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In deciding what to investigate, how to formulate ideas and what problems
to focus on, the individual mathematician has to be guided ultimately by
their own sense of values. There are no clear rules, or rather if you only
follow old rules you do not create anything worthwhile.

Sir Michael Atiyah (FRS, Fields Medallist 1966). What’s it all
about? UK EPSRC Newsline Journal – Mathematics (2001)
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Preface

The experiences of Fox, Huskey, and Wilkinson [from solving systems
of orders up to 20] prompted Turing to write a remarkable paper [in
1948] . . . In this paper, Turing made several important contributions . . . He
used the word “preconditioning” to mean improving the condition of a
system of linear equations (a term that did not come into popular use until
1970s).
Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.

SIAM Publications (1996)

Matrix computing arises in the solution of almost all linear and nonlinear sys-
tems of equations. As the computer power upsurges and high resolution sim-
ulations are attempted, a method can reach its applicability limits quickly and
hence there is a constant demand for new and fast matrix solvers. Precondi-
tioning is the key to a successful iterative solver. It is the intention of this
book to present a comprehensive exposition of the many useful preconditioning
techniques.

Preconditioning equations mainly serve for an iterative method and are often
solved by a direct solver (occasionally by another iterative solver). Therefore
it is inevitable to address direct solution techniques for both sparse and dense
matrices. While fast solvers are frequently associated with iterative solvers,
for special problems, a direct solver can be competitive. Moreover, there are
situations where preconditioning is also needed for a direct solution method.
This clearly demonstrates the close relationship between a direct and an iterative
method.

This book is the first of its kind attempting to address an active research
topic, covering these main types of preconditioners.

xiii
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xiv Preface

Type 1 Matrix splitting preconditioner FEM setting
Type 2 Approximate inverse preconditioner FEM setting
Type 3 Multilevel (approximate inverse) preconditioner FEM setting
Type 4 Recursive Schur complements preconditioner FEM setting
Type 5 Matrix splitting and Approximate inverses Wavelet setting
Type 6 Recursive Schur complements preconditioner Wavelet setting
Type 7 Implicit wavelet preconditioner FEM setting

Here by ‘FEM setting’, we mean a usual matrix (as we found it) often formed
from discretization by finite element methods (FEM) for partial differential
equations with piecewise polynomial basis functions whilst the ‘Wavelet
setting’ refers to wavelet discretizations. The iterative solvers, often called
accelerators, are selected to assist and motivate preconditioning. As we believe
that suitable preconditioners can work with most accelerators, many other
variants of accelerators are only briefly mentioned to allow us a better focus
on the main theme. However these accelerators are well documented in whole
or in part in the more recent as well as the more classical survey books or
monographs (to name only a few)

� Young, D. M. (1971). Iterative Solution of Large Linear Systems. Academic
Press.

� Hageman A. L. and Young D. M. (1981). Applied Iterative Methods. Aca-
demic Press.

� McCormick S. F. (1992). Multilevel Projection Methods for Partial Differen-
tial Equations. SIAM Publications.

� Barrett R., et al. (1993). Templates for the Solution of Linear Systems: Build-
ing Blocks for Iterative Methods. SIAM Publications.

� Axelsson O. (1994). Iterative Solution Methods. Cambridge University Press
(reprinted by SIAM Publications in 2001)

� Hackbusch W. (1994). Iterative Solution of Large Sparse Systems. Springer-
Verlag.

� Kelly C. T. (1995). Iterative Methods for Solving Linear and Nonlinear Equa-
tions. SIAM Publications.

� Smith B., et al. (1996). Domain Decomposition Methods. Cambridge Uni-
versity Press.

� Golub G. and van Loan C. (1996). Matrix Computations, 3rd edn. Johns
Hopkins University Press.

� Brezinski C. (1997). Projection Methods for Systems of Equations. North-
Holland.

� Demmel J. (1997). Applied Numerical Linear Algebra. SIAM Publications.
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Preface xv

� Greenbaum A. (1997). Iterative Methods for Solving Linear Systems. SIAM
Publications.

� Trefethen N. and Bau D. (1997). Numerical Linear Algebra. SIAM Publica-
tions.

