, 17, 196
equations of, 41–42
equations of, for sliding, 42
equations of, for stick, 41–42
rough bodies and, 41–42
plane sections, 37
plane strain, 139–140
yield for, 141
plastic loss factor
large, 236
small, 237–238
Poincaré section, 289–290
Poisson’s ratio, 92, 129, 137–138
prescribed axial displacement, 150–151
pressure
distribution of, 124
Hertz distribution, 119
interface, 116
mean, 122
pressureless balls, 294
pressurized balls, 294
prismatic cylinders, 20, 267–273
rolling of, 268–270
Prony series, 314–315
propagation speed, 149
properties, material, 141
quasi-static approximation, applicability of, 138–139
quasi-static elastic analysis, 114
quasi-static elastic-plastic indentation, 119–123
quasi-static force, 305
radial displacement, 121
radial impact, 9
radius
effective, 118
of gyration, 37, 91
rate-independent materials, 66
Rayleigh beam equation, 168–169, 171–172
Rayleigh wave speed, 151
Rayleigh–Ritz method, 248–250, 263
reaction force, 13, 256
during collision, 68
in direct collision, 27
reaction impulse, 65–66
work of, 191–192
reaction wave, 287
reaction-diffusion equation, 273
rebound angle, 59
rebound height, 224
rectangular blocks, 63
reflection
from fixed ends, 154–155
at interface, 155–156
of waves, 153–154
reflection, from free ends, 153–154
reflection coefficient, 160
Reissner, E., 297
relative accelerations, 91–92, 122
relative displacement, 90
at contact point, 96–97
relative motion
at contact point, 35–37
direct impact and, 21–23, 25–26, 29
equation of, 21–23, 35–37, 130–131
kinetic energy of, 24–26, 31
relative velocity, xii, 13, 220–221
of centers of mass, 62–63
at contact point, 3, 66
defining, 36, 68
at incidence, 3, 62
jam and, 55
normal component of, 43, 66
tangential component of, 43, 66, 74–75
resolved dynamics, of planar impact, 126–131
restitution. See also coefficient of restitution of collision, 23–25
compression and, 57, 131, 203

© in this web service Cambridge University Press
www.cambridge.org
Index

restitution. (cont.)
defining, 24–25
elastic strain energy in, 28
indentation and, 131
normal contact force during, 27
normal impulse for, 29
work and, 131, 240
return map, 289–290
rigid bar, planar impact of, 61–62
rigid body impact, xiii–xv, 5, 10
application of, 6
collinear impact and, 22
contact period in, 6
dynamics of, 209–212
elementary, 15
kinetic equations for, 14–17
underlying premise of, xiii, 6–8
rigid spheres, 58
rotation of, 58
Rigdon, R.J., 90, 105
rotary inertia, 168
rotation, 85
of spheres, 58–59
rotational motion, 75–76
rotational velocity, 111
rough bodies, 3
collision between, 67
elastic-plastic, 129–130
friction of, 29, 40–44, 69–70
planar motion and, 41–42
sliding of, 40–44
Routh, E.J., 45
saddle point, 291
self-similar collisions, 135
separation
angular speeds at, 87
impulse ratio at, 106
separatrix, 78, 80
shape factor, 308–312
for compression, 309
shear modulus, 148
shear stress, 119
Shen, Y., 53
Simon, R., 230
simplified variable mass analysis, 300–302
simultaneous impact, 221
