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1

Symmetry, Classification, and the Analysis

of Structured Data

1.1 Introduction

George Pólya, in his introduction to mathematics and plausible reasoning, observes

that

A great part of the naturalist’s work is aimed at describing and classifying

the objects that he observes. A good classification is important because it

reduces the observable variety to relatively few clearly characterized and

well-ordered types.

Pólya’s (1954, p. 88) remark introduces us directly to the practical aspect of

partitioning a large number of objects by exploring certain rules of equivalence

among them. This is how symmetry will be understood in the present text: as a set of

rules with which we may describe certain regularities among experimental objects

or concepts. The classification of crystals, for example, is based on the presence of

certain symmetries in their molecular framework, which in turn becomes observable

by their optical activity and other measurable quantities.

The delicate notion of measuring something on these objects and recording their

data is included in the naturalist’s methods of description, so that the classification

of the objects may imply the classification or partitioning of their corresponding

data. Pólya’s picture also includes the notion of interpreting, or characterizing, the

resulting types of varieties. That is, the naturalist has a better result when he can

explain why certain varieties fall into the same type or category.

This chapter is an introduction to the interplay among symmetry, classification,

and experimental data, which is the driving motive underlying any symmetry study

and is often present in the basic sciences. The purpose here is to demonstrate

that principles derived from such interplay often lead to novel ways of looking at

data, particularly of planning experiments and, potentially, of facilitating contextual

explanation. We will observe the intertwined presence of symmetry, classification,

and experimental data in a number of examples from chemistry, biology, and

physics. Many principles and techniques will repeat across different disciplines, and
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2 Symmetry, Classification, and the Analysis of Structured Data

it is exactly this cross-section of knowledge that constitutes the higher motivation

and basis for these symmetry studies.

1.2 Symmetry and Classification

In grade school we were amused (for a little while at least!) by drawings and

games with colorful patterns repeated periodically along straight lines and contours.

These bands can be classified according to their distinct generating rules, such

as horizontal translations, line and point reflections and rotations. These rules

for symmetry in two dimensions are explored in wallpaper, textile, and tapestry

designs, with the technical constraint of artistically and graphically designing these

repeating motifs within the finite boundaries of the work.

The common understanding and perception of symmetry developed from our

collective sensory and cultural experience with repetition or constancy can guide

us in classifying, for example, the uppercase roman font printing of the English

alphabet, imagined as subsets of the Euclidean plane. For example, the letters

N, S, and Z are characterized by having a center of reflection symmetry whereas

the letters H, I, O, and X have line (horizontal and vertical) and point reflection

symmetry.

When a letter and its transformed image under a vertical line reflection

v : (y1, y2) �→ (−y1, y2) are indistinguishable, we say that the letter has the sym-

metry of v. If, in addition, the letter has the symmetry of a horizontal line reflection

h : (y1, y2) �→ (y1, −y2), then, consequently, it must have the symmetry of the

iterated transformation (vh) of these two symmetries. Because the iterated trans-

formation of h and v is a point reflection o : y �→ −y, we then learn that the letter

has the symmetries of v, h, and o. Trivially, all letters have the symmetry of the

identity transformation 1 : y �→ y, often indicated simply as 1.

The resulting symmetries in G = {1, v, h, o} multiply according to Table (1.1)

and share the algebraic properties of a finite group: the product (∗) of two sym-

metries is a symmetry; the product is associative; 1 is the identity element and all

symmetries have an inverse symmetry also in G.

∗ 1 v h o

1 1 v h o

v v 1 o h

h h o 1 v

o o h v 1

(1.1)

We observe, in addition, that any f ∈ G is a bijective transformation of the Eu-

clidean plane preserving its algebraic properties, in the sense that f (x + y) =

f (x) + f (y) for all vectors x, y in the plane. These are called automorphisms of

the plane.
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1.3 Data Indexed by Symmetries 3

Any two letters are then classified together when they share the same set of

symmetries or automorphisms. For example, the letters ℓ ∈ {H,I,O,X} are classified

together by sharing the symmetries of G. We then say that G is their automorphism

group and write Aut{ℓ} = G for all ℓ ∈ {H,I,O,X}. In summary, after classifying

the letters of the English alphabet, we have the following:

