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Introduction to the Second Edition

Dedicated to my friend and coauthor,

Robert Breckenridge Warfield, Jr. (1940–1989)

Since the publication of the first edition in 1989, this book has been used by
several generations of graduate students. From the accumulated comments,
it became clear that a number of changes in the presentation of the material
would make the book more accessible, particularly to students reading the
text on their own. During this same period, the explosive growth of the
area of quantum groups provided a large new crop of noetherian rings to be
analyzed, and thus gave major impetus to research in noetherian ring theory.
While a general development of the theory of quantum groups would not fit
into a book of the present scope, many of the basic types of quantum groups
are ideally suited as examples on which the concepts and tools developed in
the text can be tested. Finally, readers of the first edition found a substantial
list of typographical and other minor errors. This revised edition is designed
to address all these points. Undoubtedly, however, the retyping of the text in
TeX has introduced a new supply of typos for readers’ entertainment.

Here is more detail:
Changes to the order and emphasis of topics were based, as mentioned, on

the combined experience and comments of numerous students and professors
who used the first edition over the past 14 years. In particular, more examples
and additional manipulations with specific rings – especially in the early part
of the book – were requested. In response to both requests, further examples
of the types discussed in the first edition are worked out, and new examples
from quantum groups (as well as a few from the representation theory of Lie
algebras) have been inserted throughout. The discussion of skew polynomial
rings, which many students initially found difficult to digest in full generality,
has been expanded considerably. The present development keeps to the case
of twists by automorphisms in Chapter 1 and begins Chapter 2 by outlining
the case of twists by derivations; thus, readers have a chance to familiarize
themselves with these more basic types of skew polynomial rings before mov-
ing on to the general situation. In addition, the universal properties of these
rings are now emphasized, as are presentations by generators and relations.
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INTRODUCTION TO THE SECOND EDITION ix

It was also brought to my attention that most students have a strong prefer-
ence for following the given sequence of topics in a text, as opposed to skipping
certain sections and returning to them later. Thus, some topics which were
presented in the early chapters of the first edition, but were not essential un-
til later, have been moved. For example, the development of affiliated primes
and affiliated series, which originally occurred in the introductory chapter on
prime ideals, has now been shifted to Chapter 8. To address a few points in
earlier chapters where affiliated series had provided motivation, the (simpler)
concept of a prime series is introduced in Chapter 3.

When the first edition was being written, students’ opinions on two pos-
sible approaches to Goldie’s Theorem (the classical construction of rings of
fractions versus ring structures on injective hulls) were evenly split among
those polled. The injective hull approach was chosen mainly for the sake of
variety (to contrast with presentations in other sources). In the meantime,
however, opinion has swung overwhelmingly in favor of the classical approach.
Consequently, the development of ring structures on injective hulls has been
removed. The accompanying material on nonsingular modules has been re-
placed by a discussion of torsionfree modules with respect to Ore sets. To
accommodate the classical approach, a basic construction of rings of fractions
(with respect to Ore sets of regular elements) is now given at the beginning
of Chapter 6; the general case (in Chapter 10) is tackled by reduction to this
basic case. In keeping with one of the main themes of the book, rings of frac-
tions are obtained as rings of endomorphisms of appropriate modules, thus
avoiding tedious computations with equivalence classes of ordered pairs.

The topic of quantum groups is a tricky one for an introductory book.
Certainly, the algebraic side of that area has provided fertile ground for ap-
plications of noetherian ring theory. However, on one hand, the subject – like
those of group algebras and enveloping algebras – has given rise to such an
extensive theory of its own that a general treatment would completely over-
balance the present book. On the other hand, the theory of quantum groups
is still evolving rapidly even though its foundations are not yet settled; in fact,
there is still no axiomatic definition of a “quantum group” at present, only a
list of examples which have been so baptized by general consensus. For these
reasons, it did not appear useful, at this point, to attempt an introductory ac-
count of the topic trimmed to the length of a chapter or two. Thus, in place of
a systematic treatment, quantum groups have been integrated into the general
flow of the book to illustrate the theory. Moreover, a sketch of the philosophy
behind the concept of a quantum group has been added to the Prologue, to
accompany the previous sketches of other areas of application of noetherian
ring theory. A selection of easily accessible examples, constructible from iter-
ated skew polynomial rings, is introduced at that point. These examples are
analyzed in detail in the first two chapters (in both text and exercises) and
are used repeatedly in later chapters to test new concepts and methods.

For many helpful comments and suggestions, most of which I have tried to
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x INTRODUCTION TO THE SECOND EDITION

incorporate into this revised edition, I would like to thank Allen Bell, Gary
Brookfield, Ken Brown, R. N. Gupta, Charu Hajarnavis, Heidi Haynal, Karen
Horton, Brian Jue, Dennis Keeler, Tom Lenagan, Ed Letzter, Ian Musson,
Kim Retert, Dan Rogalski, Lance Small, Paul Smith, Toby Stafford, Peter
Thompson, and Scot Woodward.