� Dongarra J., et al. (1998). Numerical Linear Algebra on High-Performance
Computers. SIAM Publications.

� Briggs W., et al. (2000). A Multigrid Tutorial, 2nd edn. SIAM Publications.
� Varga R. (2001). Matrix Iteration Analysis, 2nd edn. Springer.
� Higham N. J. (2002). Accuracy and Stability of Numerical Algorithms, 2nd

edn. SIAM Publications.
� van der Vorst H. A. (2003). Iterative Krylov Methods for Large Linear Sys-

tems. Cambridge University Press
� Saad Y. (2003). Iterative Methods for Sparse Linear Systems. PWS.
� Duff I. S., et al. (2006). Direct Methods for Sparse Matrices, 2nd edn.

Clarendon Press.
� Elman H., et al. (2005) Finite Elements and Fast Solvers. Oxford University

Press.

Most generally applicable preconditioning techniques for unsymmetric ma-
trices are covered in this book. More specialized preconditioners, designed for
symmetric matrices, are only briefly mentioned; where possible we point to
suitable references for details. Our emphasis is placed on a clear exposition of
the motivations and techniques of preconditioning, backed up by MATLAB r©1

Mfiles, and theories are only presented or outlined if they help to achieve better
understanding. Broadly speaking, the convergence of an iterative solver is de-
pendent of the underlying problem class. The robustness can often be improved
by suitably designed preconditioners. In this sense, one might stay with any
preferred iterative solver and concentrate on preconditioner designs to achieve
better convergence.

As is well known, the idea of providing and sharing software is to enable
other colleagues and researchers to concentrate on solving newer and harder
problems instead of repeating work already done. In the extreme case, there is
nothing more frustrating than not being able to reproduce results that are claimed
to have been achieved. The MATLAB Mfiles are designed in a friendly style
to reflect the teaching of the author’s friend and former MSc advisor Mr Will

1 MATLAB is a registered trademark of MathWorks, Inc; see its home page
http://www.mathworks.com. MATLAB is an easy-to-use script language, hav-
ing almost the full capability as a C programming language without the somewhat
complicated syntax of C . Beginners can consult a MATLAB text e.g. [135] from
http://www.liv.ac.uk/maths/ETC/matbook or any tutorial document from
the internet. Search http://www.google.com using the key words: MATLAB tutorial.
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xvi Preface

McLewin (University of Manchester) who rightly said: ‘in Mathematics, never
use the word ‘obviously’.’ A simple and useful feature of the supplied Mfiles
is that typing in the file name invokes the help page, giving working examples.
(The standard MATLAB reply to such a usage situation is ??? Error . . . Not
enough input arguments.)

The book was born mainly out of research work done in recent years and
partly out of a need of helping out graduate students to implement a method
following the not-always-easy-to-follow descriptions by some authors (who
use the words ‘trivial’, ‘standard’, ‘well-known’, ‘leave the reader to work it
out as an exercise’ in a casual way and in critical places). That is to say, we
aspire to emphasize the practical implementation as well as the understand-
ing rather than too much of the theory. In particular the book is to attempt a
clear presentation and explanation, with the aid of illustrations and computer
software, so that the reader can avoid the occasional frustration that one must
know the subject already before one can really understand and appreciate a
beautiful mathematical idea or algorithm presented in some (maybe a lot of)
mathematical literature.

� About the solvers and preconditioners.

Chapter 1. (Introduction) defines the commonly used concepts; in particular the
two most relevant terms in preconditioning: condition number and clustering.
With non-mathematics majors’ readers in mind, we give an introduction to sev-
eral discretization and linearization methods which generate matrix equations –
the idea of mesh ordering affecting the resulting matrix is first encountered.
Examples of bounding conditioned numbers by considering norm equivalence
(for symmetric systems) are given; these appealing theories are not a guarantee
for fast convergence of iterative solvers. Both the fast Fourier transforms (FFT)
and fast wavelet transforms (FWT) are introduced here (mainly discrete FWT
and the continuous to come later); further discussions of FFT and FWT are in
Chapters 2, 4 and 8.