single degree of freedom approximation, 250–252, 287–289
slender bar, collision of, 34, 75–77, 98
sliding, 3
angular speed and, 40
equations of planar motion for, 42
evolution of, 43–44
halting of, 70–71
during impact, 43–44, 70–71
of rough bodies, 40–44
speed, 69
unidirectional, 46–47
slip, 10, 43, 90
during compression, 50–51
direction of, 74–75, 84
gross, 191
initial, 60, 182, 188
initial stick and, 95
limits for, 187
planar impact and, 184–188
processes, 48–55
resuming, 71
reversal, 43, 50–51, 71, 192
speed, 100–102
spherical pendulum, 86–87
trajectory, 74, 77–78, 80–82, 84
unidirectional, 49–50
slip-stick, 10, 71, 192
small angle of incidence, 98, 103
small plastic loss factor, 237–238
Smith, C.E., 90
smooth bodies, 3
impact of, 37–40
smooth spheres, 30, 64
solid balls
direct impact of, 307–312
properties, 307–312
spall fracture, 156–158
speed
angular, 20, 40
of domino effect, 275
initial normal relative, 226
intrinsic, 275, 282–284
propagation, 149
Rayleigh wave, 151
steady, 285
translational, 284
spheres, 33–34, 129
initial velocities for, 32
oblique impact of, 38–39, 72–76
rigid, 58
rolling, 60
rotation of, 58–59
smooth, 30, 64
spherical contact surfaces
compression of, 117
indentation of, 117
spherical elastic bodies, 92
spherical pendulum
collision of, 82–85
critical coefficient of friction for, 86
slip, 86–87
spin, balls and, 312–316
sports balls. See balls
stability of orbit, 290–292
steady state, 269–270
Steele, C.R., 297
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>stereo-mechanical theory</td>
<td>10</td>
</tr>
<tr>
<td>stick, coefficient for</td>
<td>41-42</td>
</tr>
<tr>
<td>equations of motion for</td>
<td>94-95</td>
</tr>
<tr>
<td>equations of planar motion for</td>
<td>41-42</td>
</tr>
<tr>
<td>initial, 95</td>
<td></td>
</tr>
<tr>
<td>stiff balls, 294</td>
<td></td>
</tr>
<tr>
<td>stiffness, 136</td>
<td></td>
</tr>
<tr>
<td>contact, 209-212</td>
<td></td>
</tr>
<tr>
<td>gradients, 212-221</td>
<td></td>
</tr>
<tr>
<td>Stoianovici, D., 228</td>
<td></td>
</tr>
<tr>
<td>Strack, O.D.L., 204, 209</td>
<td></td>
</tr>
<tr>
<td>strain, 9</td>
<td></td>
</tr>
<tr>
<td>energy, 125-126</td>
<td></td>
</tr>
<tr>
<td>stress</td>
<td></td>
</tr>
<tr>
<td>components, 120</td>
<td></td>
</tr>
<tr>
<td>distribution of, 9, 160-162</td>
<td></td>
</tr>
<tr>
<td>effective, 120</td>
<td></td>
</tr>
<tr>
<td>shear, 119</td>
<td></td>
</tr>
<tr>
<td>Stronge, W.J., 145, 188-189, 201, 315</td>
<td></td>
</tr>
<tr>
<td>structural compliance, 178</td>
<td></td>
</tr>
<tr>
<td>Sundararajan, G., 109</td>
<td></td>
</tr>
<tr>
<td>superball, bounce of, 109-112</td>
<td></td>
</tr>
<tr>
<td>superposition, 149</td>
<td></td>
</tr>
<tr>
<td>Swanson, S.R., 261</td>
<td></td>
</tr>
<tr>
<td>swerve, 65</td>
<td></td>
</tr>
<tr>
<td>Tabor, D., 129</td>
<td></td>
</tr>
<tr>
<td>Tait, P.G., 45, 47</td>
<td></td>
</tr>
<tr>
<td>Tanaka, K., 314-315</td>
<td></td>
</tr>
<tr>
<td>tangent plane, 3, 21</td>
<td></td>
</tr>
<tr>
