Department of Anthropology University of Kansas, Lawrence, KS 66045
Anthropological genetics is a synthetic discipline that applies the methods and theories of genetics to evolutionary questions posed by anthropologists. These anthropological questions concern the processes of human evolution, the human diaspora out of Africa, the resulting patterns of human variation, and bio-cultural involvement in complex diseases. How does anthropological genetics differ from its kin discipline, human genetics? Both fields examine various aspects of human genetics but from different perspectives. With the synthetic volume of 1973 (Methods and Theories of Anthropological Genetics), it became evident that the questions posed by the practitioners of anthropological genetics and human genetics tended to be somewhat different. I compared and contrasted these two fields in the introduction to the special issue of Human Biology (2000) on Anthropological Genetics in the twenty-first century (see Table 1.1). What distinguishes anthropological genetics from human genetics is its emphasis on smaller, reproductively isolated, non-Western populations, plus a broader, biocultural perspective on evolution and on complex disease etiology and transmission. Judging from the contents of the American Journal of Human Genetics (premiere journal in the field of human genetics) there is a greater emphasis on the causes and processes associated with disease, and the examination of these processes in affected phenotypes (probands) and their families. Anthropological geneticists tend to focus more on normal variation in non-Western reproductively isolated human populations (Crawford, 2000). Anthropological geneticists also attempt to measure environmental influences through co-variates of quantitative phenotypes, while human geneticists less often attempt to quantify the environment in order to assess the impact of environmental-genetic interactions.
Table 1.1 Differences between human genetics and anthropological genetics (Crawford, 2000).
Anthropological genetics | Human genetics |
|
|
The ancestral roots of the field of anthropological genetics are intimately intertwined with the developments in evolutionary biology, population genetics, and biological anthropology. O'Rourke (2003) correctly noted that this modern amalgamated discipline was further cross-fertilized by molecular biology and bioinformatics. Through cross-fertilization this hybrid field has acquired the analytical and laboratory tools to dissect the molecular and genetic bases of human variation, a traditional focus within biological anthropology. The addition of genome scanning and linkage analyses have contributed to the fluorescence of genetic epidemiology and the mapping of genes involved in complex phenotypes, particularly those associated with chronic diseases.
Anthropological genetics of the late 1960s and early 1970s was preceded by almost a century of discovery and development in evolutionary theory and genetics. Many of the ideas associated with natural selection can be traced to the publication of Charles Darwin's Origin of Species in 1859 (see Table 1.2). Because Darwin was unaware of Gregor Mendel's experiments on the particulate nature of genes (using characteristics of pea plants) Darwin lacked specific mechanisms for generating new variation and had to settle for a blending form of inheritance. Darwin also used Lamarck's concept of the inheritance of acquired characteristics, a concept that persisted well into the twentieth century.
Table 1.2 Time-line of significant developments in genetics and anthropological genetics.*
1859 | Publication of Darwin's Origin of Species |
1860 | Meischer first isolated DNA |
1880 | Weismann demonstrated the separation of the germ plasm from somatic cells |
1900 | Rediscovery of Mendel's laws of inheritance |
1901 | Documentation of first polymorphism in humans, ABO blood group system, by K. Landsteiner |
1902 | Garrod demonstrated that the mode of inheritance of inborn errors of metabolism were Mendelian in nature |
1908 | Formulation of the principle of genetic equilibrium, generally attributed to Hardy and Weinberg, but preceded by Castle in 1903 |
1919 | Population variability in the frequency of blood group genes demonstrated in World War I by Hirschfeld and Hirschfeld |
Fisher integrated Darwin's theory of natural selection with Mendel's formulations | |
1930-2 | Fisher, Haldane and Wright publish the mathematical basis of modern population genetic theory |
1937 | Dobzhansky published Genetics and the Origin of Species and further fleshed-out the modern synthesis by reconciling the evidence of the naturalists with the geneticists |
1944 | DNA is shown to be heritable material |
1949 | Molecular basis for sickle cell disease demonstrated by J. V. Neel (1957), Pauling et al. (1949), and H. A. Itano and L. Pauling (1961) |
1953 | Watson and Crick break the genetic code |
1954 | Allison reveals relationship between sickle-cell trait and malaria |
1956 | Human chromosomal numbers correctly characterized by J. Hin Tjio and A. Levan (1956) |
1955 | Smithies (1955, 1959) develops starch-gel electrophoresis, a method for separating protein variation based on charge and size of molecules |
Y-chromosome shown to determine the sex of organisms | |
1972 | Lewontin apportioned human genetic diversity and demonstrated the 85% is within populations |
1973 | Publication of the first major synthesis of anthropological genetics, Crawford and Workman |
1977 | DNA sequencing methods described |
1978 | Restriction Fragment Length Polymorphism (RFLP) first described |
1981 | Human mtDNA genome sequenced |
1984 | Methods of DNA fingerprinting first described by Jeffries |
1985 | Development of Polymerase Chain Reaction (PCR) methods |
1987 | Development of laser based fluorescent detection of DNA |
1988 | Beginning of the Human Genome Project |
1991 | Human Genome Diversity Project Proposed |
1997 | First Neandertal mtDNA sequence |
1998 | Completion of sequencing of the first human chromosome (Ch. 22) |
2001 | Draft of human genome sequence |
*Time-line was based in part on Jobling, Hurles and Tyler-Smith (2004).
