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Introduction

1.1 Prediction

Prediction, as we understand it in this book, is concerned with guessing the short-term evo-
lution of certain phenomena. Examples of prediction problems are forecasting tomorrow’s
temperature at a given location or guessing which asset will achieve the best performance
over the next month. Despite their different nature, these tasks look similar at an abstract
level: one must predict the next element of an unknown sequence given some knowledge
about the past elements and possibly other available information. In this book we develop
a formal theory of this general prediction problem. To properly address the diversity of
potential applications without sacrificing mathematical rigor, the theory will be able to
accommodate different formalizations of the entities involved in a forecasting task, such as
the elements forming the sequence, the criterion used to measure the quality of a forecast,
the protocol specifying how the predictor receives feedback about the sequence, and any
possible side information provided to the predictor.

In the most basic version of the sequential prediction problem, the predictor – or fore-
caster – observes one after another the elements of a sequence y1, y2, . . . of symbols. At
each time t = 1, 2, . . . , before the t th symbol of the sequence is revealed, the forecaster
guesses its value yt on the basis of the previous t − 1 observations.

In the classical statistical theory of sequential prediction, the sequence of elements,
which we call outcomes, is assumed to be a realization of a stationary stochastic process.
Under this hypothesis, statistical properties of the process may be estimated on the basis
of the sequence of past observations, and effective prediction rules can be derived from
these estimates. In such a setup, the risk of a prediction rule may be defined as the expected
value of some loss function measuring the discrepancy between predicted value and true
outcome, and different rules are compared based on the behavior of their risk.

This book looks at prediction from a quite different angle. We abandon the basic assump-
tion that the outcomes are generated by an underlying stochastic process and view the
sequence y1, y2, . . . as the product of some unknown and unspecified mechanism (which
could be deterministic, stochastic, or even adversarially adaptive to our own behavior). To
contrast it with stochastic modeling, this approach has often been referred to as prediction
of individual sequences.

Without a probabilistic model, the notion of risk cannot be defined, and it is not imme-
diately obvious how the goals of prediction should be set up formally. Indeed, several
possibilities exist, many of which are discussed in this book. In our basic model, the per-
formance of the forecaster is measured by the loss accumulated during many rounds of

1

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-84108-5 - Prediction, Learning, and Games
Nicolo Cesa-Bianchi and Gabor Lugosi
Excerpt
More information

http://www.cambridge.org/0521841089
http://www.cambridge.org
http://www.cambridge.org


2 Introduction

prediction, where loss is scored by some fixed loss function. Since we want to avoid any
assumption on the way the sequence to be predicted is generated, there is no obvious base-
line against which to measure the forecaster’s performance. To provide such a baseline,
we introduce a class of reference forecasters, also called experts. These experts make their
prediction available to the forecaster before the next outcome is revealed. The forecaster
can then make his own prediction depend on the experts’ “advice” in order to keep his
cumulative loss close to that of the best reference forecaster in the class.

The difference between the forecaster’s accumulated loss and that of an expert is called
regret, as it measures how much the forecaster regrets, in hindsight, of not having followed
the advice of this particular expert. Regret is a basic notion of this book, and a lot of
attention is payed to constructing forecasting strategies that guarantee a small regret with
respect to all experts in the class. As it turns out, the possibility of keeping the regrets small
depends largely on the size and structure of the class of experts, and on the loss function.
This model of prediction using expert advice is defined formally in Chapter 2 and serves
as a basis for a large part of the book.

The abstract notion of an “expert” can be interpreted in different ways, also depending on
the specific application that is being considered. In some cases it is possible to view an expert
as a black box of unknown computational power, possibly with access to private sources
of side information. In other applications, the class of experts is collectively regarded as a
statistical model, where each expert in the class represents an optimal forecaster for some
given “state of nature.” With respect to this last interpretation, the goal of minimizing regret
on arbitrary sequences may be thought of as a robustness requirement. Indeed, a small
regret guarantees that, even when the model does not describe perfectly the state of nature,
the forecaster does almost as well as the best element in the model fitted to the particular
sequence of outcomes. In Chapters 2 and 3 we explore the basic possibilities and limitations
of forecasters in this framework.

