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Hyperbolic space and its isometries

In this chapter we gather together basic information about the geometry of two- and
three-dimensional hyperbolic spaces and their isometries. This will set the stage for
our study of quotient manifolds and orbifolds which begins in the next chapter.

1.1 Mobius transformations

A Mobius transformation in the unit sphere S” of dimension 7 is, by definition, the
result of a composition of reflections in (n—1)-dimensional spheres in S”. It will
be orientation preserving if it is the composition of an even number of reflections.
A defining property is that Mobius transformations send (n—1)-dimensional spheres
onto (n—1)-dimensional spheres. Automatically, a symmetric pair of points (with
respect to reflection) about one sphere gets sent to a symmetric pair about the other.

From now on, the unqualified term Mobius transformation will be reserved for
those that preserve orientation. The orientation reversing kind will be called anti-
Mobius transformations. For a discussion of the latter, see Exercise 1-31 at the end
of the chapter.

The study of hyperbolic 3-manifolds is intimately connected with the study of
Mobius and anti-Mobius transformations on the two-dimensional sphere S2. Via

Fig. 1.1. Stereographic projection
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2 Hyperbolic space and its isometries

stereographic projection (Figure 1.1), S? is homeomorphic to the extended plane
CUoo, and we will freely use this fact to change points of view between the extended
plane and the 2-sphere. Under stereographic projection, the collection of circles and
straight lines in C corresponds to the collection of circles on S?; a straight line in
C corresponds to a circle on S? through the north pole. With this correspondence
in mind, we can refer to the collection of circles and lines in C simply as “circles”.
Moreover stereographic projection is a conformal map, that is, it preserves angles
between intersecting arcs — in particular, angles of intersection between circles.
Mobius transformations in two dimensions are fractional linear transformations of
the extended plane. That is, a Mobius transformation acting on C U oo has the form

az+b
= A(z) = ,
2= AR) cz+d

with a, b, ¢, d € C such that ad — bc # 0. (1.1

(When ad —bc =0 the expression on the right is a constant, so the map is not a Mobius
transformation.) As we will see shortly, a map of this form can indeed be expressed
as the composition of an even number of reflections in circles (in fact, two or four
circles: see Exercise 1-7). The symmetry properties of such maps are established in
Exercise 1-2.

Mobius transformations are conformal maps. In fact, the only conformal homeo-
morphisms of CU oo are Mobius transformations.

We will generally assume that the representation in (1.1) is normalized, meaning
that ad —bc = 1. Then we can identify the group of Mobius transformations with the
quotient PSL(2, C) := SL(2, C)/ £ I, where SL(2, C) is the group of 2 x 2 matrices
of determinant one and / is the identity matrix:

A(z):az+b<—>j:<a b), A_l(z)<—>j:( d_b).

cz+d c d —c a

The 4 ambiguity cannot be avoided. We will not keep inserting it, unless it plays an
essential role. In any case the value of changing from transformations to matrices lies
mainly in the algebra of composition. If A, B are M&bius transformations, the Mobius
transformation resulting from the application of A followed by B is written BA; the
corresponding matrix is just the usual product B A of the component matrices, in the
order written. The + ambiguity follows along. We will hop from one to the other,
the representation as a transformation to the representation as a matrix, depending on
which best suits the situation, without changing the labeling.

Two Mobius transformations A, B are conjugate if there is a Mobius transformation
U such that B = UAU~'. Conjugate transformations have the same geometry: U
effects transfer of the geometry of A to that of B.

The expression ABA~!B~! is called the commutator of A and B and written as
[A, B]. Two elements commute if and only if their commutator is the identity. *

 The alternative conventions [A, B] = B~ 'A~1BA or A"!B~1AB are preferred by some authors; they do the
same job, but the formulas come out differently.
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The trace of a Mobius transformation A is, by definition, the trace of the normalized
matrix of A:

Ta=trA==x(a+d).

It is invariant under conjugation. The 4 ambiguity can be avoided either by using rﬁ
or by specifying 0 < argty < 7.

By solving the equation A(z) = z, we find that a nontrivial M6bius transformation
has one or two fixed points in S, namely (a — d & /742 —4)/2c, when ¢ # 0, or
otherwise the points 0o and b/(d —a) = ab/(1 —a?). Here A= (“"), ad —bc = 1.
Only the identity can have three fixed points.