Despite the brilliant research of August Weismann, who demonstrated the separation of germ plasm from the soma, Lamarckian concepts were adopted in Stalinist Soviet Union because they better fitted the ideology. Taken to extremes, there was a belief that changes in the phenotype affect the genotype, which is then transmitted to the next generation. However, later geneticists demonstrated that the alternation of the phenotype does not get inherited by subsequent generations because of the separation of the sex cells from other somatic cells. The concept of mutation initially arose from Hugo DeVries' research on primroses. He concluded that most mutations had drastic effects and that speciation was driven by mutations. However, the creative research of Thomas Hunt Morgan on the fruit fly demonstrated that mutations introduced variation in populations at incremental levels but rarely resulted in the formation of new species.
At the turn of the twentieth century, Karl Landsteiner's (1901) immunological characterization of the ABO blood group system and its mode of inheritance provided a genetic marker for the measure of human variation. Ludwik Hirschfeld and Hanka Hirschfeld (1919), during World War I, demonstrated that military personnel of various so-called ‘racial groups’ or ethnicities differed in the frequencies of the ABO blood groups. In the few decades that followed, additional blood group systems, such as the Rhesus, MNS, Duffy and Diego, were shown to vary in human populations. These blood group systems were polymorphic and differed in allelic frequencies in human regional populations. Yet, the function of these complex gycolipid (sugar/fat) or glycoprotein (sugar/protein) molecules expressed on the surface of human erythrocytes were unknown until relatively recently. For example, the Rh (Rhesus blood group system), discovered by Landsteiner and Weiner in 1941, came to medical attention because of its importance in pregnancy and the risk of maternal/fetal incompatibility. It only became evident in the year 1997 that the evolutionary history of the Rhesus blood group system was of great antiquity and that the function of the RH glycoproteins is the transportation of ammonium ions (NH4+) across the cell membrane (Marini and Urrestarazu, 1997; Marini et al., 2000). My chapter, The Use of Genetic Markers of the Blood in the Study of the Evolution of Human Populations, contains a summary of the known genetic variation in human blood group systems (Crawford, 1973).
In the mid 1950s, Orville Smithies developed a method (starch gel electrophoresis) for separating protein mixtures on the basis of both the electric charge and the size of the molecules (Smithies, 1955). Thus, the degree of genetic variation in the serum proteins in populations could be ascertained electrophoretically (Smithies and Connell, 1959; Smithies, 1959). This methodological innovation provided a glimpse into the genetic variation contained within the human genome, using primary gene products such as serum and red blood cell proteins and enzymes (extracted from the red blood cells into hemolysates). Refinements in electrophoretic methods, from filter paper electrophoresis (which separated proteins on the basis of molecular charge) to starch gel electrophoresis (separation based on both the charge and the size of the molecule), to isoelectric focusing (IEF, a method of electrophoresis performed on a gel containing a pH gradient), were suggestive of a human genome consisting of approximately 100,000 genes. With the sequencing of the human genome, this estimate was later down-sized to approximately 30,000 genes.
Most fields of inquiry are fortunate to have one, or maximally two, highly innovative ‘founders’, such as a Charles Darwin or an Albert Einstein. However, in addition to Charles Darwin, evolutionary theory was developed by three contemporaneous major figures, namely: Sewall Wright, J.B.S. Haldane, and R.A. Fisher (Table 1.2 contains a time-line of the significant genetic breakthroughs). They set the mathematical foundations for the modern synthetic evolutionary theory and provided the formal underpinnings for the measurement of natural selection and statistical methods for estimating the effects of stochastic processes. Other scientists, such as Thomas Hunt Morgan and Ernest Muller, using animal (fruit fly) models provided an understanding of mutation, the source of new genetic variation – which had eluded Charles Darwin. In an essay celebrating his 100th birthdate, the last survivor from that period of the development of the evolutionary synthesis, the eminent German evolutionary biologist, Ernst Mayr, recently reminisced about that era of evolutionary theory development (Mayr, 2004).