Models of prediction of individual sequences arose in disparate areas motivated by
problems as different as playing repeated games, compressing data, or gambling. Because
of this diversity, it is not easy to trace back the first appearance of such a study. But
it is now recognized that Blackwell, Hannan, Robbins, and the others who, as early as
in the 1950s, studied the so-called sequential compound decision problem were the pio-
neering contributors in the field. Indeed, many of the basic ideas appear in these early
works, including the use of randomization as a powerful tool of achieving a small regret
when it would otherwise be impossible. The model of randomized prediction is intro-
duced in Chapter 4. In Chapter 6 several variants of the basic problem of randomized
prediction are considered in which the information available to the forecaster is limited in
some way.

Another area in which prediction of individual sequences appeared naturally and found
numerous applications is information theory. The influential work of Cover, Davisson,
Lempel, Rissanen, Shtarkov, Ziv, and others gave the information-theoretic foundations
of sequential prediction, first motivated by applications for data compression and “uni-
versal” coding, and later extended to models of sequential gambling and investment. This
theory mostly concentrates on a particular loss function, the so-called logarithmic or self-
information loss, as it has a natural interpretation in the framework of sequential probability
assignment. In this version of the prediction problem, studied in Chapters 9 and 10, at each
time instance the forecaster determines a probability distribution over the set of possible
outcomes. The total likelihood assigned to the entire sequence of outcomes is then used to
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1.3 Games 3

score the forecaster. Sequential probability assignment has been studied in different closely
related models in statistics, including bayesian frameworks and the problem of calibration
in various forms. Dawid’s “prequential” statistics is also close in spirit to some of the
problems discussed here.

In computer science, algorithms that receive their input sequentially are said to operate
in an online modality. Typical application areas of online algorithms include tasks that
involve sequences of decisions, like when one chooses how to serve each incoming request
in a stream. The similarity between decision problems and prediction problems, and the
fact that online algorithms are typically analyzed on arbitrary sequences of inputs, has
resulted in a fruitful exchange of ideas and techniques between the two fields. However,
some crucial features of sequential decision problems that are missing in the prediction
framework (like the presence of states to model the interaction between the decision maker
and the mechanism generating the stream of requests) has so far prevented the derivation
of a general theory allowing a unified analysis of both types of problems.

1.2 Learning

Prediction of individual sequences has also been a main topic of research in the theory
of machine learning, more concretely in the area of online learning. In fact, in the late
1980s–early 1990s the paradigm of prediction with expert advice was first introduced as a
model of online learning in the pioneering papers of De Santis, Markowski, and Wegman;
Littlestone and Warmuth; and Vovk, and it has been intensively investigated ever since. An
interesting extension of the model allows the forecaster to consider other information apart
from the past outcomes of the sequence to be predicted. By considering side information
taking values in a vector space, and experts that are linear functions of the side information
vector, one obtains classical models of online pattern recognition. For example, Rosenblatt’s
Perceptron algorithm, the Widrow-Hoff rule, and ridge regression can be naturally cast in
this framework. Chapters 11 and 12 are devoted to the study of such online learning
algorithms.

Researchers in machine learning and information theory have also been interested in the
computational aspects of prediction. This becomes a particularly important problem when
very large classes of reference forecasters are considered, and various tricks need to be
invented to make predictors feasible for practical applications. Chapter 5 gathers some of
these basic tricks illustrated on a few prototypical examples.

1.3 Games

The online prediction model studied in this book has an intimate connection with game
theory. First of all, the model is most naturally defined in terms of a repeated game
played between the forecaster and the “environment” generating the outcome sequence,
thus offering a convenient way of describing variants of the basic theme. However, the
connection is much deeper. For example, in Chapter 7 we show that classical minimax
theorems of game theory can be recovered as simple applications of some basic bounds for
the performance of sequential prediction algorithms. On the other hand, certain generalized
minimax theorems, most notably Blackwell’s approachability theorem can be used to define
forecasters with good performance on individual sequences.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-84108-5 - Prediction, Learning, and Games
Nicolo Cesa-Bianchi and Gabor Lugosi
Excerpt
More information

http://www.cambridge.org/0521841089
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

Perhaps surprisingly, the connection goes even deeper. It turns out that if all players in a
repeated normal form game play according to certain simple regret-minimizing prediction
strategies, then the induced dynamics leads to equilibrium in a certain sense. This interesting
line of research has been gaining terrain in game theory, based on the pioneering work of
Foster, Vohra, Hart, Mas-Colell, and others. In Chapter 7 we discuss the possibilities and
limitations of strategies based on regret minimizing forecasting algorithms that lead to
various notions of equilibria.