Chapter 2. (Direct methods) discusses the direct Gaussian elimination method
and the Gauss–Jordan and several variants. Direct methods are on one hand
necessary for forward type preconditioning steps and on the other hand pro-
vide various motivations for designing an effective preconditioner. Likewise,
for some ill-conditioned linear systems, there is a strong need for scaling
and preconditioning to obtain accurate direct solutions – a much less ad-
dressed subject. Algorithms for inverting several useful special matrices are then
given; for circulant matrices diagonalization by Fourier transforms is explained
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Preface xvii

before considering Toeplitz matrices. Block Toeplitz matrices are considered
later in Chapter 13. Algorithms for graph nodal or mesh (natural graph) order-
ings by reverse Cuthill–McKee method (RCM), spiral and domain decompo-
sition methods (DDM) are given. The Schur complements and partitioned LU
decompositions are presented together; for symmetric positive definite (SPD)
matrices, some Schur properties are discussed. Overall, this chapter contains
most of the ingredients for implementing a successful preconditioner.

Chapter 3. (Iterative methods) first discusses the classical iterative methods and
highlights their use in multigrid methods (MGM, Chapter 6) and DDM. Then
we introduce the topics most relevant to the book, conjugate gradient methods
(CGM) of the Krylov subspace type (the complex variant algorithm does not
appear in the literature as explicitly as presented in Section 3.7). We elaborate on
the convergence with a view on preconditioners’ design. Finally the popular fast
multipole expansion method (along with preconditioning) is introduced. The
mission of this chapter is to convey the message that preconditioning is relatively
more important than modifying existing or inventing new CGM solvers.

Chapter 4. (Matrix splitting preconditioners: Type 1) presents a class of mainly
sparse preconditioners and indicates their possible application areas, algorithms
and limitations. All these preconditioners are of the forward type, i.e. M ≈ A
in some way and efficiency in solving Mx = b is assured. The most effective
and general variant is the incomplete LU (ILU) preconditioner with suitable
nodal ordering. The last two main sections (especially the last one) are mainly
useful for dense matrix applications.

Chapter 5. (Approximate inverse preconditioners: Type 2) presents another
large class of sparse approximate inverse preconditioners for a general sparse
matrix problem, with band preconditioners suitable for diagonally dominant
matrices and near neighbour preconditioners suitable for singular operator equa-
tions. All these preconditioners are of the backward type, i.e. M ≈ A−1 in some
way and application of each sparse preconditioner M requires a simple multi-
plication.

Chapter 6. (Multilevel methods and preconditioners: Type 3) gives an introduc-
tion to geometric multigrid methods for partial differential equations (PDEs)
and integral equations (IEs) and algebraic multigrid method for sparse linear
systems, indicating that for PDEs, in general, smoothing is important but can
be difficult while for IEs operator compactness is the key. Finally we discuss
multilevel domain decomposition preconditioners for CG methods.
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xviii Preface

Chapter 7. (Multilevel recursive Schur preconditioners: Type 4) surveys the re-
cent Schur complements based recursive preconditioners where matrix partition
can be based on functional space nesting or graph nesting (both geometrically
based and algebraically based).

Chapter 8. (Sparse wavelet preconditioners: Type 5) first introduces the con-
tinuous wavelets and then considers to how construct preconditioners under the
wavelet basis in which an underlying operator is more amenable to approxima-
tion by the techniques of Chapters 4–7. Finally we discuss various permutations
for the standard wavelet transforms and their use in designing banded arrow
(wavelet) preconditioners.

Chapter 9. (Wavelet Schur preconditioners: Type 6) generalizes the Schur pre-
conditioner of Chapter 7 to wavelet discretization. Here we propose to combine
the non-standard form with Schur complement ideas to avoid finger-patterned
matrices.

Chapter 10. (Implicit wavelet preconditioners: Type 7) presents some recent
results that propose to combine the advantages of sparsity of finite elements,
sparse approximate inverses and wavelets compression. Effectively the wavelet
theory is used to justify the a priori patterns that are needed to enable approx-
imate inverses to be efficient; this strategy is different from Chapter 9 which
does not use approximate inverses.

� About the selected applications.