Ken Goodearl
July 2003
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Introduction to the First Edition

Noncommutative noetherian rings are presently the subject of very active
research. Recently the theory has attracted particular interest due to its
applications in related areas, especially the representation theories of groups
and Lie algebras. We find the subject of noetherian rings an exciting one,
for its own sake as well as for its applications, and our primary purpose in
writing this volume was to attract more participants into the area.

This book is an introduction to the subject intended for anyone who is
potentially interested, but primarily for students who are at the level which
in the United States corresponds to having completed one year of graduate
study. Since the topics included in an American first year graduate course
vary considerably, and since those in analogous courses in other countries (e.g.,
third year undergraduate or M.Sc. courses in Britain) vary even more, we
have attempted to minimize the actual prerequisites in terms of material, by
reviewing some topics that many readers may already have in their repertoires.
More importantly, we have concentrated on developing the basic tools of the
subject, in order to familiarize the student with current methodology. Thus
we focus on results which can be proved from a common point of view and
steer away from miraculous arguments which can be used only once. In this
spirit, our treatment is deliberately not encyclopedic, but is rather aimed at
what we see as the major threads and key topics of current interest.

It is our hope that this book can be read by a student without the benefit
of a course or an instructor. To encourage this possibility, we have tried
to include details when they might have been omitted, and to discuss the
motivations for proceeding as we do. Moreover, we have woven an extensive
selection of exercises into the text. These exercises are particularly designed
to give the novice some experience and familiarity with both the material and
the tools being developed.

One of the fundamental differences between the theories of commutative
and noncommutative rings is that the former arise naturally as rings of func-
tions, whereas the latter arise naturally as rings of operators. For example,
early in the twentieth century, some of the first noncommutative rings that
received serious study were certain rings of differential operators. More gener-
ally, given any set of linear transformations of a vector space, we can form the
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xii INTRODUCTION TO THE FIRST EDITION

algebra of linear transformations generated by this set, and many problems
of interest concerning the original transformations become module-theoretic
questions, where we view the original vector space as a module over the al-
gebra we have created. In many modern applications, in turn, it is essential
to regard noncommutative rings as rings of transformations or operators of
various kinds. We are partial to this point of view. This has led us to empha-
size the role of modules when studying a ring, for modules are simply ways of
representing the ring at issue in terms of endomorphisms of abelian groups.
Also, when defining a ring we have tended to present it as a ring of operators
of some sort rather than by taking a more formal approach, such as giving
generators and relations. For example, when constructing rings of fractions,
we have preferred to find them as rings of endomorphisms rather than as sets
of equivalence classes of ordered pairs of elements.

Although the noetherian condition is very natural in commutative ring the-
ory, since it holds for the rings of integers in algebraic number fields and for the
coordinate rings crucial to algebraic geometry, it was originally less clear that
this condition would be useful in the noncommutative setting. For instance,
Jacobson’s definitive book of 1956 makes only minimal mention of noetherian
rings. Similarly, prime ideals, essential in the commutative theory, seemed to
have relatively less importance for noncommutative rings; in fact, because of
the fundamental role of representation-theoretic ideas in the development of
the noncommutative theory, the initial emphasis in the subject was almost
exclusively on irreducible representations (i.e., simple modules) and primi-
tive ideals (i.e., annihilators of irreducible representations). In the meantime,
however, it has turned out that various important types of noncommutative
rings – in particular, certain infinite group rings and the enveloping algebras
of finite dimensional Lie algebras – are in fact noetherian. This has been used
to good effect in recent work on the representation theory of the correspond-
ing groups and Lie algebras, just as the theory of finite dimensional algebras
and artinian rings has played a key role in research on the representations of
finite groups. Also, as soon as noetherian rings and their modules received
serious attention, prime ideals forced themselves into the picture, even in con-
texts where the original interest had been entirely in primitive ideals. As a
consequence, we have made prime ideals a major theme in our text.

The first important result in the theory of noncommutative noetherian
rings was proved relatively recently, in 1958. This was Goldie’s Theorem,
which gives an analog of a field of fractions for factor rings R/P where R is
a noetherian ring and P a prime ideal of R. Once this milestone had been
reached, noetherian ring theory proceeded apace, partly from its own impetus
and partly through feedback from neighboring areas in which noetherian ideas
found applications. One of our aims in this book has been to develop those
aspects of the theory of noetherian rings which have the strongest connections
with the representation-theoretic areas to which we have alluded. However,
as these areas have their own extensive theories, it was impossible to treat
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INTRODUCTION TO THE FIRST EDITION xiii

them in any generality in this volume. Instead, we present a brief discussion
in the prologue, giving some representative examples to which the theory in
the text can be applied relatively directly, without extensive side trips into
technical intricacies.