1.4 A Gentle Start

To introduce the reader to the spirit of the results contained in this book, we now describe
in detail a simple example of a forecasting procedure and then analyze its performance on
an arbitrary sequence of outcomes.

Consider the problem of predicting an unknown sequence y1, y2, . . . of bits yt ∈ {0, 1}.
At each time t the forecaster first makes his guess p̂t ∈ {0, 1} for yt . Then the true bit yt is
revealed and the forecaster finds out whether his prediction was correct. To compute p̂t the
forecaster listens to the advice of N experts. This advice takes the form of a binary vector
( f1,t , . . . , fN ,t ), where fi,t ∈ {0, 1} is the prediction that expert i makes for the next bit yt .
Our goal is to bound the number of time steps t in which p̂t �= yt , that is, to bound the
number of mistakes made by the forecaster.

To start with an even simpler case, assume we are told in advance that, on this particular
sequence of outcomes, there is some expert i that makes no mistakes. That is, we know
that fi,t = yt for some i and for all t , but we do not know for which i this holds. Using
this information, it is not hard to devise a forecasting strategy that makes at most �log2 N�
mistakes on the sequence. To see this, consider the forecaster that starts by assigning a
weight w j = 1 to each expert j = 1, . . . , N . At every time step t , the forecaster predicts
with p̂t = 1 if and only if the number of experts j with w j = 1 and such that f j,t = 1
is bigger than those with w j = 1 and such that f j,t = 0. After yt is revealed, if p̂t �= yt ,
then the forecaster performs the assignment wk ← 0 on the weight of all experts k such
that fk,t �= yt . In words, this forecaster keeps track of which experts make a mistake and
predicts according to the majority of the experts that have been always correct.

The analysis is immediate. Let Wm be the sum of the weights of all experts after the
forecaster has made m mistakes. Initially, m = 0 and W0 = N . When the forecaster makes
his mth mistake, at least half of the experts that have been always correct so far make their
first mistake. This implies that Wm ≤ Wm−1/2, since those experts that were incorrect for
the first time have their weight zeroed by the forecaster. Since the above inequality holds
for all m ≥ 1, we have Wm ≤ W0/2m . Recalling that expert i never makes a mistake, we
know that wi = 1, which implies that Wm ≥ 1. Using this together with W0 = N , we thus
find that 1 ≤ N/2m . Solving for m (which must be an integer) gives the claimed inequality
m ≤ �log2 N�.

We now move on to analyze the general case, in which the forecaster does not have any
preliminary information on the number of mistakes the experts will make on the sequence.
Our goal now is to relate the number of mistakes made by the forecaster to the number of
mistakes made by the best expert, irrespective of which sequence is being predicted.

Looking back at the previous forecasting strategy, it is clear that setting the weight of
an incorrect expert to zero makes sense only if we are sure that some expert will never
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1.5 A Note to the Reader 5

make a mistake. Without this guarantee, a safer choice could be performing the assignment
wk ← β wk every time expert k makes a mistake, where 0 < β < 1 is a free parameter. In
other words, every time an expert is incorrect, instead of zeroing its weight we shrink it by a
constant factor. This is the only modification we make to the old forecaster, and this makes
its analysis almost as easy as the previous one. More precisely, the new forecaster compares
the total weight of the experts that recommend predicting 1 with those that recommend 0
and predicts according to the weighted majority. As before, at the time the forecaster makes
his mth mistake, the overall weight of the incorrect experts must be at least Wm−1/2. The
weight of these experts is then multiplied by β, and the weight of the other experts, which
is at most Wm−1/2, is left unchanged. Hence, we have Wm ≤ Wm−1/2 + β Wm−1/2. As
this holds for all m ≥ 1, we get Wm ≤ W0(1 + β)m/2m . Now let k be the expert that has
made the fewest mistakes when the forecaster made his mth mistake. Denote this minimal
number of mistakes by m∗. Then the current weight of this expert is wk = βm∗

, and thus we
have Wm ≥ βm∗

. This provides the inequality βm∗ ≤ W0(1 + β)m/2m . Using this, together
with W0 = N , we get the final bound

m ≤
⌊

log2 N + m∗ log2(1/β)

log2
2

1+β

⌋
.

