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1
Notation and generalities

Throughout the book: �+ is the set of non-negative integers and F is an
algebraically closed field of characteristic p ≥ 0. Throughout Part I

I �= � ·1⊂ F� (1.1)

If p= charF > 0 then I is identified with �0�1� � � � � p−1�, and if p= 0 then
I = �.
If � is an associative F -algebra we denote by �-mod the category of all

finite dimensional left �-modules and by �-proj ⊂�-mod the full subcat-
egory of all projective �-modules. We write K��-mod��K��-proj� for
the corresponding Grothendieck groups. The embedding �-proj ⊂ �-mod
induces the natural Cartan map

� � K��-proj�→ K��-mod��

Note that in general � does not have to be injective.
Let M ∈�-mod. The socle of M , written socM , is the largest completely

reducible submodule of M , and the head of M , written hdM , is the largest
completely reducible quotient module of M . If V is an irreducible �-module,
we write 	M � V
 for the multiplicity of V as a composition factor of M .
For algebras ���, an �-module M , and a �-module N , we write M �N

for the outer tensor product, that is the tensor product of vector spaces M⊗N

considered as an �⊗�-module in the usual way.
If � is a subalgebra of �, and M is a �-module we write ind��M or ind�

for the induced module �⊗�M . We may consider ind�� as a functor from
the category of �-modules to the category of �-modules. This functor is left
adjoint to the restriction functor res�� (or res�) going in the other direction. If
� is free as a right �-module the induction functor is exact.
We denote by ���� the center of �. By a central character of A we mean

a (unital) algebra homomorphism � �����→ F . For a central character � the
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4 Notation and generalities

corresponding block is the full subcategory A-mod	�
 of �-mod consisting
of all modules M ∈�-mod such that �z−��z��kM = 0 for k� 0. We have
a decomposition

�-mod =⊕

�

�-mod	�


as � runs over all central characters. If � is finite dimensional, then two
non-isomorphic irreducible �-modules L and M belong to the same block
if and only if there exists a chain L � L0�L1� � � � �Lm � M of irreducible
�-modules with either Ext1��Li�Li+1� �= 0 or Ext1��Li+1�Li� �= 0 for each i.
Let � be a subalgebra of an F -algebra � and � be the centralizer of �

in �. If V is an �-module and W is a �-module then Hom��W� res�V�
is naturally a �-module with respect to the action �cf��w� = cf�w� for
w ∈W�f ∈ Hom��W� res�V�� c ∈ � .

Lemma 1.0.1 Let �⊆� be semisimple finite dimensional F -algebras. If V
is irreducible over � and W is irreducible over � then

Hom��W� res�V�

is irreducible over � .

Proof By Wedderburn–Artin, we may assume that �= End�V �. Decompose
res�V =W⊕k⊕X, whereW is not a composition factor of X. Then the algebra
End��W

⊕k�, naturally contained in � , acts on the space Hom��W� res�V� as
the full endomorphism algebra.

For any n ≥ 0, let � = ��1��2� � � � � be a partition of n, that is a non-
increasing sequence of non-negative integers summing to n. If p > 0, the
partition � is called p-regular if for any k > 0 we have


�j � �j = k� < p�

By definition, every partition is 0-regular. Let ��n� (resp. �p�n�) denote the
set of all (resp. all p-regular) partitions of n. Thus ��n�= �0�n�. Set

� �= ⋃

n≥0

��n� and �p �=
⋃

n≥0

�p�n��

We identify a partition � with its Young diagram

�= ��r� s� ∈ �>0×�>0 � s ≤ �r��

Elements �r� s� ∈ �>0×�>0 are called nodes. We label the nodes of � with
residues, which are elements of I . By definition, the residue of the node �r� s�
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Notation and generalities 5

is s− r �mod p� if p is positive, and simply s− r if p = 0. The residue of
the node A is denoted resA. Define the residue content of � to be the tuple

cont���= ��i�i∈I � (1.2)

where for each i ∈ I , �i is the number of nodes of residue i contained in the
diagram �.
Let i ∈ I be some fixed residue. A node A= �r� s� ∈� is called i-removable

(resp. i-addable) for � if resA= i and �A �= �\ �A� (resp. �A �= �∪ �A�) is
a Young diagram of a partition. A node is called removable (resp. addable) if
it is i-removable (resp. i-addable) for some i. Thus, for example, a removable
node is always of the form �m��m� with �m > �m+1.

Throughout the book, Sn denotes the symmetric group on n letters. The
permutations act on numbers 1� � � � � n on the left so that for the product we
have, for example, �1�2��2�3�= �1�2�3�. Sn also acts on n-tuples of objects
by place permutations on the right:

�a1� a2� � � � � an� ·w = �aw1� � � � � awn�

or on the left:

w · �a1� a2� � � � � an�= �aw−11� � � � � aw−1n��

The length function on Sn in the sense of Coxeter groups is denoted by �.
The number ��w� can be characterized as the number of inversions in the
permutation w.
Finally we recall one classical result. Let

�n = F	x1� � � � � xn


be the polynomial algebra in n indeterminates,

�n �= F	x1� � � � � xn

Sn

be the ring of symmetric polynomials, and �+
n ⊂ �n be the symmetric poly-

nomials without free term. The following fact is well known over �. That it
holds over �, and hence over F , is proved in [St].