The next generation of population geneticists included the distinguished Russian émigré geneticist, Theodosius Dobzhansky, the great Chinese agronomist, C. C. Li, and US-born human geneticist, James Crow. They collectively added further refinements and detail to the synthetic theory of evolution. Although Dobzhansky's ‘animals of choice’ were the beetle and the lowly fruit fly (Drosophila melanogaster), he applied the principles of evolution learned from these models to humans and synthesized the available information on human evolution in a readable form. Similarly, C. C. Li synthesized much of the theory of population genetics in his concisely written primers, which assisted in the training of subsequent generations of evolutionists. James Crow coalesced demographic characteristics with population genetics by developing a method for assessing the opportunity of natural selection in human populations, based on fertility and mortality components derived from church records and civil documents. Together with his former student, Arthur Mange, Crow also developed methods for estimating levels of inbreeding in human populations using marital records and the likelihood of individuals with the same surname marrying (isonymy). These methods were applied and further elaborated by anthropological geneticists, such as Gabriel W. Lasker (a Harvard Ph.D., trained, in part, by Ernst Hooton). James Spuhler, another student of Hooton's, was greatly influenced by Sewall Wright and applied some of the path methods for the computation of inbreeding coefficients to Ramah Navajo populations (Spuhler and Kluckhohn, 1953). Derek F. Roberts, an Oxford-trained biological anthropologist, applied some of Wright's formulations to an island population in the south Atlantic, Tristan da Cunha, and demonstrated the importance of unique historical events and founder effects on the population of this small, remote island (Roberts, 1969). He also described the high incidence of forms of congenital deafness and mental retardation in the Tristan population (1969) and more recently showed the reduction in genetic variation as assessed by mtDNA (Soodyall et al., 1997).
In the late 1950s and early 1960s, with the publication of Sewall Wright's insights into the actions of stochastic processes, physicians and medical geneticists discovered the usefulness of small, genetically isolated populations for the understanding of rare genetic diseases and anomalies. Recessive mutations (normally of low incidence in large populations) may appear at high frequencies in some of these small populations because of the founder effect and chance segregation. Victor McKusick, of Johns Hopkins University, spearheaded the study of rare genetic anomalies in Pennsylvania Amish populations. The value of this approach was further demonstrated by the discovery of rare, familial genetic conditions, such as Christmas hemophilia, forms of dwarfism, and adenylate kinase deficiency in Amish kindred. Physicians/geneticists such as Victor McKusick (1964), Arno G. Motulsky (1965) and James V. Neel (1957) integrated biochemical genetic methodologies with evolutionary theory to elucidate human adaptation to diseases such as malaria. L. L. Cavalli-Sforza, another medically trained geneticist, examined allelic frequency fluctuations due to stochastic processes in small villages of Parma, northern Italy. Recently, together with colleagues Moroni and Zei, Cavalli-Sforza expanded this research into a tome on consanguinity, inbreeding, and genetic drift in Italy (Cavalli-Sforza et al., 2004). During the 1960s, Motulsky followed up his biochemical genetic interests in metabolic diseases to conduct fieldwork in populations of the Congo (Motulsky 1960; Motulsky et al., 1966). Similarly, J. V. Neel, together with Brazilian geneticist, Francisco Salzano, mounted a highly successful research programme on the genetics of tribal populations of South America (1964). Thus, in the 1950s and 1960s, the margins between the fields of anthropological genetics and human genetics were somewhat blurred, with geneticists and physicians conducting anthropological research and anthropological geneticists working in the realm of human genetics.
Anthropologists with training in genetics were useful to the medical profession in studies of small, highly isolated, non-Western populations. Unfortunately, until the 1950s, there were few anthropologists with adequate training in human genetics. The reason behind this paucity was that most physical anthropologists were traditionally trained in morphology and racial classification based on typology. However, several of Albert Hooton's last group of doctoral students at Harvard, namely Gabriel Lasker, Frederick Hulse and James Spuhler, had some training and interest in genetics. Lasker was influenced by the writings of Sewall Wright and applied these ideas to his field investigations with Mexican and Peruvian populations (Lasker, 1954, 1960). Hulse examined linguistic barriers to gene flow and blood group variation in Native American populations of northwestern United States (Hulse, 1955, 1957). In addition, he measured the effects of heterosis and exogamy in small-sized, Alpine Swiss communities (Hulse, 1957). James Spuhler collaborated with the cultural anthropologist, Clyde Kluckhohn, in applying Sewall Wright's pathway methods and measured the level of inbreeding among the Ramah Navajo (Spuhler and Kluckhohn, 1953).