<td>tangential compliance, 10, 89, 100-102</td>
<td></td>
</tr>
<tr>
<td>balls and, 312-316</td>
<td></td>
</tr>
<tr>
<td>maximum friction for, 104-106</td>
<td></td>
</tr>
<tr>
<td>tangential components of contact force, 90, 106</td>
<td></td>
</tr>
<tr>
<td>of relative velocity, 66</td>
<td></td>
</tr>
<tr>
<td>tangential non-dimensional contact force, 98-99</td>
<td></td>
</tr>
<tr>
<td>tangential terminal slip speed, 102</td>
<td></td>
</tr>
<tr>
<td>tangential velocity, 74, 111, 186</td>
<td></td>
</tr>
<tr>
<td>Taylor, G.I., 162</td>
<td></td>
</tr>
<tr>
<td>tennis ball, 224</td>
<td></td>
</tr>
<tr>
<td>terminal impulse, 54, 82</td>
<td></td>
</tr>
<tr>
<td>coefficient of restitution and, 188-191</td>
<td></td>
</tr>
<tr>
<td>for initial conditions, 55-56</td>
<td></td>
</tr>
<tr>
<td>for slip, 48-55</td>
<td></td>
</tr>
<tr>
<td>terminal kinetic energy, 29</td>
<td></td>
</tr>
<tr>
<td>terminal normal impulse</td>
<td></td>
</tr>
<tr>
<td>dissipated energy and, 28</td>
<td></td>
</tr>
<tr>
<td>for planar impact, 56</td>
<td></td>
</tr>
<tr>
<td>terminal velocity, 212-221</td>
<td></td>
</tr>
<tr>
<td>thin-walled balls, 284, 297-300</td>
<td></td>
</tr>
<tr>
<td>bounce of, 302</td>
<td></td>
</tr>
<tr>
<td>Thomson, W., 45, 47</td>
<td></td>
</tr>
<tr>
<td>three-body system, 211</td>
<td></td>
</tr>
<tr>
<td>three-dimensional impact, 65, 180-183</td>
<td></td>
</tr>
<tr>
<td>general, 87-88</td>
<td></td>
</tr>
<tr>
<td>time, contact, 296</td>
<td></td>
</tr>
<tr>
<td>Timoshenko beam equation, 169-172</td>
<td></td>
</tr>
<tr>
<td>topologically smooth surface, 21</td>
<td></td>
</tr>
<tr>
<td>total work, 45</td>
<td></td>
</tr>
<tr>
<td>traction, 89-90</td>
<td></td>
</tr>
<tr>
<td>Tran, D.N., 132</td>
<td></td>
</tr>
<tr>
<td>transient phase, 283-284</td>
<td></td>
</tr>
<tr>
<td>transient solutions, 269-270</td>
<td></td>
</tr>
<tr>
<td>translational momentum, 64, 210</td>
<td></td>
</tr>
<tr>
<td>translational motion, 14, 22, 75-76</td>
<td></td>
</tr>
<tr>
<td>translational speed, of wavefront, 284</td>
<td></td>
</tr>
<tr>
<td>translational velocity, 304</td>
<td></td>
</tr>
<tr>
<td>transmission, at interface, 155-156</td>
<td></td>
</tr>
<tr>
<td>transverse displacement, 168</td>
<td></td>
</tr>
<tr>
<td>transverse impact, 258-259</td>
<td></td>
</tr>
<tr>
<td>on elastic beam, 251-252</td>
<td></td>
</tr>
<tr>
<td>of elastic-plastic bodies, 139-140</td>
<td></td>
</tr>
<tr>
<td>on flexible bodies, 5, 9</td>
<td></td>
</tr>
<tr>
<td>triangles, 37</td>
<td></td>
</tr>
<tr>
<td>equilateral, 78-82</td>
<td></td>
</tr>
<tr>
<td>Tsai, Y.M., 137</td>
<td></td>
</tr>
<tr>
<td>Turing, A.M., 116</td>
<td></td>
</tr>
<tr>
<td>uncontained fully plastic indentation, 141-144</td>
<td></td>
</tr>
<tr>
<td>uncontained plastic deformation, 142</td>
<td></td>
</tr>
<tr>
<td>unidirectional impulse, 47</td>
<td></td>
</tr>
<tr>
<td>unidirectional slip, 46-47, 49-50</td>
<td></td>
</tr>
<tr>
<td>uniform beam</td>
<td></td>
</tr>
<tr>