Given three distinct points (pa, p3, p4) € S?, there exists a necessarily unique
Mobius transformation sending p, to 1, p3 to 0, p4 to co. It is given by

(z—p3)(p2—p4)

(z—pa)(p2—p3)
when none of the points p; is co. By taking the limit as some p; — 0o, we obtain
the correct expression for p; = oo. The expression (z, p2, p3, p4) is called the cross
ratio of the four points. * Cross ratios are invariant under Mébius transformations:

= (2, p2, D3, Pa),

(Az, Apa, Ap3, Aps) = (2, p2, p3, p4)  forany A.

This is a consequence of the fact that T'(z) = (z, p1, p2, p3) satisfies T o A7 (z) =

(z, Ap1, Apa, Ap3).
Apart from the identity, Mobius transformations fall into one of three types:

A is parabolic if the following equivalent properties hold.
e A isconjugate to z+— z+ 1.
e A has exactly one fixed point in S?.
e T4, =*+2and A #id.
A is elliptic if the following equivalent properties hold.
e A is conjugate to z > €%z, with 26 # 27.
o 74 €(—2,42).
e A has exactly two fixed points, and the derivative of A has absolute value 1 at
each of them.

A is loxodromic if the following equivalent properties hold.
e A is conjugate to z > A%z, with [A| > 1.
o 74 C\[-2,42].
e A has exactly two fixed points, one attracting and one repelling.

We will use the term standard forms for the conjugates for the conjugates just listed.
The geometry of a general normalized Mobius transformation A is most easily read
off from the conjugate standard form. Note that the elliptic z — 1/z is conjugate to
> —z.

* The definition given has the property (z, 1, 0, 00) = z. A common alternate definition results in (z, 0, 1, 0c0) = z.
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4 Hyperbolic space and its isometries

Fig. 1.2. Invariant spiral of a loxodromic with trace A +1~! = 1.976 4 0.005i.

A loxodromic M&bius transformation A has a collection of loxodromic curves or
invariant spirals in S*. (In navigation, a loxodromic curve or rhumb line is a path
of constant bearing: it makes equal oblique angles with all meridians, and so coils
around the poles without ever reaching them.) For the standard form z — A2z, one
such spiral is given by

2(0) =2, —oco<t<oo0.

If o denotes the segment 0 < ¢ < 1 of the spiral, the various images {A" (o)} cover
the spiral without overlap. See Figure 1.2.

For additional structure in special cases see [Wright 2006].

The term hyperbolic transformation has historically been used to designate a lox-
odromic transformation whose trace is real. Such a transformation is conjugate to
7+ A2z with A > 1. Nowadays the term “hyperbolic” is also used for a loxodromic
element acting in hyperbolic 3-space.

The classification is proved by first conjugating A so that one fixed point lies at oo
and the other, if there is one, at 0. The further conjugation z + 1/z that interchanges
0 and oo may be needed to put the attracting fixed point at co.

If p € Cis a fixed point of A # id, p is attracting if and only if |A’(p)| < 1 and
repelling if and only if |A’(p)| > 1. The transformation A is parabolic if and only if
A'(p) = 1; A is elliptic if and only if |A"(p)| = 1 but A'(p) # 1.

Upon referring to the normalized matrix A = (‘Z Z), we find that the eigenvalues

are A, A~! = J(ir A& v/tr> A — 4). The corresponding eigenvectors (g) satisfy

where p, g are the fixed points. Like the trace, the eigenvalues are invariant under
conjugation. The eigenvalues of an elliptic transformation have the form ¢+’ and the
trace is 2 cos #. A loxodromic transformation has eigenvalues A*! and trace A + 17",
We can choose X so that |A| > 1, that is, so that X is the expanding eigenvalue.
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1.1 Mobius transformations 5

The expanding eigenvalue of a loxodromic element A can be expressed as a cross
ratio by the formula

22 = (2, A, py, po),

where py, p_ are the attracting and repelling fixed points. (It is enough to confirm
this when p; = oo and p_ =0.)

We can write A = (¢ Z) as

1

a a b
Az=—7———+— |if 0, Az = — — if c =0. 1.2
z _62(Z+d/c)+c if c # z d(z+a) if ¢ (1.2)

This expresses A in terms of simple building blocks: maps in standard form, plus
the map z — 1/z. Each of these has the property of preserving (generalized) circles.
Therefore any Mobius transformation preserves circles, as mentioned earlier. Like-
wise each building block is easily seen to be a composition of two reflections, so a
Mobius transformation is the composition of an even number of reflections.