ℓ Aut(ℓ)

F,G,J,K,L,P,Q,R 1

A,M,T,U,V,W,Y 1, v

B,C,D,E 1, h

N,S,Z 1, o

H,I,O,X 1, h, v, o

1.3 Data Indexed by Symmetries

The lines in the left-hand side of Table (1.2) were abstracted from a visual

acuity testing chart developed for the Early Treatment Diabetic Retinopathy

Study, or ETDRS (Ferris III et al., 1993, Table 5). The 10 different letters

{Z,N,H,V,R,K,D,S,O,C} that appear in the actual chart differ only in that they

are printed with specially created Sloan fonts (Sloan, 1959) and are presented

according to an experimental protocol.

C O H Z V

S Z N D C

V K C N R

K C R H N

Z K D V C

H V O R K

R H S O N

K S V R H

ℓ Aut(ℓ) p(ℓ) entropy(ℓ) − log CS(ℓ)

Z 1, o 0.844 0.433 0.63

N 1, o 0.774 0.535 0.53

H 1, o, v, h 0.688 0.619 0.44

V 1, v 0.636 0.656 0.56

R 1 0.622 0.663 0.46

K 1 0.609 0.669 0.57

D 1, h 0.556 0.687 0.43

S 1, o 0.516 0.693 0.44

O 1, o, v, h 0.470 0.692 0.34

C 1, h 0.393 0.673 0.36

(1.2)

The individual letters are shown in the adjacent table, along with their automor-

phisms, estimated probability (p) of correct identification, corresponding entropy

−[p log p + (1 − p) log(1 − p)], and estimated (− log) contrast sensitivity. The

entropy of a letter is a measure of the relative uncertainty in its correct identifi-

cation. Its value is zero in the absence of uncertainty, and it is positive otherwise

and attains its maximum value (log 2 = 0.693) when the events are equally like,

that is, p = 1/2. The probabilities of correct identification were estimated from a

large sample of test subjects reported by Ferris III et al. (1993). The letter contrast
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4 Symmetry, Classification, and the Analysis of Structured Data

sensitivity is a direct measure of the subject’s visual performance. It is estimated

from psychophysical experiments to determine the threshold of perception under

varying levels of background contrast (Alexander et al., 1997). The smaller is the

contrast needed to see the letter, the larger is the sensitivity.

We are interested in describing the connection among font symmetry, letter

entropy, and contrast sensitivity from samples of Sloan lines similar to those shown

in (1.2).

To each symmetry t in G = {1, v, h, o}, indicate by fixt the subset of letters in a

selected line with the symmetry of t and by xt = |fixt | the number of elements in

fixt . For example, the first line C O H Z V in the chart gives

(1, v, h, o)
x
−→ (5, 3, 3, 3), (1.3)

which is an example of data indexed by the elements in G, and a point in the vector

space V = R
4. If |fixt | �= 0 then the mean line entropy

1

|fixt |

∑

ℓ∈fixt

entropy(ℓ)

based on those letters with the symmetry of t leads to a different indexing of data

by the elements of G. In this case, for the same line, the new indexing is

(1, v, h, o)
x
−→ (0.512, 0.655, 0.661, 0.575). (1.4)

Similarly, when averaging the (− log) contrast sensitivity over the letters with same

symmetry, the indexing is

(1, v, h, o)
x
−→ (0.466, 0.446, 0.380, 0.476). (1.5)

Note that the first components in (1.3), (1.4), and (1.5) are, respectively, the total

number (5) of letters in each line, the line mean entropy and mean contrast sensi-

tivity. These are examples of data indexed by a particular structure (a finite group

in this case) or, simply, examples of structured data.