<td>common, 2, 21</td>
<td></td>
</tr>
<tr>
<td>tangential compliance, 10, 89, 100-102</td>
<td></td>
</tr>
<tr>
<td>balls and, 312-316</td>
<td></td>
</tr>
<tr>
<td>maximum friction for, 104-106</td>
<td></td>
</tr>
<tr>
<td>tangential components of contact force, 90, 106</td>
<td></td>
</tr>
<tr>
<td>of relative velocity, 66</td>
<td></td>
</tr>
<tr>
<td>tangential non-dimensional contact force, 98-99</td>
<td></td>
</tr>
<tr>
<td>tangential terminal slip speed, 102</td>
<td></td>
</tr>
<tr>
<td>tangential velocity, 74, 111, 186</td>
<td></td>
</tr>
<tr>
<td>Taylor, G.I., 162</td>
<td></td>
</tr>
<tr>
<td>tennis ball, 224</td>
<td></td>
</tr>
<tr>
<td>terminal impulse, 54, 82</td>
<td></td>
</tr>
<tr>
<td>coefficient of restitution and, 188-191</td>
<td></td>
</tr>
<tr>
<td>for initial conditions, 55-56</td>
<td></td>
</tr>
<tr>
<td>for slip, 48-55</td>
<td></td>
</tr>
<tr>
<td>terminal kinetic energy, 29</td>
<td></td>
</tr>
<tr>
<td>terminal normal impulse</td>
<td></td>
</tr>
<tr>
<td>dissipated energy and, 28</td>
<td></td>
</tr>
<tr>
<td>for planar impact, 56</td>
<td></td>
</tr>
<tr>
<td>terminal velocity, 212-221</td>
<td></td>
</tr>
<tr>
<td>thin-walled balls, 284, 297-300</td>
<td></td>
</tr>
<tr>
<td>bounce of, 302</td>
<td></td>
</tr>
<tr>
<td>Thomson, W., 45, 47</td>
<td></td>
</tr>
<tr>
<td>three-body system, 211</td>
<td></td>
</tr>
<tr>
<td>three-dimensional impact, 65, 180-183</td>
<td></td>
</tr>
<tr>
<td>general, 87-88</td>
<td></td>
</tr>
<tr>
<td>time, contact, 296</td>
<td></td>
</tr>
<tr>
<td>Timoshenko beam equation, 169-172</td>
<td></td>
</tr>
<tr>
<td>topologically smooth surface, 21</td>
<td></td>
</tr>
<tr>
<td>total work, 45</td>
<td></td>
</tr>
<tr>
<td>traction, 89-90</td>
<td></td>
</tr>
<tr>
<td>Tran, D.N., 132</td>
<td></td>
</tr>
<tr>
<td>transient phase, 283-284</td>
<td></td>
</tr>
<tr>
<td>transient solutions, 269-270</td>
<td></td>
</tr>
<tr>
<td>translational momentum, 64, 210</td>
<td></td>
</tr>
<tr>
<td>translational motion, 14, 22, 75-76</td>
<td></td>
</tr>
<tr>
<td>translational speed, of wavefront, 284</td>
<td></td>
</tr>
<tr>
<td>translational velocity, 304</td>
<td></td>
</tr>
<tr>
<td>transmission, at interface, 155-156</td>
<td></td>
</tr>
<tr>
<td>transverse displacement, 168</td>
<td></td>
</tr>
<tr>
<td>transverse impact, 258-259</td>
<td></td>
</tr>
<tr>
<td>on elastic beam, 251-252</td>
<td></td>
</tr>
<tr>
<td>of elastic-plastic bodies, 139-140</td>
<td></td>
</tr>
<tr>
<td>on flexible bodies, 5, 9</td>
<td></td>
</tr>
<tr>
<td>triangles, 37</td>
<td></td>
</tr>
<tr>
<td>equilateral, 78-82</td>
<td></td>
</tr>
<tr>
<td>Tsai, Y.M., 137</td>
<td></td>
</tr>
<tr>
<td>Turing, A.M., 116</td>
<td></td>
</tr>
<tr>
<td>uncontained fully plastic indentation, 141-144</td>
<td></td>
</tr>
<tr>
<td>uncontained plastic deformation, 142</td>
<td></td>
</tr>
<tr>
<td>unidirectional impulse, 47</td>
<td></td>
</tr>
<tr>
<td>unidirectional slip, 46-47, 49-50</td>
<td></td>
</tr>
<tr>
<td>uniform beam</td>