For any fixed value of β, this inequality establishes a linear dependence between the
mistakes made by the forecaster, after any number of predictions, and the mistakes made
by the expert that is the best after that same number of predictions. Note that this bound
holds irrespective of the choice of the sequence of outcomes.

The fact that m and m∗ are linearly related means that, in some sense, the performance
of this forecaster gracefully degrades as a function of the “misfit” m∗ between the experts
and the outcome sequence. The bound also exhibits a mild dependence on the number of
experts: the log2 N term implies that, apart from computational considerations, doubling
the number of experts causes the bound to increase by a small additive term.

Notwithstanding its simplicity, this example contains some of the main themes developed
in the book, such as the idea of computing predictions using weights that are functions of
the experts’ past performance. In the subsequent chapters we develop this and many other
ideas in a rigorous and systematic manner with the intent of offering a comprehensive view
on the many facets of this fascinating subject.

1.5 A Note to the Reader

The book is addressed to researchers and students of computer science, mathematics,
engineering, and economics who are interested in various aspects of prediction and learning.
Even though we tried to make the text as self-contained as possible, the reader is assumed
to be comfortable with some basic notions of probability, analysis, and linear algebra. To
help the reader, we collect in the Appendix some technical tools used in the book. Some of
this material is quite standard but may not be well known to all potential readers.

In order to minimize interruptions in the flow of the text, we gathered bibliographical
references at the end of each chapter. In these references we intend to trace back the origin
of the results described in the text and point to some relevant literature. We apologize for any
possible omissions. Some of the material is published here for the first time. These results
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6 Introduction

are not flagged. Each chapter is concluded with a list of exercises whose level of difficulty
varies between distant extremes. Some of the exercises can be solved by an easy adaptation
of the material described in the main text. These should help the reader in mastering the
material. Some others resume difficult research results. In some cases we offer guidance to
the solution, but there is no solution manual.

Figure 1.1 describes the dependence structure of the chapters of the book. This should
help the reader to focus on specific topics and teachers to organize the material of various
possible courses.
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1 Introduction
2 Prediction with expert advice
3 Tight bounds for specific losses
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Figure 1.1. The dependence structure of the chapters.
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2

Prediction with Expert Advice

The model of prediction with expert advice, introduced in this chapter, provides the foun-
dations to the theory of prediction of individual sequences that we develop in the rest of
the book.

Prediction with expert advice is based on the following protocol for sequential deci-
sions: the decision maker is a forecaster whose goal is to predict an unknown sequence
y1, y2 . . . of elements of an outcome space Y . The forecaster’s predictions p̂1, p̂2 . . .

belong to a decision space D, which we assume to be a convex subset of a vec-
tor space. In some special cases we take D = Y , but in general D may be different
from Y .

The forecaster computes his predictions in a sequential fashion, and his predictive
performance is compared to that of a set of reference forecasters that we call experts.
More precisely, at each time t the forecaster has access to the set

{
fE,t : E ∈ E}

of expert
predictions fE,t ∈ D, where E is a fixed set of indices for the experts. On the basis of the
experts’ predictions, the forecaster computes his own guess p̂t for the next outcome yt .
After p̂t is computed, the true outcome yt is revealed.

The predictions of forecaster and experts are scored using a nonnegative loss function
� : D × Y → R.

This prediction protocol can be naturally viewed as the following repeated game between
“forecaster,” who makes guesses p̂t , and “environment,” who chooses the expert advice{

fE,t : E ∈ E}
and sets the true outcomes yt .

PREDICTION WITH EXPERT ADVICE

Parameters: decision space D, outcome space Y , loss function �, set E of expert
indices.

For each round t = 1, 2, . . .