Three distinct points p;, p3, pa uniquely determine a circle C, with an orientation
determined by their order. When C is a proper circle, we say that the orientation
thus defined is positive if the interior of the circle lies to the left as pj, p3, ps are
encountered in that order. Let g2, g3, g4 be another set of distinct points, and C’ the
circle through them. The Mdobius transformation 7' that sends p; — ¢; automatically
sends C onto C’. If both are proper circles, T sends the interior of C to the interior of
C’ if and only if the triples give both circles positive (or negative) orientations. The
transformation 7 : z — w can be expressed in terms of cross ratios as

(w, 92, g3, q4) = (2, p2, P3, P4).

But if we focus simply on sending C to C’, and a designated side of C to a designated
side of C’, it is more efficient to find T by cross ratio using the symmetry property:
A Mobius transformation sends points symmetric with respect to reflection in one
circle, to a pair of points symmetric in the image (Exercise 1-2). For a proper circle,
the most conspicuous symmetric points are its center and oo.

A cross ratio (p, p2, p3, pa) is real if and only if the four points lie on a circle
in S2. The cross ratio is positive if and only if (p, p3, p4) gives the circle the same
orientation as (pa, p3, p4).

We are now ready to show that Mobius transformations in C U oo can be extended
to Mdbius transformations acting in upper half-space {Xx = (z,7) : z € C, t > 0}.
The simplest way to see this is by applying the following observation. Each Md6bius
transformation is the composition of an even number of reflections in circles or lines
in C. A reflection in a circle extends naturally to the reflection in the upper hemi-
sphere bounded by that circle. Likewise the reflection in a straight line extends to the
reflection in the vertical half-plane bounded by that line. (The same argument shows
that Mobius transformations on S” = R" U {oo} extend to upper half (n+1)-space.)
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6 Hyperbolic space and its isometries

A Mobius transformation acting on C U oo sends a given circle to another circle
or line. Its extension to upper half-space will therefore map the hemisphere bounded
by the circle to the hemisphere or half-plane bounded by the image of the circle. We
conclude that the extension to upper half-space maps the totality of hemispheres and
vertical half-planes onto itself.

If two hemispheres intersect, or a hemisphere and a vertical half-plane intersect,
the intersection is a semicircle which is orthogonal to C. If two vertical half-planes
intersect, they intersect in a vertical half-line orthogonal to C. The extension of a
Mbobius transformation thus maps the totality of half-lines and semicircles orthogonal
to C onto itself. The dihedral angles between intersecting hemispheres is the same as
the angle of intersection between their bounding circles in C.

It is useful to explicitly work out the formula for extension to upper half-space
(X =(z,1):z € C, t > 0}. We first extend the building blocks. First,

> az becomes (z, 1) +— (az, |a|t);
z+—>z+b becomes (z,t)— (z+b,1).

The inversion z+> 7~}

is most easily dealt with as the composition of two anti-Mobius
transformations: z > z (reflection in a line) and z — z/ |z|> = z~! (reflection in the
unit circle). Extending to reflections in a vertical plane and the unit hemisphere, we

get respectively (z, ) — (z,t) and

R X Z t
TEE (Z’[)H<|z|2+t2’ |z|2+z2)'
Therefore,
7> 1 becomes (z,1) ( ‘ ! )
z ’ |22+ 127 |z|> + 12

Composing the building blocks we find that the extension of ( : Z) is

z+4d/c a t
A(lz+d/clP+12) ¢ |cl(lz+d/c]>+12)

(z, 1) > <— ) when ¢ # 0.

(z,0) = (E(Z-i-b/a), E‘I) when ¢ = 0.
d d

1.2 Hyperbolic geometry

In the euclidean plane, there is exactly one line through a given point and not meeting
a given line disjoint from the point; this is the famous fifth postulate of Euclid. It
gradually became clear in the nineteenth century that one can have a self-consistent
and interesting geometry where this postulate is not valid — where “parallel” lines
are not unique and indeed exist in uncountable abundance. This became known as
hyperbolic geometry. Though the name was bestowed in connection with conics and
projective geometry [Klein 1871, p. 72], it is a doubly felicitous choice, because the
Greeks had named the hyperbola after the word for excess (compare “hyperbole”,
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1.2 Hyperbolic geometry 7

from the same Greek word). Hyperbolic geometric certainly has an excess of lines —
and of “room” — compared to euclidean geometry!

Here are some of the salient features that distinguish hyperbolic geometry from the
familiar euclidean and spherical geometry.