If similar lines are sampled from a larger set of charts, then x is a random vector

and statistical summaries of the resulting sample are of interest. For example,

Figure 1.1 summarizes the distributions of the four entropy components in (1.4)

based on a sample of 42 lines similar to those in (1.2). The distributions should

be interpreted along with the symmetry content of the underlying set of Sloan

letters and the likely distribution of these symmetries over the 42 lines. Table

(1.6) summarizes the underlying joint distribution of the 10 reference letters and

symmetries. The marginal column and row sums are, respectively, the number

www.cambridge.org/9780521841030
www.cambridge.org


Cambridge University Press
978-0-521-84103-0 — Symmetry Studies: An Introduction to the Analysis of Structured Data
in Applications
Marlos A. G. Viana
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.4 Symmetry and Data Reduction 5

E1 EV EH EO
Symmetry

0.4

0.5

0.6

0.7
E
n
tr
o
p
y

Figure 1.1: Distribution of line mean letter entropy by symmetry type.

|Aut(ℓ)| of automorphisms of ℓ and the number |fixt | of letters with the symmetry

of t .

t\ℓ Z N H V R K D S O C |fixt |

1 1 1 1 1 1 1 1 1 1 1 10

v 0 0 1 1 0 0 0 0 1 0 3

h 0 0 1 0 0 0 1 0 1 1 4

o 1 1 1 0 0 0 0 1 1 0 5

|Aut(ℓ)| 2 2 4 2 1 1 2 2 4 2 22

(1.6)

It is observed that point symmetry is present in the largest number (|fixt | = 5) of

reference letters and that at the same time the two letters with the smallest entropy

(Z and N) have |Aut(ℓ)| = 2 characterized precisely by the same symmetry.

1.4 Symmetry and Data Reduction

Classical physical measurements are understood, mathematically, as real vectors

x in the usual Euclidean vector space. Consequently, it is of natural interest

to represent the symmetries described by G = {1, h, v, o} into the vector space

V = R
4 for the data, shown in (1.3), (1.4), or (1.5), indexed by G. These rep-

resentations are accomplished by associating to each element t in G a linear

transformations ρt in V .

Specifically, using the multiplication table of G shown in (1.1), to each element

t in G associate the permutation matrix

{e1, ev, eh, eo}
ρt
−→ {et∗1, et∗v, et∗h, et∗o}, (1.7)
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6 Symmetry, Classification, and the Analysis of Structured Data

in which the entry (ρt )sf of ρt at row s and column f is equal to 1 if and only

if f = t ∗ s, for f, t, s ∈ G. For example, (ρv)ho = 1 indicates that v ∗ h = o.

Therefore,

ρ1 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

, ρv =

⎡

⎢

⎢

⎢

⎣

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎤

⎥

⎥

⎥

⎦

,

ρh =

⎡

⎢

⎢

⎢

⎣

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤

⎥

⎥

⎥

⎦

, ρo =

⎡

⎢

⎢

⎢

⎣

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤

⎥

⎥

⎥

⎦

.

These resulting linear transformations then connect the symmetries in the group G

with the vector space V for (1.3), (1.4), or (1.5) in a way that the multiplication

in G described by (1.1) is now represented as multiplication of nonsingular linear

transformations in V , that is,

ρt∗t ′ = ρtρt ′ for all t, t ′ ∈ G. (1.8)

This is the homomorphic property, characteristic of these linear representations.

The algebraic aspects developed in the next chapters will show that certain

linear combinations of {ρ1, ρv, ρh, ρo} then lead to four algebraically orthogonal

projection matrices P1, . . . ,P4, given by

1/4

⎡

⎢

⎢

⎢

⎣

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎤

⎥

⎥

⎥

⎦

, 1/4

⎡

⎢

⎢

⎢

⎣

1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1

⎤

⎥

⎥

⎥

⎦

,

1/4

⎡

⎢

⎢

⎢

⎣

1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

⎤

⎥

⎥

⎥

⎦

, 1/4

⎡

⎢

⎢

⎢

⎣

1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1

⎤

⎥

⎥

⎥

⎦

, (1.9)

respectively, which determine statistical summaries P1x, . . . ,P4x characterized

by the particular representation (1.7) of G. We will refer to these summaries, in

general, as the canonical invariants in the study – a concept that will be developed

throughout the text. In the present case, these projections directly identify four

invariants, namely,

I1 = x1 + xo + xv + xh, Iv = x1 + xv − xo − xh,

Ih = x1 + xh − xo − xv, Io = x1 + xo − xv − xh, (1.10)
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Figure 1.2: Distribution of the canonical invariants Iv, Ih, Io for the mean line entropy
data.

each one taking values on subspaces in the dimension of 1. These summaries

depend on the labels (provided by G) only up to companion points determining

a linear subspace of the data space (called invariant subspace). For example, the

summary x1 + xo − xv − xh is such that

xt∗1 + xt∗o − xt∗v − xt∗h = ±(x1 + xo − xv − xh) for all t ∈ G.

