
1 Introduction

Networks are present in almost every aspect of our life. The technological world

surrounding us is full of networks. Communication networks consisting of telephones

and cellular phones, the electrical power grid, computer communication networks,

airline networks and, in particular, the world-wide Internet network are an important

part of everyday life. The symbolic network of HTML pages and links – the World

Wide Web (WWW) – is a virtual network that many of us use every day, and the list

is long. Society is also networked. The network of friendship between individuals,

working relations, or common hobbies, and the network of business relations between

people and firms are examples of social and economic networks. Cities and countries

are connected by road or airline networks. Epidemics spread in population networks.

A great deal of interest has recently focused on biological networks representing

the interactions between genes and proteins in our body. Ecological networks such

as predator–prey networks are also under intensive study today. The physical world

is also rich in network phenomena such as interactions between atoms in matter,

between monomers in polymers, between grains in granular media, and the network

of relations between similar configurations of proteins (i.e. between configurations

that are in reach of each other by a simple move). Recently, studies have shown that

polymer networks in real space can actually have a wide distribution of the branching

factor, which is also similar to other real-world networks [ZKM+03].

Graphs are used for describing mathematical concepts in networks. Graphs rep-

resent the essential topological properties of a network by treating the network as

a collection of nodes and edges. For example, in computer networks, such as the

Internet, computers can be represented by nodes, and the cables between them are

represented by the edges. In the WWW the nodes are the HTML pages, and the edges

represent the links between pages. This is a simple, yet powerful concept. Because of

its simplicity it considers different complex systems, such as those described above,

using the same mathematical tools and methods and, in many cases, the properties of

the networks are similar.

Graph theory is rooted in the eighteenth century, beginning with the work of Euler,

who is the father of the field of topology as well as many other fields in mathematics.

The theory began with the famous problem of the bridges of Kőnigsberg, where people

had been wondering for years whether all seven bridges connecting the different parts
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2 Introduction

Figure 1.1 The bridges of Kőnigsberg (after Wikipedia).

of the town could be traversed, without passing any of them twice (see Figure 1.1).

The genius of Euler led him to the understanding that the only important factor in this

problem is the topological network structure, and therefore it can be simplified into

a graph traversal problem, containing nodes (parts of the city) and links (bridges).

He then proceeded to solve the problem by concluding that to fulfill the requirement

every node in the graph, except possibly the first and last nodes visited, should be

connected by an even number of bridges (since it is entered and left the same number

of times). In Kőnigsberg more than two nodes have an odd number of links, and

therefore the bridges cannot be traversed by such a path, known thereafter as an

Eulerian path.

This simple yet powerful argument shows the strength of graph theory, enabling

deduction of properties of real-world systems using simplification in order to construct

a very basic model. Studies of graph theory usually focus on the properties of special

graphs or on extremal properties (finding graphs with extreme properties). However,

the networks mentioned above are hardly appropriate for such research. They change

over time, social links are created and broken, technological networks are changed

daily by the addition of new nodes, as are the links between them. Biological networks

change by evolutionary processes and by environmental processes. Even at a given

time point, one cannot usually find the complete data for the network structure.
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3 Introduction

In the 1960s, two mathematicians, Paul Erdős and Alfred Rényi (ER), introduced a

new concept that allows the treatment of such networks – random graph theory [ER59,

ER60].1 Their ingenious idea was to combine the concepts of graph theory with tools

from probability theory and to consider families of graphs rather than specific graphs.

Random graph theory is to graph theory what statistical mechanics is to Newtonian

physics. The microscopic theory underlies the small-scale behavior, but when the

entire ensemble is considered, new statistical concepts and collective behavior emerge.

The study of random graphs has led to ideas very similar to those of statistical

physics. Since statistical physics deals with a system of many interacting atoms

and molecules it is natural to assume that methods from this field will be useful

for network study. Indeed, percolation, scaling, order parameters, renormalization,

self-similarity, phase transitions, and critical exponents from statistical physics are

all present in the field of random graphs, and are used in studying such networks.

At the end of the twentieth century, with the advancement of computers and

the availability of large-scale data and the tools to analyze them, it became clear that

the classical theory of random graphs fails to describe many real-world networks. The

works of Barabási and Albert on the WWW [BA99] and of Faloutsos, Faloutsos, and

Faloutsos on the Internet router network [FFF99] made clear that the link distribution

of these and many other networks is not completely random, and it cannot be described

by ER graph theory. These findings and others have led to a new, generalized form of

random graph theory, taking into account some less trivial correlations found in real-

world networks. These results explain several long-standing puzzles, for example,

why viruses and worms are able to survive in the Internet for a very long time.