(i) The angle sum X of a hyperbolic triangle A satisfies 0 < ¥ < m; in fact, X
equals m —area A. The limiting case ¥ = 0 is achieved by ideal triangles whose
vertices are “at infinity”: we will have more to say about such ideal vertices
soon (page 14). At the other extreme, the case ¥ = 7 is the limiting case
of hyperbolic triangles of very small area. Indeed, on the infinitesimal scale,
hyperbolic geometry is euclidean.

(i1) There are no similarities in hyperbolic space — one cannot scale a figure up or
down without changing its angles and shape. It follows, for instance, that all
hyperbolic triangles with the same angles are isometric (hyperbolic triangles are
“rigid”), and also that the choice of a unit of length is not arbitrary, as in euclidean
space; one can privilege a unit having some special property, say the side length
of an equilateral triangle whose vertex angles are /4.

(iii) For any 0 < 6 < 7 /(n — 2) there is a regular n-sided hyperbolic polygon with
vertex angles 8. More generally, a necessary and sufficient condition for the
existence of an n-sided convex polygon with vertex angles 6; (with 0 <6; < )
in clockwise order is that ) _ 6; < (n —2)m. The polygon is uniquely determined
up to isometry and its area is (n —2)w — Y _ 6;.

(iv) Two convex hyperbolic polyhedra that are combinatorially the same with the
same dihedral angles and valence 3 at all vertices are isometric [Rivin 1996;
Bobenko and Springborn 2004].

(v) The hyperbolic volume V of a ball and the surface area S of its bounding sphere
grow exponentially with the hyperbolic radius p. The ratio of the surface area
to the volume approaches 2 as p — oo.

In short, in the hyperbolic plane and space there are more geometric shapes, they
have a tendency toward rigidity, and there is a lot more space in which to build them —
in the estimate of Dick Canary, a baseball game played in the hyperbolic plane would
require more than 10'% ballplayers to provide the same level of outfield coverage as
in euclidean space!

Most 2-dimensional abstract surfaces and 3-dimensional manifolds can be modeled
using hyperbolic geometry, but not euclidean or spherical geometry. Hyperbolic space
is a good place to embed exponentially growing graphs, like a graph representing
interconnected web sites. In fact PARC has patented an algorithm for laying out such
graphs in H? [Lamping et al. 1995]. A different, unpatented, algorithm for laying out
graphs in H? is presented in [Munzner 1997]. The change of focus from one site to
another is effected by a hyperbolic isometry.

By studying the ancient microwave radiation that pervades the universe, astrophysi-
cists hope to get clues about the topology and large-scale curvature of our cosmic
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Hyperbolic space and its isometries

%ﬁ@%

Fig. 1.3. Disk and upper half-plane models of H? showing the same geodesics.

home. An earlier proposal that we live in a hyperbolic universe appears to be incom-
patible with recent data from the Wilkinson Microwave Anisotropy Probe (WMAP),
which found the total density (matter plus vacuum energy) to have essentially the
value expected for flat space. To the extent that there may be deviation, it is toward
a spherical universe (positive curvature); see the discussion in [Weeks 2004]. If the
universe is a closed manifold with positive curvature, it can have one of only a few
topological types. * To establish that the universe is not simply connected would be
astounding!

We now discuss the most commonly used models of the hyperbolic plane and of
hyperbolic space. These are subsets of R" with appropriate riemannian metrics.

The hyperbolic plane
The upper half-plane model is {z € C : Im z > 0} with the metric
d
ds = ﬂ
Imz

Here Im z is the notation for the imaginary part. The unit disk modelis {z € C:|z| <1}
with the metric
2\|dz|
L—1z*

The two models are equivalent under any Mobius transformation that maps the
upper half-plane onto the unit disk. We will denote either one of these models by H?,
the notation for the hyperbolic plane. These models have the following properties.

(1) The metrics are infinitesimally euclidean; at each point they equal a rescaled
euclidean metric. Thus the angle between two curves in the disk or upper half-
plane is the same whether measured in the hyperbolic or the euclidean geometry;

% For example, it might conceivably be Poincaré dodecahedral space, the famous ﬁrst example found by Henri
Poincaré of a closed manifold Wlth zero homology which is not homeomorphic to S3. He had initially believed

that such a manifold must be S3; the example led him to the Poincaré Conjecture. A good explanation of this
space and of the classification of spherical three-manifolds can be found in [Thurston 1997].
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1.2 Hyperbolic geometry 9

as a result these models are often called conformal. (For other models see Exer-
cise 1-25 and following.)