The summaries of the data induced by G can then be interpreted as of exactly two

types:

(1) The overall sum of responses (I1) and

(2) The three pairwise comparisons (±Iv, ±Ih, ±Io).

These pairwise comparisons are the basis for inferences in this particular symmetry

study. Figure 1.2 summarizes the distributions of the canonical invariants Iv, Ih, Io

based on 42 lines of Sloan fonts.

The invariants are the data that should be retained when the arbitrariness of where

is left (right) and where is up (down), associated with the action (1.7), is resolved.

For example, then, x1 + xo − xv − xh compares point and line symmetries in a way

that depends on the chosen planar orientation only up to an invariant subspace. As

effectively suggested by Weyl (1952, p. 144),

Whenever you have to do with a structure-endowed entity try to determine

its group of automorphisms, the group of those element-wise transforma-

tions which leave all structural relations undisturbed. You can expect to

gain a deep insight into its constitution this way.

We observe that the derivation of these data summaries depends only on the

set of labels and the symmetries of interest. Any subsequent statistical analysis,
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8 Symmetry, Classification, and the Analysis of Structured Data

of course, would include the assumptions that apply to a particular experimental

condition. For example, if the data indexed by G are the frequency distributions

x1 = (0, 42), xo = (21, 21), xv = (39, 3), xh = (32, 10)

with which the corresponding symmetries appeared in at most 2 or in 3 or more

of the 5 letters in each line, respectively, summed over 42 Sloan lines, then the

invariants may be interpreted as three pairwise comparisons

x1 + xo = (21, 63) vs. xv + xh = (71, 13),

x1 + xh = (32, 52) vs. xv + xo = (60, 24), (1.11)

x1 + xv = (39, 45) vs. xo + xh = (53, 31)

between these frequency distributions, which, statistically, could be carried out in

many different ways.

1.5 Statistical Aspects

We have remarked that the matrices P in (1.9) lead to the data summaries Px

shown in (1.10). These matrices are algebraically orthogonal (PiPj = PjPi = 0

for i �= j ) projections (P2
i = Pi , i = 1, . . . , 4) that reduce the identity operator I

in the data vector according to the sum

I = P1 + P2 + P3 + P4,

so that, consequently, the theory of statistical inference for (real symmetric)

quadratic forms can be applied to study the decomposition

x ′x = x ′P1x + · · · + x ′P4x

of the sum of squares x ′x of x.

To illustrate, consider the data shown in (1.12). Each row is a sample of size 5,

obtained from 5 different Sloan chart lines, of the corresponding mean line entropy

xt =
∑

ℓ∈fixt
entropy(ℓ)/|fixt |, indexed by the symmetry element t .

t\Sample 1 2 3 4 5

1 0.614 0.636 0.632 0.624 0.66

v 0.675 0.619 0.692 0.640 0.619

h 0.655 0.619 0.660 0.690 0.667

o 0.603 0.603 0.553 0.603 0.635

(1.12)

The application of the algebraic arguments outlined above and detailed in the next

chapters resulted in the analysis of variance table shown in (1.13), where the degrees

of freedom (df) are the traces of the corresponding canonical projections and the

F-ratios derived from the ratios of the mean sum of squares x ′Px/df relative to
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1.6 Algebraic Aspects 9

the mean error sum of squares.

Component x ′Px df x ′Px/df F-ratio

I1 8.0633 1 8.0633

Iv 0.000757 1 0.000757 1.036

Ih 0.002312 1 0.002312 3.165

Io 0.006956 1 0.006956 9.525

Error 0.011684 16 0.000730

(1.13)

Here, the decomposition of the sum of squares is the consequence of jointly shuf-

fling the rows and columns of the table in (1.12) using G = {1, h, v, o} and the

permutations of {1, 2, 3, 4, 5}, respectively.