(1) the environment chooses the next outcome yt and the expert advice{
fE,t ∈ D : E ∈ E}

; the expert advice is revealed to the forecaster;
(2) the forecaster chooses the prediction p̂t ∈ D;
(3) the environment reveals the next outcome yt ∈ Y;
(4) the forecaster incurs loss �( p̂t , yt ) and each expert E incurs loss

�( fE,t , yt ).
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8 Prediction with Expert Advice

The forecaster’s goal is to keep as small as possible the cumulative regret (or sim-
ply regret) with respect to each expert. This quantity is defined, for expert E , by the
sum

RE,n =
n∑

t=1

(
�( p̂t , yt ) − �( fE,t , yt )

) = L̂n − L E,n,

where we use L̂n = ∑n
t=1 �( p̂t , yt ) to denote the forecaster’s cumulative loss and L E,n =∑n

t=1 �( fE,t , yt ) to denote the cumulative loss of expert E . Hence, RE,n is the difference
between the forecaster’s total loss and that of expert E after n prediction rounds. We also
define the instantaneous regret with respect to expert E at time t by rE,t = �( p̂t , yt ) −
�( fE,t , yt ), so that RE,n = ∑n

t=1 rE,t . One may think about rE,t as the regret the forecaster
feels of not having listened to the advice of expert E right after the t th outcome yt has been
revealed.

Throughout the rest of this chapter we assume that the number of experts is finite,
E = {1, 2, . . . , N }, and use the index i = 1, . . . , N to refer to an expert. The goal of
the forecaster is to predict so that the regret is as small as possible for all sequences of
outcomes. For example, the forecaster may want to have a vanishing per-round regret, that is,
to achieve

max
i=1,...,N

Ri,n = o(n) or, equivalently,
1

n

(
L̂n − min

i=1,...,N
Li,n

)
n→∞−→ 0,

where the convergence is uniform over the choice of the outcome sequence and the choice
of the expert advice. In the next section we show that this ambitious goal may be achieved
by a simple forecaster under mild conditions.

The rest of the chapter is structured as follows. In Section 2.1 we introduce the important
class of weighted average forecasters, describe the subclass of potential-based forecasters,
and analyze two important special cases: the polynomially weighted average forecaster
and the exponentially weighted average forecaster. This latter forecaster is quite cen-
tral in our theory, and the following four sections are all concerned with various issues
related to it: Section 2.2 shows certain optimality properties, Section 2.3 addresses the
problem of tuning dynamically the parameter of the potential, Section 2.4 investigates
the problem of obtaining improved regret bounds when the loss of the best expert is
small, and Section 2.5 investigates the special case of differentiable loss functions. Starting
with Section 2.6, we discover the advantages of rescaling the loss function. This sim-
ple trick allows us to derive new and even sharper performance bounds. In Section 2.7
we introduce and analyze a weighted average forecaster for rescaled losses that, unlike
the previous ones, is not based on the notion of potential. In Section 2.8 we return to
the exponentially weighted average forecaster and derive improved regret bounds based on
rescaling the loss function. Sections 2.9 and 2.10 address some general issues in the prob-
lem of prediction with expert advice, including the definition of minimax values. Finally,
in Section 2.11 we discuss a variant of the notion of regret where discount factors are
introduced.
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2.1 Weighted Average Prediction 9

2.1 Weighted Average Prediction

A natural forecasting strategy in this framework is based on computing a weighted average
of experts’ predictions. That is, the forecaster predicts at time t according to

p̂t =
∑N

i=1 wi,t−1 fi,t∑N
j=1 w j,t−1

,

where w1,t−1, . . . , w N ,t−1 ≥ 0 are the weights assigned to the experts at time t . Note that
p̂t ∈ D, since it is a convex combination of the expert advice f1,t , . . . , fN ,t ∈ D and D
is convex by our assumptions. As our goal is to minimize the regret, it is reasonable to
choose the weights according to the regret up to time t − 1. If Ri,t−1 is large, then we
assign a large weight wi,t−1 to expert i , and vice versa. As Ri,t−1 = L̂ t−1 − Li,t−1, this
results in weighting more those experts i whose cumulative loss Li,t−1 is small. Hence, we
view the weight as an arbitrary increasing function of the expert’s regret. For reasons that
will become apparent shortly, we find it convenient to write this function as the derivative
of a nonnegative, convex, and increasing function φ : R → R. We write φ′ to denote this
derivative. The forecaster uses φ′ to determine the weight wi,t−1 = φ′(Ri,t−1) assigned to
the i th expert. Therefore, the prediction p̂t at time t of the weighted average forecaster is
defined by

p̂t =
∑N

i=1 φ′(Ri,t−1) fi,t∑N
j=1 φ′(R j,t−1)

(weighted average forecaster).

