CONTENTS

Preface xv

1 INTRODUCTION 1
1.1 NONLINEAR COMPUTATIONAL MECHANICS 1
1.2 SIMPLE EXAMPLES OF NONLINEAR STRUCTURAL BEHAVIOR 2
1.2.1 Cantilever 2
1.2.2 Column 3
1.3 NONLINEAR STRAIN MEASURES 4
1.3.1 One-Dimensional Strain Measures 5
1.3.2 Nonlinear Truss Example 6
1.3.3 Continuum Strain Measures 10
1.4 DIRECTIONAL DERIVATIVE, LINEARIZATION AND EQUATION SOLUTION 13
1.4.1 Directional Derivative 14
1.4.2 Linearization and Solution of Nonlinear Algebraic Equations 16

2 MATHEMATICAL PRELIMINARIES 22
2.1 INTRODUCTION 22
2.2 VECTOR AND TENSOR ALGEBRA 22
2.2.1 Vectors 23
2.2.2 Second-Order Tensors 28
2.2.3 Vector and Tensor Invariants 37
2.2.4 Higher-Order Tensors 41
2.3 LINEARIZATION AND THE DIRECTIONAL DERIVATIVE 47
2.3.1 One Degree of Freedom 48
2.3.2 General Solution to a Nonlinear Problem 49
2.3.3 Properties of the Directional Derivative 52
2.3.4 Examples of Linearization 53
CONTENTS

2.4 TENSOR ANALYSIS 57
 2.4.1 The Gradient and Divergence Operators 58
 2.4.2 Integration Theorems 60

3 ANALYSIS OF THREE-DIMENSIONAL TRUSS STRUCTURES 63
 3.1 INTRODUCTION 63
 3.2 KINEMATICS 65
 3.2.1 Linearization of Geometrical Descriptors 67
 3.3 INTERNAL FORCES AND HYPERELASTIC CONSTITUTIVE EQUATIONS 68
 3.4 NONLINEAR EQUILIBRIUM EQUATIONS AND THE NEWTON–RAPHSON SOLUTION 70
 3.4.1 Equilibrium Equations 70
 3.4.2 Newton–Raphson Procedure 71
 3.4.3 Tangent Elastic Stiffness Matrix 72
 3.5 ELASTO-PLASTIC BEHAVIOR 74
 3.5.1 Multiplicative Decomposition of the Stretch 74
 3.5.2 Rate-independent Plasticity 76
 3.5.3 Incremental Kinematics 80
 3.5.4 Time Integration 83
 3.5.5 Stress Update and Return Mapping 83
 3.5.6 Algorithmic Tangent Modulus 86
 3.5.7 Revised Newton–Raphson Procedure 88
 3.6 EXAMPLES 89
 3.6.1 Inclined Axial Rod 89
 3.6.2 Trussed Frame 89

4 KINEMATICS 94
 4.1 INTRODUCTION 94
 4.2 THE MOTION 94
 4.3 MATERIAL AND SPATIAL DESCRIPTIONS 95
 4.4 DEFORMATION GRADIENT 97
 4.5 STRAIN 101
 4.6 POLAR DECOMPOSITION 105
 4.7 VOLUME CHANGE 110
 4.8 DISTORTIONAL COMPONENT OF THE DEFORMATION GRADIENT 112
 4.9 AREA CHANGE 115
 4.10 LINEARIZED KINEMATICS 116
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10.1</td>
<td>Linearized Deformation Gradient</td>
<td>116</td>
</tr>
<tr>
<td>4.10.2</td>
<td>Linearized Strain</td>
<td>117</td>
</tr>
<tr>
<td>4.10.3</td>
<td>Linearized Volume Change</td>
<td>118</td>
</tr>
<tr>
<td>4.11</td>
<td>VELOCITY AND MATERIAL TIME DERIVATIVES</td>
<td>118</td>
</tr>
<tr>
<td>4.11.1</td>
<td>Velocity</td>
<td>118</td>
</tr>
<tr>
<td>4.11.2</td>
<td>Material Time Derivative</td>
<td>119</td>
</tr>
<tr>
<td>4.11.3</td>
<td>Directional Derivative and Time Rates</td>
<td>120</td>
</tr>
<tr>
<td>4.11.4</td>
<td>Velocity Gradient</td>
<td>122</td>
</tr>
<tr>
<td>4.12</td>
<td>RATE OF DEFORMATION</td>
<td>122</td>
</tr>
<tr>
<td>4.13</td>
<td>SPIN TENSOR</td>
<td>125</td>
</tr>
<tr>
<td>4.14</td>
<td>RATE OF CHANGE OF VOLUME</td>
<td>128</td>
</tr>
<tr>
<td>4.15</td>
<td>SUPERIMPOSED RIGID BODY MOTIONS AND OBJECTIVITY</td>
<td>130</td>
</tr>
</tbody>
</table>