Frank Livingstone, a former student of Neel and Spuhler at Michigan, conducted a study on the effects of culture (i.e. the introduction of slash-and-burn agriculture into sub-Saharan Africa) on the distribution of falciparum malaria. He demonstrated in his classic dissertation and subsequent publications that the destruction of the tropical rain forest resulted in the creation of standing bodies of water, a prerequisite for the successful breeding conditions of the Anopheles mosquito (Livingstone, 1958). The increased parasitization caused a shift from epidemic to endemic malarial infection and the action of natural selection against various phases of the life cycle of Plasmodium falciparum. Livingstone and Neel also trained a number of anthropological geneticists at Michigan, e.g. Kenneth Weiss, Alan Fix and the late Richard Ward – all went on to distinguished careers in anthropological genetics.
Several graduate anthropology students of W. W. Howells and Albert Damon at Harvard applied population genetic principles to anthropological populations. Eugene Giles tested theory of genetic drift on field populations of New Guinea. He sought to document that gene frequency fluctuations were due to genetic drift in small, isolated villages (Giles et al., 1966). Jonathan Friedlander, a graduate student of Damon's, conducted anthropological genetic investigations in the Solomon Islands (Friedlander, 1971).
Richard Lewontin (a population geneticist) statistically partitioned genetic variation within populations and between populations on the basis of 15 protein loci (Lewontin, 1967). He demonstrated that 85% of human genetic diversity is within populations. Thus, a much smaller percentage, 15%, is between populations. This research has been used to discourage genetic comparisons between so-called geographical ‘races’ because most of the variation is contained within the populations. Barbujani (1997) retested Lewontin's findings based on DNA markers and confirmed that 84.4% of the variation was within populations, 4.7% among samples, within groups, and 10.8% among groups (see Chapter 2, Madrigal and Barbujani). However, a controversial analysis of single nucleotide repeat (SNP) diversity (Seielstad et al., 1998) indicated that while autosomal and mtDNA SNPs provide a pattern similar to that observed by Lewontin and Barbujani (within populations 85.5% and 81.4% of the variation is subsumed), Y-chromosomal SNPs apportion almost 53% of the variation between continental populations.
In 1988, when I assumed the editorship of the journal Human Biology, I inherited few manuscripts of publishable quality. Kenneth Weiss (a member of the editorial board) suggested that in celebration of the 60th anniversary of the journal I should consider publishing an issue of the journal containing the ‘best’ anthropological genetics articles that had graced the pages of Human Biology during its history. This special issue would, on one hand, provide the needed manuscripts for publication plus, on the other hand, connect the past with the new focus of the journal. I titled this special issue ‘Foundations of Anthropological Genetics’. Gabriel Lasker and I selected the ‘top-ten’ most significant articles and had most of the original authors update their thoughts on the topic (Crawford and Lasker, 1989). Two of these classic articles were written almost 50 years ago, thus necessitating the preparation of the updates by willing specialists, namely David Hay and Robert Sokal, rather than the original authors. This special issue does establish connections between the early research in human genetics and the developments in anthropological genetics. The ten articles selected included distinguished authors such as J. B. S. Haldane, James Spuhler, D. F. Roberts, James Crow, J. V. Neel, Frank B. Livingstone, A. G. Motulsky, Morris Goodman, and P. T. Wilson. Their research and publications established a solid base, or foundation, for the field of anthropological genetics. While only Spuhler, Livingstone and Roberts were considered biological anthropologists, the field of anthropological genetics was built on the research and formulations of many disciplines and theoretical approaches to human evolution.