Theorem 1.0.2 �n is a free module of rank n! over �n. Moreover we can
take the set

B �= �x
a1
1 � � � xann � 0 ≤ ai < i for all 1≤ i ≤ n�
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6 Notation and generalities

as a basis. In particular, the cosets of elements of B form a basis of the
algebra �n/�n�

+
n .

A slightly more general result easily follows:

Corollary 1.0.3 Let r ≤ n. Then �Sr
n is a free module of rank n!/r! over �n.

Moreover we can take the set

B �= �x
ar+1
r+1 � � � x

an
n � 0 ≤ ai < i for all r+1≤ i ≤ n�

as a basis.

Proof It suffices to prove that elements of B generate �Sr
n as a module over

�n. Let f ∈ �Sr
n . In view of Theorem 1.0.2, we can write

f =∑
fax

a1
1 � � � xann � (1.3)

where the summation is over all n-tuples a = �a1� � � � � an� with 0 ≤ ai < i,
and fa ∈�n. Using Theorem 1.0.2 with n= r we can also see that �n is a free
�Sr

n -module on basis �xa11 � � � xarr � 0 ≤ ai < i for all 1≤ i ≤ r�. Now note that
the polynomials fax

ar+1
r+1 � � � x

an
n are in �Sr

n , so, since f is also in �Sr
n , it follows

that fa = 0 in (1.3) unless a1 = · · · = ar = 0. This completes the proof.
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2
Symmetric groups I

In order to illustrate the theory we are trying to develop let us start from an
“easy” special case, namely the case of complex representations of the sym-
metric group Sn. We explain the beautiful elementary approach of Okounkov
and Vershik [OV] (see also [DG]). The idea of this approach is not new:
to study all symmetric groups at once. However, it is rather amazing that in
this way the whole theory can be built quickly from scratch using only the
classical Maschke and Wedderburn–Artin Theorems.
We will obtain the following well-known results: labeling the irreducible

�Sn-modules by partitions of n, construction of Young’s orthogonal bases
in irreducible modules, explicit description of matrices of simple transposi-
tions with respect to these bases, and the Murnaghan–Nakayama formula for
irreducible characters.

2.1 Gelfand–Zetlin bases

Define the kth Jucys–Murphy elements (JM-element for short) Lk ∈ FSn as
follows:

Lk �=
∑

1≤m<k

�m�k�� (2.1)

These elements were introduced in [Ju], [Mu1]. Note that L1 = 0 and Lk

commutes with Sk−1. As Lk ∈ FSk, it follows that the JM-elements commute.
Here and below, if m<n, the default embedding of Sm into Sn is with respect
to the first m letters. A copy of Sm embedded with respect to the last m letters
is denoted by S′

m.
Denote by �n the center of the group algebra FSn. Also let

�n�m �= �FSn+m�
Sn
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8 Symmetric groups I

be the centralizer of FSn in FSn+m. It is clear that �n�m is spanned by the class
sums corresponding to the Sn-conjugacy classes in Sn+m. These conjugacy
classes can be thought of as cycle shapes with “fixed positions” for n+ 1�
n+ 2� � � � � n+m – we call them marked cycle shapes. For example, the
symbol

�∗�∗�∗�∗�∗��∗�∗��∗��∗��12�∗�13�14�∗��15� (2.2)

corresponds to the S11-conjugacy class in S15, which consists of all permuta-
tions whose cycle presentation is obtained by inserting the numbers 1 through
11 instead of asterisks.

Proposition 2.1.1 [O1] The algebra �n�m is generated by S′
m, �n, and

Ln+1� � � � �Ln+m.

Proof It is clear that S′
m, �n, and Ln+1� � � � �Ln+m are contained in �n�m,

so they generate a subalgebra �⊆�n�m. Conversely, let us filter �n�m so that
the ith filtered component �i

n�m is the span of the class sums which correspond
to the marked cycle shapes moving at most i elements. For example the class
sum corresponding to (2.2) belongs to �12

11�4, but not �
11
11�4. We prove by

induction on i = 0�1� � � � that �i
n�m ⊆ �. For i = 0 and 1, we have �i

n�m =
F · 1 ⊆ �. We explain the inductive step on example. Let z ∈ �12

11�4 be the
class sum corresponding to the marked cycle shape from (2.2). Let c ∈ �11

denote the sum of all elements of S11 whose cycle shape is

�∗�∗�∗�∗�∗��∗�∗��∗��∗��
Also, let

x = �12�13�L12�13�14��L14− �12�14�− �13�14�� ∈��

(Note that L12 is the class sum corresponding to �∗�12�, and �L14−�12�14�−
�13�14�� is the class sum corresponding to �∗�14�.) Then xc is equal to z

modulo lower layers of our filtration.