5 STRESS AND EQUILIBRIUM

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>134</td>
</tr>
<tr>
<td>5.2</td>
<td>CAUCHY STRESS TENSOR</td>
<td>134</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Definition</td>
<td>134</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Stress Objectivity</td>
<td>138</td>
</tr>
<tr>
<td>5.3</td>
<td>EQUILIBRIUM</td>
<td>139</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Translational Equilibrium</td>
<td>139</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Rotational Equilibrium</td>
<td>141</td>
</tr>
<tr>
<td>5.4</td>
<td>PRINCIPLE OF VIRTUAL WORK</td>
<td>142</td>
</tr>
<tr>
<td>5.5</td>
<td>WORK CONJUGACY AND ALTERNATIVE STRESS REPRESENTATIONS</td>
<td>144</td>
</tr>
<tr>
<td>5.5.1</td>
<td>The Kirchhoff Stress Tensor</td>
<td>144</td>
</tr>
<tr>
<td>5.5.2</td>
<td>The First Piola–Kirchhoff Stress Tensor</td>
<td>145</td>
</tr>
<tr>
<td>5.5.3</td>
<td>The Second Piola–Kirchhoff Stress Tensor</td>
<td>148</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Deviatoric and Pressure Components</td>
<td>151</td>
</tr>
<tr>
<td>5.6</td>
<td>STRESS RATES</td>
<td>152</td>
</tr>
</tbody>
</table>

6 HYPERELASTICITY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>INTRODUCTION</td>
<td>155</td>
</tr>
<tr>
<td>6.2</td>
<td>HYPERELASTICITY</td>
<td>155</td>
</tr>
<tr>
<td>6.3</td>
<td>ELASTICITY TENSOR</td>
<td>157</td>
</tr>
<tr>
<td>6.3.1</td>
<td>The Material or Lagrangian Elasticity Tensor</td>
<td>157</td>
</tr>
<tr>
<td>6.3.2</td>
<td>The Spatial or Eulerian Elasticity Tensor</td>
<td>158</td>
</tr>
<tr>
<td>6.4</td>
<td>ISOTROPIC HYPERELASTICITY</td>
<td>160</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Material Description</td>
<td>160</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Spatial Description</td>
<td>161</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Compressible Neo-Hookean Material</td>
<td>162</td>
</tr>
</tbody>
</table>
CONTENTS

6.5 INCOMPRESSIBLE AND NEARLY INCOMPRESSIBLE MATERIALS 166
 6.5.1 Incompressible Elasticity 166
 6.5.2 Incompressible Neo-Hookean Material 169
 6.5.3 Nearly Incompressible Hyperelastic Materials 171

6.6 ISOTROPIC ELASTICITY IN PRINCIPAL DIRECTIONS 174
 6.6.1 Material Description 174
 6.6.2 Spatial Description 175
 6.6.3 Material Elasticity Tensor 176
 6.6.4 Spatial Elasticity Tensor 178
 6.6.5 A Simple Stretch-based Hyperelastic Material 179
 6.6.6 Nearly Incompressible Material in Principal Directions 180
 6.6.7 Plane Strain and Plane Stress Cases 183
 6.6.8 Uniaxial Rod Case 184