Shuffling the rows in (1.12) according to G means relabeling them according to

⎡

⎢

⎢

⎣

v

1

o

h

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

h

o

1

v

⎤

⎥

⎥

⎦

, or

⎡

⎢

⎢

⎣

o

h

v

1

⎤

⎥

⎥

⎦

,

the result of multiplying the original first column by v, h, o respectively. On the

other hand, shuffling the columns, indexed by {1, 2, 3, 4, 5}, simply means per-

forming all their permutations.

Under the usual normality assumptions and corresponding hypotheses of the

form I = 0 (in terms of expected values), the indicated F-ratios have a central

F-distribution with degrees of freedom 1 and 16 and can be used to test these

parametric hypotheses.

It is now evident that the same canonical invariants I = Px can be the ob-

ject of descriptive summaries (Figure 1.2), nonparametric comparisons (1.11), or

parametric hypotheses (1.13) for the structured data.

The analysis of variance (1.13) points to a significant distinction in mean line

entropy when the differentiation (among chart lines) is due to point vs. line symme-

tries (Io �= 0). The explanation of this finding, expressed in terms of the invariant

Io, may then be found in the theories of eye movement, for example.

1.6 Algebraic Aspects

The role of algebra in the analysis of structured data is that of ascertaining its

methodological aspects, of providing a well-defined sequence of steps leading to

predictable data-analytic tools. We illustrate this with the following preliminary

summary.

The mean line entropy data x ′ = (x1, xv, xh, xo) shown in Table (1.12) were

introduced as an example of data indexed by the elements of a finite group G =

{1, v, h, o}. It was then possible to identify
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(1) a set (G) of labels with the algebraic properties of a finite group;

(2) a set of data (x) indexed by those labels (the structured data);

(3) a group action, defined in (1.7), with which the symmetries in G were applied

to itself;

(4) a linear representation (ρ) of that action connecting the labels and the data

vector space (V);

(5) the projection matrices P1, . . . ,P4 shown in (1.9);

(6) the canonical invariantsP1x, . . . ,P4x in the data, described in (1.10), and their

interpretations, and

(7) the resulting analysis of variance x ′x = x ′P1x + · · · + x ′P4x based on the

decomposition I = P1 + · · · + P4, shown in (1.13) .

Note that the effect of reordering the basis used in the construction (1.7) of the

representation ρ is such that the new decomposition is now

I = ηP1η
′ + · · · + ηP4η

′

where η is the corresponding permutation matrix. The new decomposition is in fact

the same as (1.9), but relabeled. For example, if the entries had been written in the

order of 1, o, v, h instead of the original order 1, v, h, o, then ηP4η
′ = P3, ηP3η

′ =

P2, and ηP2η
′ = P4. Consequently, the invariants (1.10), their interpretation, and

the resulting analysis of variance (1.13) would remain exactly the same.

However, the algebra has more to say here. A quick review of the projection

matrices in (1.9) reveals that they can be written in terms of the matrices

A =
1

2

[

1 1

1 1

]

, Q =
1

2

[

1 −1

−1 1

]

(1.14)

which combine and compare the two components of a point in R
2 and orthogonally

reduce, or decompose, the identity matrix in that space into the sum A + Q. This

reduction in R
2 is an example of a standard reduction and will be used many times

in these studies.

We have, using the symbol ⊗ to indicate the Kronecker product of two matrices,

that

P1 = A ⊗ A, P2 = Q ⊗ A, P3 = A ⊗ Q, P4 = Q ⊗ Q.

If, in addition, the data x can justifiably be indexed by a product f ⊗ g of two two-

level labels f and g, then the data (briefly identified here with the labels) decompose

as Af ⊗ Ag, Qf ⊗ Ag, Af ⊗ Qg, and Qf ⊗ Qg. This, more elementary, con-

struction of the projections P1, . . . ,P4 is explained in terms of smaller component

symmetry groups acting (by simple transpositions) on the bivariate component la-

bels f, g. It leads, precisely, to the well-known concepts of factors and factor levels

in simple factorial experiments. It is only when these component groups are intro-

duced that a distinction between the projections {P2,P3} and P4 can be envisioned.
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