Chapter 11. (Application I) discusses the iterative solution of boundary integral
equations reformulating the Helmholtz equation in an infinite domain modelling
the acoustic scattering problem. We include some recent results on high order
formulations to overcome the hyper-singularity. The chapter is concluded with
a discussion of the open challenge of modelling high wavenumber problems.

Chapter 12. (Application II) surveys some recent work on preconditioning cou-
pled matrix problems. These include Hermitian and skew-Hermitian splitting,
continuous operators based Schur approximations for Oseen problems, the
block diagonal approximate inverse preconditioners for a coupled fluid structure
interaction problem, and FWT based sparse preconditioners for EHL equations
modelling the isothermal (two dependent variables) and thermal (three depen-
dent variables) cases.

Chapter 13. (Application III) surveys some recent results for iterative solution
of inverse problems. We take the example of the nonlinear total variation (TV)
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Preface xix

equation for image restoration using operator splitting and circulant precondi-
tioners. We show some new results based on combining FWT and FFT precon-
ditioners for possibly more robust and faster solution and results on developing
nonlinear multigrid methods for optimization. Also discussed is the ‘matrix-
free’ idea of solving an elliptic PDE via an explicit scheme of a parabolic PDE,
which is widely used in evolving level set functions for interfaces tracking; the
related variational formulation of image segmentation is discussed.

Chapter 14. (Application IV) shows an example from scientific computing that
typifies the challenge facing computational mathematics – the bifurcation prob-
lem. It comes from studying voltage stability in electrical power transmission
systems. We have developed two-level preconditioners (approximate inverses
with deflation) for solving the fold bifurcation while the Hopf problem remains
an open problem as the problem dimension is ‘squared’!

Chapter 15. (Parallel computing) gives a brief introduction to the important
subject of parallel computing. Instead of parallelizing many algorithms, we
motivate two fundamental issues here: firstly how to implement a parallel algo-
rithm in a step-by-step manner and with complete MPI Fortran programs, and
secondly what to consider when adapting a sequential algorithm for parallel
computing. We take four relatively simple tasks for discussing the underlying
ideas.

The Appendices give some useful background material, for reference pur-
pose, on introductory linear algebra, the Harwell–Boeing data format, a
MATLAB tutorial, the supplied Mfiles and Internet resources relevant to this
book.

� Use of the book. The book should be accessible to graduate students in
various scientific computing disciplines who have a basic linear algebra and
computing knowledge. It will be useful to researchers and computational prac-
titioners. It is anticipated that the reader can build intuition, gain insight and
get enough hands on experience with the discussed methods, using the supplied
Mfiles and programs from

http : //www.cambridge.org/9780521838283
http : //www.liv.ac.uk/maths/ETC/mpta

while reading. As a reference for researchers, the book provides a toolkit and
with it the reader is expected to experiment with a matrix under consideration
and identify the suitable methods first before embarking on serious analysis of
a new problem.
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Chan and Gene H. Golub) for their insight, guidance, and encouragement and to
all my graduate students and research fellows (with whom he has collaborated)
for their commitment and hard work, on topics relating to this book over the
years. In particular, Stuart Hawkins and Martyn Hughes have helped and drafted
earlier versions of some Mfiles, as individually acknowledged in these files.
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corrected on parts of the first draft of the manuscript – these include David J.
Evans, Henk A. van der Vorst, Raymond H. Chan, Tony F. Chan, Gene H. Golub
and Yimin Wei; the author thanks them all. Any remaining errors in the book are
all mine. The handy author index was produced using the authorindex.sty (which
is available from the usual LaTEX sites) as developed by Andreas Wettstein (ISE
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(especially Dr Ken Blake), the series editors and the series reviewers have been
very helpful and supportive. The author thanks them for their professionalism
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� Feedback. As the book involves an ambitious number of topics with precon-
ditioning connection, inevitably, there might be errors and typos. The author is
happy to hear from any readers who could point these out for future editions.
Omission is definitely inevitable: to give a sense of depth and width of the sub-
ject area, a search on www.google.com in April 2004 (using keywords like
‘preconditioned iterative’ or ‘preconditioning’) resulted in hits ranging from
19000 to 149000 sites. Nevertheless, suggestions and comments are always
welcome. The author is also keen to include more links to suitable software that
are readable and helpful to other researchers, and are in the spirit of this book.
Many thanks and happy computing.