<td></td>
</tr>
<tr>
<td>common, 2, 21</td>
<td></td>
</tr>
<tr>
<td>tangential compliance, 10, 89, 100-102</td>
<td></td>
</tr>
<tr>
<td>balls and, 312-316</td>
<td></td>
</tr>
<tr>
<td>maximum friction for, 104-106</td>
<td></td>
</tr>
<tr>
<td>tangential components of contact force, 90, 106</td>
<td></td>
</tr>
<tr>
<td>of relative velocity, 66</td>
<td></td>
</tr>
<tr>
<td>tangential non-dimensional contact force, 98-99</td>
<td></td>
</tr>
<tr>
<td>tangential terminal slip speed, 102</td>
<td></td>
</tr>
<tr>
<td>tangential velocity, 74, 111, 186</td>
<td></td>
</tr>
<tr>
<td>Taylor, G.I., 162</td>
<td></td>
</tr>
<tr>
<td>tennis ball, 224</td>
<td></td>
</tr>
<tr>
<td>terminal impulse, 54, 82</td>
<td></td>
</tr>
<tr>
<td>coefficient of restitution and, 188-191</td>
<td></td>
</tr>
<tr>
<td>for initial conditions, 55-56</td>
<td></td>
</tr>
<tr>
<td>for slip, 48-55</td>
<td></td>
</tr>
<tr>
<td>terminal kinetic energy, 29</td>
<td></td>
</tr>
<tr>
<td>terminal normal impulse</td>
<td></td>
</tr>
<tr>
<td>dissipated energy and, 28</td>
<td></td>
</tr>
<tr>
<td>for planar impact, 56</td>
<td></td>
</tr>
<tr>
<td>terminal velocity, 212-221</td>
<td></td>
</tr>
<tr>
<td>thin-walled balls, 284, 297-300</td>
<td></td>
</tr>
<tr>
<td>bounce of, 302</td>
<td></td>
</tr>
<tr>
<td>Thomson, W., 45, 47</td>
<td></td>
</tr>
<tr>
<td>three-body system, 211</td>
<td></td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press www.cambridge.org
velocity (cont.)
 phase, 166
 relative, 220–221
 rotational, 111
 tangential, 38, 74, 111, 186
 terminal, 212–221
 translational, 304
 yield, 128
 vibration energy, 137
 loss factor, 261
 vibroimpact, 287–289
 Villaggio, P., 139
 virtual power, 181
 viscoelastic bodies, direct impact of, 225
 viscoelastic deformable elements
 hybrid nonlinear, 230–232
 nonlinear, 228–230
 viscoelasticity, linear, 225–228
 viscoplastic bodies, direct impact of, 233
 viscoplastic compliance, 241
 viscoplastic model, bilinear, 27, 234

 Wallis, J., 323–324
 Walton, O.R., 101–102, 228
 Wang, Y., 130
 wave propagation, 10
 in dispersive systems, 165–166
 wavefront, 264–265, 281–282
 stability, 286–287
 translational speed of, 284
 waves, 149–150, 173
 axial wave motion, 166
 characteristics of, 148

dispersive, 175–176
 equation, 140
 evanescent, 166
 flexural, 167
 impact and, 162–165
 indentation and, 162–165
 longitudinal, 148–150
 number, 165–166
 reflection of, 153–154
 work, 138
 compression phase and, 131, 240
 of contact force, 238–244
 elastic strain energy and, 28
 energy dissipation and, 191–193
 of friction, 192–193
 of impulsive forces, 191–193
 indentation and, 131
 kinetic energy and, 45
 of normal contact force, 26
 partial, 46–47
 of reaction impulse, 191–192
 restitution phase and, 131, 240
 total, 45
 Wren, C., 324

yield
 indentation at yield of elastic-plastic bodies, 119
 for plane strain, 141
 strain, 5–6
 velocity, 128
 Yigit, A.S., 242, 261
 Young’s modulus, 129, 137–138, 148, 152, 172