Moreover, studying these new types of networks leads to novel physical laws, which

arise owing to the new topology. If materials such as polymers can be constructed

with a similar topology, it is expected that they will obey new and anomalous physical

laws such as phase transitions, elasticity, and transport.

This book will focus on this modern theory of complex networks. Since thousands

of papers, as well as several popular science [Bar03, Wat03] and scientific books

[BBV08, DM03, PV03] have appeared on this subject in the last few years, it will be

impossible to cover all existing works. In this book we have tried to focus on results

concerning the structure of these networks and also partially cover works regarding

the dynamics and applications. Since this is also intended as a textbook for students

and scientists aiming to enter this growing field, we will attempt to present a detailed

and clear description of the methods used in analyzing complex networks. This, we

believe, will allow the reader to obtain further results in this growing field and to

comprehend further literature on this subject.

1 In fact, some of these ideas had been raised before, in particular, by Rapoport [Rap57]. However, only
with the systematic works of Erdős and Rényi was much attention given to this subject.

© in this web service Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-84156-6 - Complex Networks: Structure, Robustness and Function
Reuven Cohen and Shlomo Havlin
Excerpt
More information

http://www.cambridge.org/9780521841566
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

The rest of this introduction will present some basic definitions and concepts from

physics and mathematics. The main body of this book is divided into three parts.

Part I will present results based on measurements in real-world networks, and will

present several ensembles and growth models studied in this field. Part II will discuss

the structural and robustness properties of complex networks. It will focus mainly on

scale-free networks, which are thought to be most relevant for real-world systems,

but in most cases this approach is also suitable for other types of random networks.

Part III will discuss some dynamics regarding complex networks, and applications

of the knowledge gained to real-world problems. The appendices will provide more

technical details regarding probability theory, as well as algorithmic and simulation

aspects.

1.1 Graph theory

A graph according to its mathematical definition is a pair of sets (V, E), where V is

a set of vertices (the nodes of the graph), and E is a set of edges, denoting the links

between the vertices. Each edge consists of a pair of vertices and can be regarded as

similar to “bonds” in physical systems.

In a directed graph (also termed “digraph”), the edges are taken as ordered pairs,

i.e., each edge is directed from the first to the second vertex of the pair.

A “multigraph” is a graph in which more than one edge is allowed between a

pair of vertices and edges are also allowed to connect a vertex to itself. This is less

restrictive than the notion of a graph, and therefore many of the networks studied in

this work will actually be multigraphs.

A graph is represented frequently by an adjacency matrix, Ai j , which is a matrix

in which every row and column represents a vertex of the graph. The Ai j entry is 1

if a link exists between the i th and j th vertices, or 0 otherwise. In a directed graph,

the matrix will, in general, be asymmetrical. In a multigraph the entries can also be

integers larger than 1, and the diagonal entries are not necessarily 0.

1.2 Scale-free processes and fractal structures

In statistical physics, it is well known that systems approaching a critical point in

a phase transition develop a behavior that spans all length-scales of the system.

Close to criticality, the correlations between physically remote regimes change from

decaying exponentially with the distance, to a slow, power-law, decaying behavior.
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5 1.2 Scale-free processes and fractal structures

This power-law phenomenon has no characteristic length-scale, and is therefore

often termed “scale free.” The reaction to external disturbances, for example,

the susceptibility of the system, also diverges as a power law when approaching

the critical point. Another situation where power laws and scale-free behavior appear

is in self-organized criticality (SOC) [BTW87], where events such as earthquakes

and forest fires tend to drive themselves into a criticality-like power-law behavior.

Power-law distributions have been studied in physics, particularly in the context of

fractals and Lévy flights. Fractals are objects having no characteristic length-scale and

appear similar (at least in a statistical sense) at every length-scale [BBV08, BH94,

BH96, bH00, BLW94, Fed88, Man82]. Many natural objects, such as mountains,

clouds, coastlines and rivers, as well as the cardiovascular and nervous systems are

known to be fractals and are self-similar. This is why we find it hard to distinguish

between a photograph of a mountain and part of the mountain; neither can we ascertain

the altitude from which a picture of a coastline was taken. Diverse phenomena,

such as the distribution of earthquakes, biological rhythms, and rates of transport

of data packets in communication networks, are also known to possess a power-law

distribution. They come in all sizes and rhythms, spanning many orders of magnitude

[BH96].

Lévy flights were suggested by Paul Lévy [Lév25], who was studying what is now

known as Lévy stable distributions. The question he asked was, when is the length

distribution of a single step in a random walk similar to that of the entire walk?