Ke Chen
Liverpool, September 2004

EMAIL = k.chen@liverpool.ac.uk
URL = http://www.liv.ac.uk/∼cmchenke
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Nomenclature

All the beautiful mathematical ideas can be found in Numerical Linear
Algebra. However, the subject is better to be enjoyed by researchers
than to teach to students as many excellent ideas are often buried in the
complicated notation. A researcher must be aware of this fact.

Gene H. Golub. Lecture at University of Liverpool (1995)

Throughout the book, capital letters such as A denote a rectangular matrix m × n
(or a square matrix of size n), whose (i, j) entry is denoted by A(i, j) = ai j ,
and small letters such as x, b denote vectors of size n unless stated otherwise
i.e. A ∈ R

m×n and x, b ∈ R
n .

Some (common) abbreviations and notations are listed here

C
n → the space of all complex vectors of size n

R
n → the space of all real vectors of size n

[note R
n ⊂ C

n and R
n×n ⊂ C

n×n) ]
‖A‖ → A norm of matrix A (see §1.5)
|A| → The matrix of absolute values of A i.e.

(|A|)i j = |A(i, j)| = |ai j |.
AT → The transpose of A i.e. AT (i, j) = A( j, i).

[A is symmetric if AT = A]
AH → The transpose conjugate for complex A i.e. AH (i, j) = A( j, i).

[A is Hermitian if AH = A. Some books write A∗ = AH ]
det(A) → The determinant of matrix A

diag(α j ) → A diagonal matrix made up of scalars α j

λ(A) → An eigenvalue of A
A ⊕ B → The direct sum of orthogonal quantities A, B
A 
 B → The biproduct of matrices A, B (Definition 14.3.8)
A ⊗ B → The tensor product of matrices A, B (Definition 14.3.3)

xxi
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xxii Nomenclature

σ (A) → A singular value of A
κ(A) → The condition number cond(A) of A (in some norm)
�(A) → Eigenspectrum for A

�ε(A) → ε-Eigenspectrum for A
�(A) → Spectrum of singular values of A
Qk → Set of all degree k polynomials with q(0) = 1 for q ∈ Qk

W(A) → Field of values (FoA) spectrum
AINV → Approximate inverse [55]
BEM → Boundary element method

BIE → Boundary integral equation
BCCB → Block circulant with circulant blocks
BTTB → Block Toeplitz with Toeplitz blocks

BPX → Bramble–Pasciak–Xu (preconditioner)
CG → Conjugate gradient

CGM → CG Method
CGN → Conjugate gradient normal method

DBAI → Diagonal block approximate inverse (preconditioner)
DDM → Domain decomposition method
DFT → Discrete Fourier transform

DWT → Discrete wavelet transform
FDM → Finite difference method
FEM → Finite element method
FFT → Fast Fourier transform

FFT2 → Fast Fourier transform in 2D (tensor products)
FMM → Fast multipole method

FoV → Field of values
FSAI → Factorized approximate inverse (preconditioner) [321]
FWT → Fast wavelet transform

GMRES → Generalised minimal residual method
GJ → Gauss–Jordan decomposition
GS → Gauss–Seidel iterations (or Gram–Schmidt method)
HB → Hierachical basis (finite elements)

ILU → Incomplete LU decomposition
LU → Lower upper triangular matrix decomposition

LSAI → Least squares approximate inverse (preconditioner)
MGM → Multigrid method
MRA → Multilresolution analysis
OSP → Operator splitting preconditioner
PDE → Partial differential equation
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Nomenclature xxiii

PSM → Powers of sparse matrices
QR → Orthogonal upper triangular decomposition

SDD → Strictly diagonally dominant
SOR → Successive over-relaxation

SSOR → Symmetric SOR
SPAI → Sparse approximate inverse [253]
SPD → Symmetric positive definite matrix (λ j (A) > 0)
SVD → Singular value decomposition

WSPAI → Wavelet SPAI
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