To give the reader an idea of the historical sources of the theory, we have in-
cluded some bibliographical notes at the end of each chapter. We have sought
to make these notes as accurate as possible, but as with any evolving theory
complete precision is difficult to attain, especially since in many research pa-
pers sources are not well documented. Some inaccuracies are thus probably
inevitable, and we apologize in advance for any that may have occurred.

In an appendix we discuss some open problems in noetherian ring theory;
we hope that our readers will be stimulated to solve them.

For helpful comments on various drafts of the book, we would like to thank
A. D. Bell, K. A. Brown, D. A. Jordan, T. H. Lenagan, P. Perkins, L. W.
Small, and J. T. Stafford. We would also like to thank our competitors J. C.
McConnell and J. C. Robson for letting us see early drafts of various chapters
from their noetherian rings book [1987].
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Prologue

Since much of the current interest in noncommutative noetherian rings
stems from applications of the general theory to several specific types, we
present here a very sketchy introduction to some major areas of application:
polynomial identity rings, group algebras, rings of differential operators, en-
veloping algebras, and quantum groups. Each of these areas has a very exten-
sive theory of its own, far too voluminous to be incorporated into a book of
this size. (See for instance Rowen [1980], Passman [1985], McConnell-Robson
[2001], and Brown-Goodearl [2002]). Instead, we shall concentrate on surro-
gates – some classes of rings that are either simple prototypes or analogs of
the major types just mentioned – which we can investigate by relatively direct
methods while still exhibiting the flavor of the areas they represent. These
surrogates are module-finite algebras over commutative rings (for polynomial
identity rings), skew-Laurent rings (for group algebras), formal differential
operator rings (for rings of differential operators and some enveloping alge-
bras), and general skew polynomial rings (for some enveloping algebras and
quantum groups). They will be introduced below and studied in greater detail
in the following two chapters.

We will conclude the Prologue with a few comments about our notation
and terminology.

• POLYNOMIAL IDENTITY RINGS •
Commutativity in a ring may be phrased in terms of a relation that holds

identically, namely xy− yx = 0 for all choices of x and y from the ring. More
complicated identities sometimes also hold in noncommutative rings. For
example, if x and y are any 2×2 matrices over a commutative ring S, then the
trace of xy − yx is zero, and so it follows from the Cayley-Hamilton Theorem
that (xy − yx)2 is a scalar matrix. Consequently, (xy − yx)2 commutes with
every 2 × 2 matrix z, and hence the relation

(xy − yx)2z − z(xy − yx)2 = 0

holds for all choices of x, y, z from the ring M2(S) (the ring of all 2×2 matrices
over S). A much deeper result, the Amitsur-Levitzki Theorem, asserts that,
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PROLOGUE xv

for all choices of 2n matrices x1, . . . , x2n from the n × n matrix ring Mn(S),
∑

σ∈S2n

sgn(σ)xσ(1)xσ(2) · · ·xσ(2n) = 0,

where S2n is the symmetric group on {1, 2, . . . , 2n} and sgn(σ) denotes the
sign of a permutation σ (namely +1 or −1, depending on whether σ is even
or odd).

Such an “identical relation” on a ring may be thought of as saying that
a certain polynomial – with noncommuting variables! – vanishes identically
on the ring. In this context, the polynomials are usually restricted to having
integer coefficients. Thus a polynomial identity on a ring R is a polynomial
p(x1, . . . , xn) in noncommuting variables x1, . . . , xn with coefficients from Z

such that p(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ R. A polynomial identity ring ,
or P.I. ring for short, is a ring R which satisfies some monic polynomial
identity p(x1, . . . , xn) (that is, among the monomials of highest total degree
which appear in p, at least one has coefficient 1).

The Amitsur-Levitzki Theorem implies that every matrix ring over a com-
mutative ring is a P.I. ring, and consequently so is every factor ring of a
subring of such a matrix ring. For example, the endomorphism ring of a
finitely generated module A over a commutative ring S has this form. To see
that, identify A with Sn/K for some n ∈ N and some submodule K of Sn,
and identify the matrix ring Mn(S) with the endomorphism ring of Sn. Then
the set

T = {f ∈ Mn(S) | f(K) ⊆ K}
is a subring of Mn(S), the set I = {f ∈ Mn(S) | f(Sn) ⊆ K} is an ideal of
T , and T/I ∼= EndS(A). Therefore EndS(A) is a P.I. ring.