(i) H? is complete in its metric. Every arc tending to the boundary has infinite
length.

(iii)) The metrics are invariant under any Mobius transformation that maps the model
onto itself. In fact these transformations comprise the full group of orientation
preserving isometries of the model.

(iv) The hyperbolic lines (geodesics) in the upper half-plane model are semicircles
orthogonal to R and vertical half lines. In the disk model they are diameters and
circular arcs orthogonal to {|z| = 1}.

Hyperbolic space
The upper half-space model is {(z, t) : z € C, t > 0} with the metric

|dx|
- _7

ds |d%|? = |dz|* +di’.

The ball model is {X € R3 : || < 1} with the metric
2|dx
ds = 2145

1—xJ?

The two models are equivalent by a Mobius transformation that maps one to the
other. Stereographic projection extends to such a Mobius transformation (Exercise
1-11). We will refer to either of these models with its metric as hyperbolic space and
denote it by H3.

We repeat our list of properties:

(i) The metrics are infinitesimally euclidean and correctly represent the angles in
H?3.
(i) H3 is complete in its metric.
(iii) The metrics are invariant under any Md&bius transformation that maps the model
onto itself. These transformations form the full group of orientation preserving
isometries of the models.

Fig. 1.4. Ball and upper half-space model of H* showing geodesic planes.
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10 Hyperbolic space and its isometries

(iv) The hyperbolic planes in the upper half-space model are hemispheres orthogonal
to C and vertical euclidean half-planes. The lines (geodesics) are semicircles
orthogonal to C and vertical euclidean half-lines. In the ball model the hyperbolic
planes are spherical caps orthogonal to the unit sphere, and equatorial planes.
The lines are circular arcs orthogonal to the unit sphere, and euclidean diameters.

Restricting the hyperbolic metric to a hyperbolic plane in the model yields the
2-dimensional hyperbolic metric on that plane. Particular cases are the vertical half-
plane rising from R in the upper half-space model and the equatorial plane in the ball
model, where the restriction of the metrics give rise to our models of H?.

Proof of property (iii). For the proof that the Mobius transformations are orientation
preserving isometries of the models, see Exercises 1-9 and 1-12. Here we show that
there are no other such isometries, concentrating on the hyperbolic plane.

Given three positive distances dy, d», d3 satisfying the triangle inequality, and a
point z on an oriented line £ € H?, there are exactly two triangles with a vertex at z, a
side of length d; lying on the positive side of ¢, a side of length d; sharing the vertex
Z, and a third side of length d3. They are reflections of each other in £ and one of the
two is uniquely determined if an ordering of the vertices is given and required to give
the positive orientation of the triangle they bound.

Given an orientation preserving isometry 7, the T-images of three points not on
a line are not on a hyperbolic line either. There is a Mobius transformation A such
that A o T fixes the three points. It then pointwise fixes the sides of the triangle they
determine, and then fixes the whole triangle A. That is, 7' (z) = A~ (z), forze A. If
A’ is a triangle sharing an edge with A, there is Mobius transformation A; such that
T(z) = Al_1 (z) on A’. Necessarily A = A. Continuing on, building up the whole
plane H? by adding in succession adjacent triangles, we conclude that 7 = A. U

Proof of property (iv). In view of (iii) we need only prove that the vertical axis ¢
is itself a geodesic. We will work in the upper half-space model. Let ¢ denote the
vertical axis rising from z = 0. Given ¥ = (z, 1) € H, define the map r : H® — ¢
as r(X) = (0,1). This map is called a retraction since in the hyperbolic distance
d(r(x),r(y)) < d(x,y). There is equality if and only if both X, y lie on a vertical
line. This is an immediate consequence of the differential inequality

o _dx’+dy’+di? dr?

ds 2 =7

Now suppose y (u), with 0 <u <1, is a differentiable path both of whose endpoints
lie on £. Its length strictly exceeds the length of 7(y’), unless the path is the segment
on £ between its endpoints. That is, £ is a geodesic: the unique shortest path between
two points lying on £ is the segment of £ between the two points. Therefore all images
of ¢ by the isometries are also geodesics. In particular, through any two points there
passes a unique geodesic.

Likewise the vertical half-plane resting on R is a hyperbolic plane: the geodesic
through any two points of the plane also lies in the plane. Therefore the totality of

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521839742
http://www.cambridge.org
http://www.cambridge.org