7 LARGE ELASTO-PLASTIC DEFORMATIONS 188
 7.1 INTRODUCTION 188
 7.2 THE MULTIPLICATIVE DECOMPOSITION 189
 7.3 RATE KINEMATICS 193
 7.4 RATE-INDEPENDENT PLASTICITY 197
 7.5 PRINCIPAL DIRECTIONS 200
 7.6 INCREMENTAL KINEMATICS 204
 7.6.1 The Radial Return Mapping 207
 7.6.2 Algorithmic Tangent Modulus 209
 7.7 TWO-DIMENSIONAL CASES 211

8 LINEARIZED EQUILIBRIUM EQUATIONS 216
 8.1 INTRODUCTION 216
 8.2 LINEARIZATION AND NEWTON–RAPHSON PROCESS 216
 8.3 LAGRANGIAN LINEARIZED INTERNAL VIRTUAL WORK 218
 8.4 EULERIAN LINEARIZED INTERNAL VIRTUAL WORK 219
 8.5 LINEARIZED EXTERNAL VIRTUAL WORK 221
 8.5.1 Body Forces 221
 8.5.2 Surface Forces 222
 8.6 VARIATIONAL METHODS AND INCOMPRESSIBILITY 224
 8.6.1 Total Potential Energy and Equilibrium 225
 8.6.2 Lagrange Multiplier Approach to Incompressibility 225
CONTENTS

8.6.3 Penalty Methods for Incompressibility 228
8.6.4 Hu-Washizu Variational Principle for
Incompressibility 229
8.6.5 Mean Dilatation Procedure 231

9 DISCRETIZATION AND SOLUTION 237
9.1 INTRODUCTION 237
9.2 DISCRETIZED KINEMATICS 237
9.3 DISCRETIZED EQUILIBRIUM EQUATIONS 242
9.3.1 General Derivation 242
9.3.2 Derivation in Matrix Notation 245
9.4 DISCRETIZATION OF THE LINEARIZED
EQUILIBRIUM EQUATIONS 247
9.4.1 Constitutive Component: Indicial Form 248
9.4.2 Constitutive Component: Matrix Form 249
9.4.3 Initial Stress Component 251
9.4.4 External Force Component 252
9.4.5 Tangent Matrix 254
9.5 MEAN DILATATION METHOD FOR
INCOMPRESSIBILITY 256
9.5.1 Implementation of the Mean Dilatation
Method 256
9.6 NEWTON–RAPHSON ITERATION AND SOLUTION
PROCEDURE 258
9.6.1 Newton–Raphson Solution Algorithm 258
9.6.2 Line Search Method 259
9.6.3 Arc-Length Method 261

10 COMPUTER IMPLEMENTATION 266
10.1 INTRODUCTION 266
10.2 USER INSTRUCTIONS 267
10.3 OUTPUT FILE DESCRIPTION 273
10.4 ELEMENT TYPES 276
10.5 SOLVER DETAILS 277
10.6 CONSTITUTIVE EQUATION SUMMARY 277
10.7 PROGRAM STRUCTURE 284
10.8 MAIN ROUTINE flagshyp 284
10.9 ROUTINE elemtk 292
10.10 ROUTINE radialrtn 298
10.11 ROUTINE ksigma 299
10.12 ROUTINE bpress 301

© Cambridge University Press
<table>
<thead>
<tr>
<th>10.13 EXAMPLES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.13.1 Simple Patch Test</td>
<td>302</td>
</tr>
<tr>
<td>10.13.2 Nonlinear Truss</td>
<td>303</td>
</tr>
<tr>
<td>10.13.3 Strip With a Hole</td>
<td>304</td>
</tr>
<tr>
<td>10.13.4 Plane Strain Nearly Incompressible Strip</td>
<td>305</td>
</tr>
<tr>
<td>10.13.5 Elasto-plastic Cantilever</td>
<td>306</td>
</tr>
<tr>
<td>10.14 APPENDIX: DICTIONARY OF MAIN VARIABLES</td>
<td>308</td>
</tr>
</tbody>
</table>

Bibliography 312

Index 314