Certain algebras over commutative rings fit naturally into this context.
Recall that an algebra over a commutative ring S is just a ring R equipped
with a specified ring homomorphism φ from S to the center of R. (The
map φ is not assumed to be injective.) Then φ is used to define products
of elements of S with elements of R: For s ∈ S and r ∈ R, we set sr and
rs equal to φ(s)r (or rφ(s), which is the same because φ(s) is in the center
of R). Using this product, we can view R as an S-module. We say that R
is a module-finite S-algebra if R is a finitely generated S-module. Note that
R ∼= EndR(RR) ⊆ EndS(R) as rings, and so any polynomial identity satisfied
in EndS(R) will also be satisfied in R. Taking the preceding paragraph into
account, we conclude that any module-finite algebra over a commutative ring
is a P.I. ring.

The class of module-finite algebras over commutative noetherian rings pro-
vides us with a supply of prototypical examples of noetherian P.I. rings. To
illustrate some applications of the noetherian theory to P.I. rings, we shall
at times work out consequences of the former for our class of examples. In
this setting, we will be able to replace P.I. theory by some much more direct
methods from commutative ring theory.
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xvi PROLOGUE

• GROUP ALGEBRAS •
One of the earliest stimuli to the modern development of noncommutative

ring theory came from the study of group representations. The key idea was
to study a group G by “representing” it in terms of linear transformations
on a vector space V , namely, by studying a group homomorphism φ from G
to the group of invertible linear transformations on V . Linear algebra can
then be used to study the group φ(G), and the information gleaned can be
pulled back to G via the representation φ. Using φ, there is an “action” of
G on V , namely, a product G × V → V given by the rule g·v = φ(g)(v), and
since φ is a homomorphism, (gh)·v = g·(h·v) for all g, h ∈ G and v ∈ V . This
looks a lot like module multiplication, if we ignore the lack of an addition for
elements of G, and in fact V is called a G-module in this situation.

To make V into an actual module over a ring, we build G and its multipli-
cation into a ring, along with whichever field k we are using for scalars. Just
make up a vector space with a basis which is in one-to-one correspondence
with the elements of G, identify each element of G with the corresponding
basis element, and then extend the multiplication from G to this vector space
linearly: (∑

g∈G

αgg
)(∑

h∈G

βhh
)

=
∑

g,h∈G

(αgβh)(gh).

The result is a k-algebra called the group algebra of G over k, denoted k[G]
or just kG. Except for the obvious changes in terminology, k[G]-modules are
the same as representations of G on vector spaces over k.

In the case of a finite group G, the group algebra k[G] is finite dimensional,
and the theory of finite dimensional algebras has much to say about repre-
sentations of G. A noetherian group algebra is known to occur when G is
polycyclic-by-finite, that is, when G has a series of subgroups

G0 = (1) ⊂ G1 ⊂ · · · ⊂ Gn ⊆ Gn+1 = G

such that each Gi−1 is a normal subgroup of Gi and Gi/Gi−1 is infinite cyclic
for i = 1, . . . , n, while G/Gn is finite. (It is an open problem whether k[G] is
noetherian only when G is polycyclic-by-finite.) One of the simplest infinite
non-abelian examples is the group G with two generators x, y and the sole
relation yxy−1 = x−1. In this case, elements of k[G] can all be put in the form∑n

i=−n pi(x)yi, where each pi(x) is a Laurent polynomial (i.e., a polynomial in
x and x−1). From the relation yxy−1 = x−1 it follows that yp(x)y−1 = p(x−1)
for all Laurent polynomials p(x). Hence, the Laurent polynomial ring k[x, x−1]
is sent into itself by the map p(x) �→ yp(x)y−1, and this map coincides with
the map p(x) �→ p(x−1), which is an automorphism of k[x, x−1].

The pattern of this example suggests a construction that starts with a ring
R and an automorphism α of R, and then builds a ring T whose elements look
like Laurent polynomials over R in a new indeterminate y, except that instead
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PROLOGUE xvii

of commuting with y, elements r ∈ R satisfy the relation yry−1 = α(r), or
yr = α(r)y. Since the usual multiplication of polynomials has been “skewed”
through α, the ring T is called a skew-Laurent ring . Thus the group algebra of
the previously discussed group with the relation yxy−1 = x−1 may be viewed
as a skew-Laurent ring with coefficient ring k[x, x−1].

We shall see that any skew-Laurent ring with a noetherian coefficient ring
is itself noetherian. This fact actually provides the method used to show that
the group algebra of any polycyclic-by-finite group G is noetherian. Namely,
if

G0 = (1) ⊂ G1 ⊂ · · · ⊂ Gn ⊆ Gn+1 = G

is the series of subgroups of G occurring in the definition of “polycyclic-
by-finite,” it can be shown that for i = 1, . . . , n the group algebra k[Gi] is
isomorphic to a skew-Laurent ring whose coefficient ring is k[Gi−1]. Starting
at the bottom with k[G0] = k, it follows immediately by induction that k[Gn]
is noetherian. It then just remains to observe that k[G] is a finitely generated
right or left module over k[Gn] to conclude that k[G] itself is noetherian. In
particular, we see from this discussion that (iterated) skew-Laurent rings are
a better match for group algebras of polycyclic-by-finite groups than might
have been suggested by the very special example given above.