In 1970, due in part to prompting by my colleague at the University of Pittsburgh, the late C. C. Li, I organized a symposium on methods and theories of anthropological genetics at the School of American Research in Santa Fe, New Mexico. This symposium had a blend
Image not available in HTML version |
From 1973 to the 1980s, there was considerable research activity in anthropological genetics and related fields. The most significant developments were in the applications of quantitative genetic methodologies to complex phenotypes, particularly in chronic diseases. Developments in computer technology and programming facilitated the use of linkage methods, path analytical approaches of Sewall Wright, and segregation analyses to complex phenotypes. These methodologies provided information as to the mode of transmission of a complex phenotype and the chromosomal mapping (through linkage analysis) of Mendelian traits. These new developments, punctuated by a pronouncement from Newton Morton that all of the major questions in population structure have been answered and we should instead refocus on genetic epidemiology, prompted me to consider an update of the 1973 volume. After I was awarded a National Institutes of Health Career Development Award in 1976 a portion of my university salary was released by the administration of the University of Kansas. This award freed funds for a lecture series by distinguished speakers, each coming to Lawrence for one week, providing a public lecture, interacting with faculty and graduate students, and presenting one seminar to the graduate students and faculty. It was at this time that James H. Mielke (a former student of Peter Workman) was added to the faculty at Kansas and he joined me in developing this lecture programme. This collaboration resulted in the first volume of a three-volume series, Current Developments in Anthropological Genetics: Theory and Methods, published in 1980 by Plenum Press. Volume 2 focused on the effects of ecology on population structure and was released in 1982 (Crawford and Mielke, 1982). That volume contained a number of innovative approaches to population structure, including Robert Sokal's initial application of spatial autocorrelation to human populations of the Solomon Islands. In 1984, the final volume in the series was published. It was based on my research in Belize, Guatemala and St Vincent Island and was used as a case study applying the theories of population genetics to a series of historically related populations of the Caribbean and Central America (Crawford, 1984). This volume documented an evolutionary ‘success story’ of the Garifuna (Black Caribs). Although no unadmixed Carib or Arawak Native Americans now remain on St Vincent Island, their genes have been dispersed over a wide geographic expanse on the coast of Central America. In 1800, with fewer than 2,000 Black Caribs transported to Honduras, the population rapidly grew to more than 100,000 descendants and colonized much of the coast of Belize, Guatemala, Honduras and Nicaragua.
Since the publication of the last of the three volumes of the series in 1984, the field of anthropological genetics has been swept along by the molecular revolution (see Crawford, 2000). With the breaking of the genetic code by Watson and Crick in 1954 and the sequencing of the human genome in 2001, new methods and molecular markers became available for evolutionary studies. Since 1984, there has been a shift in emphasis in anthropological genetics, primarily from population structure (based on blood group and protein markers) and genetic epidemiology, to the study of human origins and the human diaspora. In addition, genetic epidemiology evolved from the initial analysis of the nature of the genetic component (based on heritability studies and segregation analyses) to the actual mapping of genes and Quantitative Trait Loci (QTLs) for complex phenotypes. These shifts in emphasis were made possible by the unique characteristics of DNA, i.e. the absence of recombination of mitochondrial DNA and a non-recombining portion of the Y-chromosome marker (NRY). These markers were more informative than polymorphic blood groups and proteins, plus they enabled the reconstruction of migration patterns from either the male or female perspectives. Mitochondrial DNA and NRY chromosome markers, because of the absence of recombination, can also be used to build chronometers based on the accumulation of mutations over a time period (see Chapter 7). The plethora of Short Tandem Repeats (STRs) and Single Nucleotide Polymorphisms (SNPs) distributed throughout the genome, provides anonymous markers that can be linked to complex phenotypes on specific chromosomes. In this way, genes and QTLs could be mapped and their gene products identified.
New questions can now be posed and answered using molecular genetic markers. For example, the question concerning whether Neandertals evolved into modern Homo sapiens or whether they were replaced by modern humans has apparently been answered using mtDNA sequences (see Chapter 13 by Arredi et al.). Comparisons of mismatch distributions between humans and six Neandertal remains show discontinuity. In addition, the Neandertal specimen from Germany does not resemble more closely the mtDNA of contemporary Germans (as predicted under the multi-regional model) than do Africans or Asians (Krings et al., 1997). The final bit of evidence in favour of the replacement hypothesis was that there is DNA discontinuity between the Neandertals and the three 24,000-year-old anatomically modern Europeans (Caramelli et al., 2003). The multi-regionalists have countered these findings by noting that there is continuity in some morphological traits suggestive of common origins. Certainly, Neandertals shared common ancestry with humans at least 500,000 years ago. In addition, morphological traits are highly plastic and tend to be sculpted by environmental factors. The pioneering research by Alphonse Riesenfeld demonstrated that the morphology of rat crania and long bones can be modified by functional and endocrine changes (Riesenfeld, 1974). More recently, the research of Susan Herring has demonstrated that physical factors, such as weight, pressure and other mechanical forces, shape of the crania of experimental animals such as pigs. Bone growth is influenced by a large number of environmental factors moulding the skull around the expanding brain and is further influenced by the pressures of muscles associated with chewing. Measures of heritability of human cranial features, revealed, in Mennonite populations, that there is a large environmental component as measured by familial resemblance (Devor et al., 1986).