From now on until the end of Chapter 2 we assume that F = �.
The following key multiplicity-freeness result is well known – it is a special

case of the branching rule, which describes the restriction of an irreducible
�Sn-module to Sn−1. However, usually the branching rule is proved after
some theory has been developed and irreducible modules have been studied.
In the approach explained here the multiplicity-freeness result is proved from
scratch and then used to develop a theory.
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2.1 Gelfand–Zetlin bases 9

Theorem 2.1.2 Let V be an irreducible �Sn-module. Then the restriction
resSn−1

V is multiplicity free.

Proof It follows from Proposition 2.1.1 that the centralizer of �Sn−1 in �Sn
is commutative. So the theorem comes from Lemmas 1.0.1.

We now define the branching graph � whose vertices are isomorphism
classes of irreducible �Sn-modules for all n ≥ 0 (by agreement �S0 = �);
we have a directed edge W → V from (an isoclass of) an irreducible �Sn-
module W to (an isoclass of) an irreducible �Sn+1-module V if and only if W
appears as a composition factor of resSnV ; there are no other edges. Our main
goal is to find an explicit combinatorial description of the branching graph.
This will give us a labeling of the irreducible �Sn-modules for all n. This
will also yield the branching rule. To achieve this goal we will actually do
more.
Let V be an irreducible �Sn-module. Pick an Sn-invariant inner product

�·� ·� on V (it is unique up to a scalar). Theorem 2.1.2 implies that the
decomposition

resSn−1
V = ⊕

W→V

W

is canonical. Decomposing each W on restriction to Sn−2, and continuing
inductively all the way to S0, we get a canonical decomposition

resS0V =⊕

T

VT

into irreducible �S0-modules, that is 1-dimensional subspaces VT , where T

runs over all paths W0 →W1 → ·· ·→Wn = V in �. Note that

�Sk ·VT =Wk �0 ≤ k≤ n�� (2.3)

Choosing a vector vT ∈ VT , we get a basis �vT � of V called Gelfand–Zetlin
basis (or GZ-basis). Vectors of GZ-basis are defined uniquely up to scalars.
Moreover, if � � V → V ′ is an isomorphism of irreducible modules then �

moves a GZ-basis of V to a GZ-basis of V ′. Note also, for example using
(2.3), that a GZ-basis is orthogonal with respect to �·� ·�.

Now decompose the algebra �Sn according to the Wedderburn–Artin
Theorem

�Sn =
⊕

V

End��V �� (2.4)
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10 Symmetric groups I

where the sum is over the representatives of the isoclasses of irreducible
�Sn-modules. This decomposition is canonical. Let us pick a GZ-basis in
each V . Then we also identify

�Sn =
⊕

V

MdimV ���� (2.5)

Define the GZ-subalgebra �n ⊆ �Sn as the subalgebra which consists of all
elements of �Sn, which are diagonal with respect to a GZ-basis in every
irreducible �Sn-module. In terms of the decomposition (2.5), �n consists of
all diagonal matrices. In particular:

Lemma 2.1.3 �n is a maximal commutative subalgebra of �Sn. Also, �n is
a semisimple algebra.

We give two more descriptions of the GZ-subalgebra.

Lemma 2.1.4

(i) �n is generated by the subalgebras �0��1� � � � ��n ⊆ �Sn.
(ii) �n is generated by the JM-elements L1�L2� � � � �Ln.

Proof (i) Let eV ∈�n be the central idempotent of �Sn, which acts as identity
on V and as zero on any irreducible �Sn-module V ′ �	 V (in terms of (2.4);
eV is the identity endomorphism in the V -component and zero endomorphism
in other components). If T =W0 →W1 → ·· ·→Wn = V is a path in � then

eW0
eW1

� � � eWn
∈ �0�1 � � ��n

acts as the projection to VT along ⊕S �=TVS and as zero on any irreducible
�Sn-module V ′ �	 V . So the subalgebra generated by �1��2� � � � ��n contains
�n. As this subalgebra is commutative and �n is a maximal commutative
subalgebra of �Sn, the two must coincide.
(ii) Note that Lk is the sum of all transpositions in Sk minus the sum of

all transpositions in Sk−1, that is Lk is a difference of a central element in Sk
and a central element in Sk−1. So by (i), the JM-elements do belong to �n.
To prove that they generate �n, proceed by induction on n, the inductive
base being trivial. By (i), �n is generated by �n−1 and �n. In view of the
inductive assumption, it suffices to prove that �n−1 and Ln generate �n. But
this follows from the obvious embedding �n ⊆ �n−1�1 and Proposition 2.1.1,
as �n−1 ⊆�n−1.

Now, we will try to have the GZ-subalgebra play a role of a Cartan
subalgebra in Lie Theory. As �n is semisimple we can decompose every
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