• RINGS OF DIFFERENTIAL OPERATORS •
Another early stimulus to noncommutative ring theory came from the study

of differential equations. Late in the nineteenth century, it was realized that,
just as polynomial functions provide a useful means of dealing with algebraic
equations, “differential operators” are convenient for handling linear differen-
tial equations. For example, a homogeneous linear differential equation

an(x)y(n) + an−1(x)y(n−1) + · · · + a1(x)y′ + a0(x)y = 0

can be rewritten very compactly as d(y) = 0, where d denotes the linear
differential operator

an(x)
dn

dxn
+ an−1(x)

dn−1

dxn−1
+ · · · + a1(x)

d

dx
+ a0(x).

From this viewpoint, d is a linear transformation on some vector space of
functions, and the solution space of the original differential equation is just
the null space of d.

To be a bit more specific, let us consider the special case in which coeffi-
cients and solutions are real-valued rational functions. Then our differential
operators are R-linear transformations on the field R(x). The composition of
two differential operators is certainly a linear transformation, but it takes a
minute to see that such a composition is actually another differential oper-
ator. In order to make the notation more convenient, we use the symbol D
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xviii PROLOGUE

to denote the operator d/dx. If we form the operator composition Da, which
means “first multiply by the function a(x) and then differentiate,” we see that

(Da)(y) = (ay)′ = ay′ + a′y = aD(y) + a′y

for any function y, and so Da = aD + a′. Iterated use of this identity then
allows us to write the composition of any two differential operators in the
standard form of a differential operator, i.e., as a sum of terms aiD

i, where
ai ∈ R(x). Thus the collection of differential operators on R(x) forms a ring,
which is sometimes denoted B1(R). We may think of B1(R) as a polyno-
mial ring R(x)[D] in which, however, the multiplication is twisted to make a
noncommutative ring. This ring attracted particular attention early in the
twentieth century, when it was proved that it is a principal ideal domain (that
is, all left and right ideals are principal) and that it satisfies a form of unique
factorization.

We can of course proceed in the same way using for coefficients other rings
of functions that are closed under differentiation. For example, if we start with
the ring C[x] of complex polynomials, the ring of differential operators we ob-
tain looks like a twisted polynomial ring in two variables, C[x][D]. This ring is
called the first complex Weyl algebra and is denoted A1(C). More generally, we
may start with a polynomial ring C[x1, . . . , xn] in several variables and build
differential operators using the partial derivatives ∂/∂xi, abbreviated Di. This
results in a twisted polynomial ring in 2n variables, C[x1, . . . , xn][D1, . . . , Dn],
which is called the n-th complex Weyl algebra and is denoted An(C).

Examples such as B1(R) and An(C), which will often recur in the text,
can be taken as representative of a more general class that has assumed some
importance in recent years: rings of differential operators on algebraic va-
rieties. We cannot discuss these in detail but will content ourselves with
indicating how they can be described. We recall that a complex affine alge-
braic variety is a subset V of Cn which is the set of common zeroes of some
collection I of polynomials in C[x1, . . . , xn]. If I contains all the polynomials
that vanish on V , then I is an ideal in the polynomial ring, and the factor
ring R = C[x1, . . . , xn]/I is the coordinate ring of V . The ring of differen-
tial operators on V , denoted D(V ), consists of those differential operators on
C[x1, . . . , xn] that induce operators on R, modulo those that induce the zero
operator on R. More precisely, the set

S = {s ∈ An(C) | s(I) ⊆ I}
is a subring of An(C), the set

J = {s ∈ An(C) | s(C[x1, . . . , xn]) ⊆ I}
is an ideal of S, and D(V ) = S/J . It has been proved that D(V ) is noetherian
in case V has no singularities and in case V is a curve, but it appears that for
higher dimensional varieties with singularities D(V ) is usually not noetherian.

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521836875 - An Introduction to Noncommutative Noetherian Rings, Second Edition
K. R. Goodearl and R. B. Warfield
Frontmatter
More information

http://www.cambridge.org/0521836875
http://www.cambridge.org
http://www.cambridge.org


PROLOGUE xix

• ENVELOPING ALGEBRAS •
A Lie algebra over a field k is a vector space L over k equipped with a

nonassociative product [··] satisfying the usual bilinear and distributive laws
as well as the rules

[xx] = 0 and [x[yz]] + [y[zx]] + [z[xy]] = 0

for all x, y, z ∈ L. For example, R3 equipped with the usual vector cross
product is a real Lie algebra. The standard model for the product in a Lie
algebra is the additive commutator operation [x, y] = xy − yx in an associa-
tive ring (more precisely, any associative k-algebra when equipped with the
operation [·, ·] becomes a Lie algebra over k). Conversely, starting with a Lie
algebra L, one can build an associative k-algebra U(L) using the elements of
L as generators, together with relations xy − yx = [xy] for all x, y ∈ L. The
algebra U(L) is called the (universal) enveloping algebra of L, and it is known
to be noetherian in case L is finite dimensional. (Whether it is possible for
the enveloping algebra of an infinite dimensional Lie algebra to be noetherian
is an open problem.)