Besides the known result, that of the Gaussian distribution, Lévy found an entire new

family – essentially that of scale-free distributions. Stable distributions do not obey

the central limit theorem (stating that the sum of a large number of steps, having

finite variance, tends to a Gaussian distribution [Fel68]), owing to the divergence of

the variance of individual steps. Lévy walks have numerous applications [GHB08,

HBG06, KSZ96, SK85, SZK93]. An interesting observation is that animal foraging

patterns that follow Lévy stable distributions have been shown to be the most efficient

strategy [Kle00a, VBH+99]. For recent reviews and books on complex networks and,

in particular, scale-free networks, see [AB02, BBV08, BLM+06, DG08, DM02,

DMS03, New02b, PV03].
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PART I

RANDOM NETWORK
MODELS
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2 The Erdős–Rényi models

Before 1960, graph theory mainly dealt with the properties of specific individual

graphs. In the 1960s, Paul Erdős and Alfred Rényi initiated a systematic study of

random graphs [ER59, ER60, ER61]. Some results regarding random graphs were

reported even earlier by Rapoport [Rap57]. Random graph theory is, in fact, not the

study of individual graphs, but the study of a statistical ensemble of graphs (or, as

mathematicians prefer to call it, a probability space of graphs). The ensemble is a

class consisting of many different graphs, where each graph has a probability attached

to it. A property studied is said to exist with probability P if the total probability

of a graph in the ensemble possessing that property is P (or the total fraction of

graphs in the ensemble that has this property is P). This approach allows the use

of probability theory in conjunction with discrete mathematics for studying graph

ensembles. A property is said to exist for a class of graphs if the fraction of graphs

in the ensemble which does not have this property is of zero measure. This is usually

termed as a property of almost every (a.e.) graph. Sometimes the terms “almost

surely” or “with high probability” are also used (with the former usually taken to

mean that the residual probability vanishes exponentially with the system size).

2.1 Erdős–Rényi graphs

Two well-studied graph ensembles are G N ,M – the ensemble of all graphs having N

vertices and M edges, and G N ,p – the ensemble consisting of graphs with N vertices,

where each possible edge is realized with probability p. These two families, initially

studied by Erdős and Rényi, are known to be similar if M = (N
2

)
p, so long as p is not

too close to 0 or 1 [Bol85]; they are referred to as ER graphs. These families are quite

similar to the microcanonical and canonical ensembles studied in statistical physics.

Examples of other well-studied ensembles are the family of regular graphs, where

all nodes have the same number of edges, P(k) = δk,k0 , and the family of unlabeled

graphs, where graphs that are isomorphic under permutations of their nodes are

considered to be the same object.
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10 The Erdős–Rényi models

An important attribute of a graph is the average degree, i.e., the average number

of edges connected to each node. We will denote the degree of the i th node by ki

and the average degree by 〈k〉. N -vertex graphs with 〈k〉 = O(N 0) are called sparse

graphs. In this book, we concern ourselves mainly with sparse graphs.

An interesting characteristic of the ensemble G N ,p is that many of its properties

have a related threshold function, pt(N ), such that the property exists, in the “ther-

modynamic limit” of N → ∞, with probability 0 if p < pt, and with probability 1 if

p > pt. This phenomenon is the same as the physical concept of a percolation phase

transition. An example of such a property is the existence of a giant component,

i.e., a set of connected nodes, in the sense that a path exists between any two of

them, whose size is proportional to N . Erdős and Rényi showed [ER60] that for

ER graphs, such a component exists if 〈k〉 > 1. If 〈k〉 < 1, only small components

exist, and the size of the largest component is proportional to ln N . Exactly at the

threshold, 〈k〉 = 1, a component whose size is proportional to N 2/3 emerges. This

phenomenon was described by Erdős as the “double jump.”1We will later relate the

exponent 2/3 to the fractal dimension of the incipient infinite cluster (giant compo-

nent) at criticality, studied in the statistical physics literature [BH96, SA94]. It can

also be shown that at criticality the size distribution of the components (clusters) is

n(s) ∼ s−2.5 [BH96, SA94]. Another property is the average path length between any

two nodes, which in almost every graph of the ensemble (with 〈k〉 > 1 and finite) is of

order ln N . The small, logarithmic distance is actually the origin of the “small-world”

phenomena that characterize networks.

2.2 Scale-free networks

The Erdős–Rényi model has traditionally been the dominant subject of study in the

field of random graphs. Recently, however, several studies of real-world networks

have found that the ER model fails to reproduce many of their observed properties.