This volume is divided into four sections: Theory, Methods, Applications and the Human Diaspora. In addition, these sections are introduced by this chapter, on the ‘Foundations of Anthropological Genetics’, and concluded by an overview, ‘Anthropological Genetics: Present and Future’, written by Henry Harpending. This volume has an international as well as interdisciplinary flavour with contributions coming from anthropological geneticists, human geneticists, and population geneticists from Brazil, Costa Rica, Italy, Korea, New Zealand, United Kingdom, and United States. In addition, these scholars come from a variety of institutions: the private sector, universities, research institutes, and medical centres. Two chapters, one on the effects of the molecular revolution on the theory associated with the forces of evolution and another on the peopling of Asia were not produced by the authors. In order to compensate for their absence, several chapters had to cover some of the topical omissions.
The section on Theory is introduced by a chapter authored by Lorena Madrigal and Guido Barbujani which partitions the genetic variation observed in contemporary human populations and considers the relationship of genetic variation to the concept of race. The second chapter of this section, by Terwilliger and Lee, provides an overview of the concept of genetic isolate and illustrates its application to studies of genetic epidemiology.
The section on Methods consists of five chapters, all of which were written by anthropological geneticists. The first chapter of this section (Chapter 4) is authored by the editor of this volume (Michael H. Crawford) and introduces the importance of field investigations to the discipline of anthropological genetics. This is followed by a collaborative chapter (Chapter 5) by James Mielke and Alan Fix, integrating the demographic processes with anthropological genetics. Chapter 1, by Rohina Rubicz, Philip Melton and Michael Crawford, provides a survey of the available genetic and molecular markers and analytical methods for the study of human phylogeny and the genetic structure of populations. The fourth chapter in this section on methodology (Chapter 7), by John Relethford, introduces the reader to the use of quantitative traits for the study of human evolution. The fifth chapter of this section (Chapter 8) by Dennis O'Rourke, focuses on the application of ancient DNA (extracted from skeletal remains) to the reconstruction of human phylogeny and history.
The third section of this volume, consisting of three chapters, deals with the Applications of Anthropological Genetics to various related fields and disciplines. The first chapter of the section (Chapter 9), written by Moses Schanfield, focuses on the application of anthropological genetics to forensic sciences. This discipline has received wide publicity and notoriety with celebrated cases in the United States, such as the OJ Simpson case, the Peterson case, the identification of skeletal materials among the ‘disappeared’ of Argentina, the victims of Kosovo, and the executed of Iraq. Anthropological genetics and osteology helped scientists and legal investigators disentangle the identities of thousands of victims of brutality and genocide. The second chapter of this section (Chapter 10), by Eric Devor, summarizes the state-of-the-art technologies coming from the private sector that are available to anthropological geneticists. In particular, this chapter focuses on the creative use of fluorescent techniques in molecular genetics. The final chapter of this section (Chapter 11), authored by John Blangero, Jeff Williams, Laura Almasy and Sarah Williams-Blangero, explores the application of anthropological genetics to the mapping of genes influencing QTLs involved complex diseases such as diabetes, atherosclerosis, obesity, hypertension, depression, alcoholism, osteoporosis, and cancer.
The fourth section of this volume, titled the Human Diaspora, traces the movement of humans out of Africa to Europe, Asia into the Americas and Oceania. The first chapter of this section (Chapter 12), written by Sarah Tishkoff and Mary Katherine Gonder, examines the genetic variation observed in Africa and utilizes these molecular data to reconstruct the migration dynamics of Homo sapiens within the continent and to adjacent geographical regions. The second chapter of the Human Diaspora section (Chapter 13), by Barbara Arredi, Estella Poloni and Chris Tyler-Smith, examines the patterns of genetic variation observed in Europe and their implications to the peopling of that continent. Elizabeth Matisoo-Smith applies DNA data, both from humans and rats, in reconstructing the patterns of migration of the peoples of Oceania. This third chapter of the section (Chapter 14) on the Human Diaspora employs highly creative methodology of mitochondrial DNA variation in a commensal species that accompanied humans in their extended oceanic voyages to Polynesia. Francisco Salzano's reconstruction of the peopling of the Americas (Chapter 15), based on molecular genetic evidence, concludes this section.
The concluding chapter to this volume (Chapter 16), written by Henry Harpending, provides some fearless predictions about theories and methodologies of anthropological genetics in the future. Harpending was one of the original contributors to the first volume of Anthropological Genetics (Crawford and Workman, 1973). His chapter on R-matrix analyses of South African populations, co-authored with Trefor Jenkins, is the most widely cited chapter of that classic volume (Harpending and Jenkins, 1973).
Allison, A. C. (1954). Protection afforded by sickle-cell trait against subtertian malarial infection. British Medical Journal 1, 290–294.