The simplest Lie algebra L with a nonzero product is 2-dimensional, with
a basis {x, y} such that [yx] = x. Elements of the enveloping algebra U(L)
can in that case all be put into the form

∑n
i=0 pi(x)yi, where each pi(x) is an

ordinary polynomial in the variable x. In U(L), the relation [yx] = x becomes
[y, x] = x, and from this it follows easily that [y, p(x)] = x d

dx (p(x)) for all
polynomials p(x). In other words, [y,−] maps the polynomial ring k[x] into
itself, and its action on polynomials is given by the operator x d

dx . The reader
should note that this is very similar to the ring A1(C) discussed above, the
difference being that in A1(C) we have the relation [D, p(x)] = d

dx (p(x)). (In
fact, U(L) in our example is isomorphic to the subalgebra of A1(k) generated
by x and xD.)

Abstracting this pattern, we may start with a ring R and a map δ : R → R
which is a derivation (that is, δ is additive and satisfies the usual product
rule for derivatives) and then build a larger ring T using an indeterminate y
such that [y, r] = δ(r) for all r ∈ R. The elements of T look like differential
operators

∑
riδ

i on R, except that it may be possible for
∑

riδ
i to be the

zero operator without all the coefficients ri being zero. Thus, the elements∑
riy

i in T are called formal differential operators, and T is called a (formal)
differential operator ring .

We shall see that all formal differential operator rings with noetherian co-
efficient rings are themselves noetherian, and we shall view them as represen-
tative analogs of enveloping algebras. The analogy is actually a little better
than one might think, knowing only the single example mentioned above.
Namely, if L is a finite dimensional Lie algebra which can be realized as a Lie
algebra of upper triangular matrices over k (using [·, ·] for the Lie product),
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xx PROLOGUE

then U(L) can be built as an iterated differential operator ring through a
series of extensions

T0 = k ⊂ T1 ⊂ · · · ⊂ Tm = U(L),

where each Ti is isomorphic to a differential operator ring with coefficients
from Ti−1. (Over C, the finite dimensional Lie algebras that can be realized
as upper triangular matrices are precisely the solvable Lie algebras.)

Among the most important Lie algebras are the special linear Lie algebras
sln(k), which consist of n × n matrices over k having trace 0 (again with Lie
product [·, ·]). In particular, sl2(k) is 3-dimensional, and one typically chooses
the matrices

e =
(

0 1

0 0

)
f =

(
0 0

1 0

)
h =

(
1 0

0 −1

)

as a basis. The Lie products (commutators) among e, f , and h are given by

[ef ] = h [he] = 2e [hf ] = −2f.

In the enveloping algebra U(sl2(k)), the Lie product relation [he] = 2e be-
comes he−eh = 2e, or eh = (h−2)e. It follows that ep(h) = p(h−2)e for any
polynomial p(h) ∈ k[h]. This allows us to think of the k-algebra generated by
e and h as a twisted polynomial ring in two variables, k[h][e], where the twist
arises from the map p(h) �→ p(h−2). The latter map being an automorphism
of k[h], we thus see that k[h][e] is a polynomial version of the skew-Laurent
ring construction discussed above.

When the element f is added to the picture, we have to deal with the
relations ef − fe = h and hf − fh = −2f , or fe = ef −h and fh = (h + 2)f .
The last equation is reminiscent of (the inverse of) the automorphism p(h) �→
p(h − 2) above, and indeed there is an automorphism α of the ring k[h][e]
such that α(h) = h + 2 and α(e) = e. The relation fe = ef − h turns
out to be accounted for by a linear map δ on k[h][e] such that δ(e) = −h
and δ(h) = 0, the end result being fr = α(r)f + δ(r) for all r ∈ k[h][e].
(The map δ is similar to a derivation – it satisfies a “skew product rule”
δ(rs) = α(r)δ(s) + δ(r)s and is called a skew derivation.) We thus view
U(sl2(k)) as a twisted polynomial ring in three variables, k[h][e][f ], where the
final twist involves both an automorphism and a skew derivation. Each of the
steps k � k[h] � k[h][e] � k[h][e][f ] is a type of skew polynomial ring , and in
summary we say that U(sl2(k)) is an iterated skew polynomial ring . For our
purposes, this structure is a means to let us see that U(sl2(k)) is a noetherian
domain. (While U(sln(k)) is a noetherian domain for any n, other methods
are needed to prove that, since U(sln(k)) is not an iterated skew polynomial
ring when n ≥ 3.)
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PROLOGUE xxi