One of the simplest properties of a network that can be measured directly

is the degree distribution, or the fraction P(k) of nodes having k connections

(degree k). A well-known result for ER networks is that the degree distribution is

Poissonian,

P(k) = e−z zk/k!, (2.1)

where z = 〈k〉 is the average degree [Bol85].

1 For a discussion of the phase transition in random graphs see, e.g., [AS00, Bol85].
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11 2.2 Scale-free networks

Direct measurements of the degree distribution for real networks, such as the

Internet [AB02, FFF99], WWW (where hypertext links constitute directed edges)

[BAJ00, BKM+00], email network [EMB02], citations of scientific articles [Red98],

metabolic networks [JMBO01, JTA+00], trust networks [GGA+02], airline networks

[BBPV04], neuronal networks [ECC+05], and many more, show that the Poisson law

does not apply (for more details, see Chapter 3). Rather, often these nets exhibit a

scale-free degree distribution:

P(k) = ck−γ , k = m, . . . , K (2.2)

where c ≈ (γ − 1)mγ−1 is a normalization factor, and m and K are the lower and

upper cutoffs for the degree of a node, respectively. The divergence of moments

higher than �γ − 1	 (as K → ∞ when N → ∞) is responsible for many of the

anomalous properties attributed to scale-free networks.

All real-world networks are finite and therefore all their moments are finite. The

actual value of the cutoff K plays an important role. It may be approximated by noting

that the total probability of nodes with k > K is of order 1/N [CEbH00, DMS01c]:

∫ ∞

K
P(k) dk ∼ 1/N . (2.3)

This yields the result

K ∼ m N 1/(γ−1). (2.4)

The degree distribution alone is not enough to characterize the network. There

are many other quantities, such as the degree-degree correlation (between connected

nodes), the spatial correlations, the clustering coefficient, the betweenness or central-

ity distribution, and the self-similarity exponents. These quantities will be defined in

Chapter 3.

Several models have been presented for the evolution of scale-free networks, each

of which may lead to a different ensemble. The first proposal was the preferential

attachment model of Barabási and Albert, which is known as the “Barabási–Albert

model” [BA99]. Several variants of this model have been suggested (see, e.g., [BB01,

KRL00]). In this book we will focus on the configuration model, also known as the

“Bollobás construction” [Bol85], (sometimes also referred to as the “Molloy–Reed

construction” [ACL00, MR95, MR98]), which ignores the evolution and assumes

only the degree distribution and no correlations between nodes. Thus, the node

reached by following a link is independent of the origin. For algorithms that generate

networks with a given degree distribution, see Appendix C.
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12 The Erdős–Rényi models

(a) (b)

Figure 2.1 (a) A Cayley tree with z = 3. (b) A hexagonal lattice with the same degree.

2.3 Diameter and fractal dimensions

Regular lattices can be viewed as networks embedded in Euclidean space, of a well-

defined dimension, d. This means that n(r ), the number of nodes within a distance

r from an origin, grows as n(r ) ∼ rd (for large r ). For fractal objects, d in the last

relation may be a non-integer and is replaced by the fractal dimension df . Similarly,

the chemical dimension, dl , is defined by the scaling of the number of nodes within

l edges (the shortest distance along edges) from a given node (an origin), n(l) ∼ ldl .

A third dimension, dmin, relates between the chemical path length, l, and Euclidean

distances, l ∼ rdmin . It satisfies dmin = df/dl [BH94, BH96, bH00].

An example of a network where the above power laws are not valid is the Cayley

tree (also known as the Bethe lattice). The Cayley tree is a regular graph, of fixed

degree z, and no loops (see Figure 2.1(a)). It has been studied by physicists in many

contexts, since its simplicity often allows for exact analysis. An infinite Cayley tree

cannot be embedded in a Euclidean space of finite dimensionality. The number of

nodes at l is n(l) ∼ (z − 1)l . Since the exponential growth is faster than any power

law, Cayley trees are referred to as infinite-dimensional systems.

In most random network models, the structure is locally tree-like (since most loops

occur only for n(l) ∼ N ), and since the number of nodes grows as n(l) ∼ 〈k − 1〉l ,

they are also infinite dimensional. As a consequence, the diameter of such graphs

(i.e., the minimal path between the most distant nodes) scales as D ∼ ln N [Bol85].

Many properties of ER networks, including the logarithmic diameter, are also present

in Cayley trees. This small diameter in ER graphs and Cayley trees is in contrast to

that of finite-dimensional lattices, where D ∼ N 1/dl .

Similar to ER, percolation on infinite-dimensional lattices and the Cayley tree

(studied as early as 1941 by Flory [Flo41]) yields a critical threshold pc = 1/(z − 1).
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