Note that this is a legitimate forecaster as p̂t is computed on the basis of the experts’ advice
at time t and the cumulative regrets up to time t − 1.

We start the analysis of weighted average forecasters by a simple technical observation.

Lemma 2.1. If the loss function � is convex in its first argument, then

sup
yt ∈Y

N∑
i=1

ri,tφ
′(Ri,t−1) ≤ 0.

Proof. Using Jensen’s inequality, for all y ∈ Y ,

�( p̂t , y) = �

(∑N
i=1 φ′(Ri,t−1) fi,t∑N

j=1 φ′(R j,t−1)
, y

)
≤

∑N
i=1 φ′(Ri,t−1)�( fi,t , y)∑N

j=1 φ′(R j,t−1)
.

Rearranging, we obtain the statement.

The simple observation of the lemma above allows us to interpret the weighted average
forecaster in an interesting way. To do this, introduce the instantaneous regret vector

rt = (r1,t , . . . , rN ,t ) ∈ R
N
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10 Prediction with Expert Advice

and the corresponding regret vector Rn = ∑n
t=1 rt . It is convenient to introduce also a

potential function � : R
N → R of the form

�(u) = ψ

(
N∑

i=1

φ(ui )

)
(potential function),

where φ : R → R is any nonnegative, increasing, and twice differentiable function, and ψ :
R → R is any nonnegative, strictly increasing, concave, and twice differentiable auxiliary
function.

Using the notion of potential function, we can give the following equivalent definition
of the weighted average forecaster

p̂t =
∑N

i=1 ∇�(Rt−1)i fi,t∑N
j=1 ∇�(Rt−1) j

where ∇�(Rt−1)i = ∂�(Rt−1)/∂ Ri,t−1. We say that a forecaster defined as above is based
on the potential �. Even though the definition of the weighted average forecaster is inde-
pendent of the choice of ψ (the derivatives ψ ′ cancel in the definition of p̂t above), the
proof of the main result of this chapter, Theorem 2.1, reveals that ψ plays an important role
in the analysis. We remark that convexity of φ is not needed to prove Theorem 2.1, and this
is the reason why convexity is not mentioned in the above definition of potential function.
On the other hand, all forecasters in this book that are based on potential functions and
have a vanishing per-round regret are constructed using a convex φ (see also Exercise 2.2).

The statement of Lemma 2.1 is equivalent to

sup
yt ∈Y

rt · ∇�(Rt−1) ≤ 0 (Blackwell condition).

The notation u · v stands for the the inner product of two vectors defined by u · v =
u1v1 + · · · + uN vN . We call the above inequality Blackwell condition because of its sim-
ilarity to a key property used in the proof of the celebrated Blackwell’s approachability
theorem. The theorem, and its connection to the above inequality, are explored in Sec-
tions 7.7 and 7.8. Figure 2.1 shows an example of a prediction satisfying the Blackwell
condition.

The Blackwell condition shows that the function � plays a role vaguely similar to the
potential in a dynamical system: the weighted average forecaster, by forcing the regret
vector to point away from the gradient of � irrespective to the outcome yt , tends to keep
the point Rt close to the minimum of �. This property, in fact, suggests a simple analysis
because the increments of the potential function � may now be easily bounded by Taylor’s
theorem. The role of the function ψ is simply to obtain better bounds with this argument.

The next theorem applies to any forecaster satisfying the Blackwell condition (and thus
not only to weighted average forecasters). However, it will imply several interesting bounds
for different versions of the weighted average forecaster.

Theorem 2.1. Assume that a forecaster satisfies the Blackwell condition for a potential

�(u) = ψ
(∑N

i=1 φ(ui )
)

. Then, for all n = 1, 2, . . .,

�(Rn) ≤ �(0) + 1

2

n∑
t=1

C(rt ),
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