Barbujani, G., Magagni, A., Minch, E., and Cavalli-Sforza, L. L. (1997). An apportionment of human DNA diversity. Proceedings of the National Academy of Sciences USA 94(9), 4516–19.
Caramelli, D., Lalueza-Fox, C., Vernesi, C., Lari, M., Casoli, A., Mallegni, F., Chiarelli, B., Dupanloup, I., Bertranpetit, J., Barbujani, G., and Bertorelle, G. (2003). Evidence for a genetic discontinuity between Neandertals and 24,000-year-old anatomically modern Europeans. Proceedings of the National Academy of Sciences USA 100(11), 6593–7.
Cavalli-Sforza, C. C., Moroni, A., and Zei, G. (2004). Consanguinity, Inbreeding and Genetic Drift in Italy. Princeton University Press.
Crawford, M. H. (1973). The use of genetic markers of the blood in the study of the evolution of human populations. In: Methods and Theories of Anthropological Genetics (MH Crawford, and PL Workman, eds.), University of New Mexico Press, Albuquerque, pp. 19–38.
Crawford, M. H. (2000). Anthropological Genetics in the 21st Century: Introduction. Human Biology 72(1), 3–13.
Crawford, M. H. and Lasker, G. W. (eds). (1989). Foundations of Anthropological Genetics. In a special issue of Human Biology (5–6), 615–958.
Crawford, M. H. and Mielke, J. H. (eds). (1982). Current Developments in Anthropological Genetics, Vol. 2 Ecology and Population Structure, New York, Plenum Press.
Crawford, M. H., and Workman, P. L. (eds). (1973). Methods and Theories of Anthropological Genetics. School of American Research Books, Albuquerque, New Mexico, University of New Mexico Press.
Crawford, M. H. (ed.). (1984). Current Developments in Anthropological Genetics. Vol. 3. Black Caribs, A Case Study in Biocultural Adaptation, New York, Plenum Press.
Devor, E. J., McGue, M., Crawford, M. H., and Lin, P.M. (1986). Transmissible and non-transmissible components of anthropometric variation in the Alexanderwohl Mennonites. II. Resolution by path analysis. American Journal of Physical Anthropology 69(1), 83–92.
Friedlander, J. (1971). The population structure of South-Central Bougainville. American Journal of Physical Anthropology 35, 13–26.
Garrod, A. E. (1902). The incidence of alkaptonuria: A study of chemical individuality. Lancet ii, 1616–1620.
Giles, E., Ogan E., Walsh R. J., and Bradley M. A. (1966). Microevolution in New Guinea: The role of genetic drift. Annals of the New York Academy of Science 134, 655–65.
Hardy, G. H. (1908). Mendelian proportions in a mixed population. Science 28, 49–50.
Harpending, H., and Jenkins, T. (1973). Genetic distance among Southern African populations. In: Methods and Theories of Anthropological Genetics (M. H. Crawford, and P. L. Workman, eds.), University of New Mexico Press, Albuquerque, pp. 177–199.
Hin Tjio, J., and Levan, A. (1956). The chromosome number of man. Hereditas 42, 1–6.
Hirschfeld, L., and Hirschfeld, H. (1919). Serological differences between the blood of different races. The results of researches on the Macedonian front. Lancet 197, 675–9.
Hulse, F. S. (1955). Blood types and mating patterns among Northwest Coast Indians. Southwest Journal of Anthropology 11, 93–104.
Hulse, F. S. (1957). Linguistic barriers to gene flow. The blood-groups of the Yakima, Okanagon and Swinomish Indians. Amer. J. Phys. Anthrop. 15, 235–46.
Itano, H. A., and Pauling, L. (1961). Thalassemia and the abnormal human haemoglobins. Nature 191, 398–9.
Jobling, M. A. Hurles, M. E. and Tyler-Smith, C. (2004) Human Evolutionary Genetics. Origins, Peoples and Disease. New York, Garland Science.
Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H., Stoneking, M., and Paabo, S. (1997). Neandertal DNA sequences and the origin of modern humans. Cell 90(1), 19–30.
Landsteiner, K. (1901). Uber Agglutinionscheinungen normalen menschlichen blutes. Wiener klinische Wochenschrift 14, 1132–4.
Landsteiner, K., and Weiner, A. S. (1941). Studies on an agglutinogen (Rh) in human blood reacting with anti-Rhesus sera and with human isoantibodies. Journal of Experimental Medicine 74, 309–20.
Lasker, G. W. (1954). Human evolution in contemporary communities. Southwest Journal of Anthropology 10, 353–65.