• QUANTUM GROUPS •
Of all the areas mentioned in this Prologue, that of quantum groups is the

most difficult to introduce in a few sentences. First of all, quantum groups are
not groups at all, but certain algebras that arose in the 1980s in connection
with research on some problems in quantum statistical mechanics. A phrase
that captures the philosophical viewpoint of the subject is this: Quantum
groups are algebras of functions on nonexistent groups! Let us try to explain
the flavor of that statement as it relates to the special linear group SL2(k),
the group of all 2 × 2 matrices over a field k having determinant 1. First of
all, SL2(k) lies inside the 4-dimensional vector space M2(k), where it can be
described as the set of zeroes of the polynomial X11X22 − X12X21 − 1; here
X11, X12, X21, X22 are just four independent indeterminates, conveniently
labelled for application to the entries of 2 × 2 matrices. Thus, SL2(k) is an
affine algebraic variety over k, and its coordinate ring is the algebra

O(SL2(k)) = k[X11,X12,X21,X22]/〈X11X22 − X12X21 − 1〉.

The coordinate ring O(SL2(k)) effectively encodes the geometry of the va-
riety SL2(k), but that is only the structure of the set of points in SL2(k). The
group structure is encoded in certain algebra homomorphisms. In particular,
the group operation, viewed as a map SL2(k) × SL2(k) → SL2(k), induces
(by composition of functions) a k-algebra homomorphism

∆ : O(SL2(k)) −→ O(
SL2(k) × SL2(k)

) ∼=−−→ O(SL2(k)) ⊗k O(SL2(k))

called comultiplication. There are also k-algebra homomorphisms

ε : O(SL2(k)) −→ k S : O(SL2(k)) −→ O(SL2(k))

corresponding to the identity and taking inverses in the group, and the group
axioms imply certain relations among these maps. The algebra O(SL2(k))
together with the three maps ∆, ε, S forms a structure called a Hopf algebra,
which we will not define here.

Among the algebras that arose in the theoretical physics research men-
tioned above was one that bears a striking resemblance to O(SL2(k)) – it is
a Hopf algebra, and it has four generators that satisfy a relation very similar
to the equation “determinant = 1” which characterizes SL2(k). The only
drawback is that this new algebra is not commutative, and so it cannot be
an algebra of k-valued functions on anything. Nonetheless, thinking of this
algebra as if it consisted of functions proved useful in investigating it, and
it became known as the coordinate ring of quantum SL2(k). Thus, there is
no “quantum group” SL2(k) per se; the group has disappeared, and only the
algebra of “functions” on it remains.
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xxii PROLOGUE

Regardless (or because of) its origins, this new algebra is an interesting
object of study, and among many other properties it turns out to be noe-
therian. Here is a brief description of the construction. First, pick a nonzero
scalar q (the “quantum parameter”) in k. (Originally, q was taken to be e�,
where � is Planck’s constant, so that q was a real number very close to 1.)
Next, one forms a k-algebra with four generators x11, x12, x21, x22 and six
relations that we will give in full later; for instance, x11x12 = qx12x11 and
x11x22−x22x11 = (q−q−1)x12x21. This algebra is the coordinate ring of quan-
tum 2× 2 matrices, Oq(M2(k)). The role of the determinant is taken over by
the element Dq := x11x22 − qx12x21, the quantum determinant , which lies in
the center of Oq(M2(k)). Finally, the coordinate ring of quantum SL2(k) is
the algebra Oq(SL2(k)) = Oq(M2(k))/〈Dq − 1〉.

We shall see that Oq(M2(k)) is an iterated skew polynomial ring, where –
as in the case of U(sl2(k)) – twists involving both automorphisms and skew
derivations are needed. Consequently, Oq(M2(k)) is noetherian, and therefore
Oq(SL2(k)) is noetherian as well.

A fascinating aspect of quantum groups is that quite a number of classical
facts about algebro-geometric groups like SL2(k) can be translated very neatly
into the quantum setting, once they have been suitably rephrased in terms of
coordinate rings. For a very simple example, multiplication of column vectors
on the left by matrices gives a map M2(k)×k2 → k2; composition of this map
with polynomial functions on k2 gives a k-algebra homomorphism λ : O(k2) →
O(M2(k)) ⊗k O(k2) such that λ(xi) = xi1 ⊗ x1 + xi2 ⊗ x2 for i = 1, 2. Now
O(k2) is just a polynomial ring in two variables; the natural quantum analog,
Oq(k2), is a skew polynomial ring k[x1][x2] in which x1x2 = qx2x1. The map
λ carries over to a k-algebra homomorphism Oq(k2) → Oq(M2(k))⊗k Oq(k2)
which behaves exactly like λ on x1 and x2. In fact, the existence of this map
and its right-hand analog are sufficient to pin down the relations in Oq(M2(k)),
as we shall see later.

It would take us too far afield to discuss more of the background of quan-
tum algebras. Let us mention here, though, that other examples, including
quantum versions of the Weyl algebra A1(C) and of the enveloping algebra
U(sl2(k)), will appear in the text later.

• NOTATION AND TERMINOLOGY •
The background needed for this book is fairly standard and may be found

in most graduate-level texts on algebra, such as Cohn [1982, 1989, 1991],
Hungerford [1989], or Jacobson [1985, 1989]. The following short lists, giving
some reference sources and some notation, are not meant to be exhaustive but
to help keep the reader on track. We emphasize one convention: Our rings,
modules, and ring homomorphisms are assumed to be unital except in a few
rare, specified cases. Also, all our homomorphisms and other functions are
written on the left of their arguments, i.e., in the form f(x).
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PROLOGUE xxiii

The following are some references for frequently used notions in this book.
These references contain more information than we actually need, and the
reader to whom the italicized terms are all familiar should not feel it neces-
sary to read through these references unless a particular problem arises. Alge-
bras – Cohn [1982, §4.5; 1989, §5.1], Hungerford [1989, §4.7], Jacobson [1985,
§7.1; 1989, §3.9]. Direct Sums and Products – Cohn [1982, §10.3; 1989, §4.1],
Hungerford [1989, §§3.2, 4.1], Jacobson [1985, §3.5; 1989, §3.4]. Domains –
Cohn [1982, §6.1], Jacobson [1985, §2.2]. Epimorphisms, Monomorphisms,
and Isomorphisms – Cohn [1991, §3.1], Hungerford [1989, §4.1], Jacobson
[1989, §1.2]. Free Algebras – Cohn [1989, §11.5; 1991, §2.2]. Free and Projec-
tive Modules – Cohn [1982, §10.4; 1989, §§4.4, 4.5], Hungerford [1989, §§4.2,
4.3], Jacobson [1985, §3.4; 1989, §§1.7, 3.10]. Indecomposable Rings and Mod-
ules – Cohn [1989, §5.2], Jacobson [1989, §3.4]. Independent Families of Sub-
modules – Cohn [1982, §10.3], Hungerford [1989, §9.4], Jacobson [1985, §3.5;
1989, §3.5]. Opposite Rings – Cohn [1982, §10.2], Hungerford [1989, §7.1],
Jacobson [1985, §2.8]. Ring Homomorphisms – Cohn [1982, §10.1], Hunger-
ford [1989, §3.1], Jacobson [1985, §2.7]. Sums of Submodules – Cohn [1982,
§10.3; 1989, §4.1], Hungerford [1989, §4.1], Jacobson [1985, §3.3; 1989, §3.5].
Tensor Products – Cohn [1989, §§4.7, 5.5], Hungerford [1989, §4.5], Jacobson
[1989, §§3.7, 3.9]. Zorn’s Lemma – Cohn [1989, §1.2], Hungerford [1989, §0.7],
Jacobson [1989, §0.1].

Finally, we list some standard notation:

⊂ and ⊃ Proper inclusions.
� or

⊔
A disjoint union.

N The set of natural numbers (i.e., positive integers).
Z+ The set of nonnegative integers.
Z The ring of integers.
Q The field of rational numbers.
R The field of real numbers.
C The field of complex numbers.
H The division ring of real quaternions.
AR A right module A over a ring R. (In case A can be

considered as a module over several different rings, the
notation AR is used to indicate that A is being viewed
as an R-module.)

RA A left module A over a ring R.
RR A ring R viewed as a right module over itself.
RR A ring R viewed as a left module over itself.
HomR(A,B) The abelian group of all R-module homomorphisms from

an R-module A to an R-module B.
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xxiv PROLOGUE

EndR(A) The ring of all R-module endomorphisms of an R-module
A.

An or ⊕nA The direct sum of n copies of a module A. (For a right or
left ideal A in a ring, ⊕nA is used to avoid confusion
with multiplicative powers of A.)

In The n-th multiplicative power of a right or left ideal I
in a ring (i.e., the set of all sums of n-fold products
i1i2 · · · in where i1, . . . , in ∈ I).

IJ The multiplicative product of right or left ideals I and J
in a ring (i.e., the set of all sums of products ij where
i ∈ I and j ∈ J).

〈a, b, c, . . . 〉 The ideal generated by elements a, b, c, . . . in a ring.
k× The multiplicative group of nonzero elements in a field

k.
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