Lasker, G. W. (1960). Migration, isolation and ongoing human evolution. Human Biology 32, 80–88.
Lewontin, R. C. (1967). An estimate of average heterozygosity in man. American Journal of Human Genetics 19(5), 681–5.
Livingstone, F. B. (1958). Anthropological implications of sickle-cell gene distribution in West Africa. American Anthropologist 60, 533–562.
Mayr, E. (2004). 80 years of watching the evolutionary scenery. Science 305, 46–7.
Marini, A. M., and Urrestarazu, A. (1997). The Rh (Rhesus) blood group polypeptides are related to NH 4+ transporters. Trends in Biochemical Sciences 22, 460–1.
Marini, A. M., Matassi, G., Raynal, V. V., Andre, B., Cartron, J. P., and Cherif-Zahar, B. (2000). The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nature Genetics 26(3), 341–4.
McKusick, V. A., Hostetler, J. A., Egeland, J. A., and Eldridge, R. (1964). The distribution of certain genes in the Old Order Amish. Cold Spring Harbor Symposium on Quantitative Biology XXIX, 137–45.
Mielke, J. H., and Crawford, M. H., (eds). (1980). Current Developments in Anthropological Genetics. Vol. 1. Theory and Methods. New York, Plenum Press.
Motulsky, A. G. (1960). Metabolic polymorphisms and the role of infectious diseases in human evolution. Human Biology 32, 28–62.
Motulsky A. G. (1965). Theoretical and clinical problems of glucose-6-phosphate dehydrogenase deficiency. In: Abnormal Haemoglobins in Africa (JHP Jonxis, ed.), Blackwell Scientific Publishers, Oxford, pp. 143–96.
Motulsky, A. G., Vandepitte J, and Fraser, G. R. (1966). Population genetic studies in the Congo. I. Glucose-6-phosphate dehydrogenase deficiency, hemoglobin S, and malaria. American Journal of Human Genetics 18(6), 514–37.
Neel, J. V. (1949). The inheritance of sickle cell anemia. Science 110, 64–66.
Neel, J. (1957). Human hemoglobin types: their epidemiologic implications. New England Journal of Medicine 256(4), 161–171.
Neel, J. V. (1957). Human hemoglobin types; their epidemiologic implications. New England Journal of Medicne 256(4), 161–71.
Neel, J. V., and F. M. Salzano (1964). A prospectus for genetic studies of the American Indian. In: Cold Spring Harbor Symposia on Quantitative Biology 29, 85–98.
O'Rourke, D. H. (2003). Anthropological genetics in the genomic era: A look back and ahead. American Anthropologist 105(1), 101–9.
Pauling, L., Itano H. A., Singer S. J., and Wells I. C. (1949). Sickle cell anemia, a molecular disease. Science 110, 543–548.
Riesenfeld, A. (1974). Endocrine and biomechanical control of craniofacial growth. An experimental study. Human Biology 46(3), 531–72.
Roberts, D. F. (1965). Assumption and fact in anthropological genetics. Journal of the Royal Anthropological Institute 95, 87–103.
Roberts, D. F. (1969). Consanguineous marriages and calculation of the genetic load. Annals of Human Genetics (London) 32, 407–10.
Rosenberg, N, Pritchard J. K., Weber J. L, Cann H. M., Kidd K. K., Zhivotovsky L. A., and Feldman M. W. (2002). Genetic structure of human populations. Science 298, 2381–2385.
Seielstad, M., Minch E., and Cavalli-Sforza, L. (1998). Genetic evidence for a higher female migration rate in humans. Nature Generics 20, 278–80.
Smithies, O. (1955). Zone electrophoresis in starch gels: Group variations in the serum proteins of normal human adults. Biochemistry Journal 61, 629.
Smithies, O. (1959). An improved procedure for starch-gel electrophoresis: Further variations in the serum proteins of normal individuals. Biochemistry Journal 71, 585.
Smithies, O., and Connell, G. E. (1959). Biochemical aspects of the inherited variations in human serum haptoglobins and transferrins. Ciba Foundation Symposium., Biochemistry of Human Genetics. London, J. and A. Churchill, Ltd, 178–89.
Soodyall, H., Jenkins, T., Mukherjee, A., duToit, E., Roberts, D. F., and Stoneking, M. (1997). The founding mitochondrial DNA lineages of Tristan da Cunha Islanders. American Journal of Physical Anthropology 104(2), 157–66.
Spuhler, J. N., and Kluckhohn, C. (1953). Inbreeding coefficients of the Ramah Navajo populations. Human Biology 25, 295–317.