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Introduction

The focus of this book is capturing and understanding the topological prop-
erties of spaces. To do so, we use methods derived from exploring the re-
lationship between geometry and topology. In this chapter, I will motivate
this approach by explaining what spaces are, how they arise in many fields of
inquiry, and why we are interested in their properties. I will then introduce
new theoretical methods for rigorously analyzing topologies of spaces. These
methods are grounded in homology and Morse theory, and generalize to high-
dimensional spaces. In addition, the methods are robust and fast, and therefore
practical from a computational point of view. Having introduced the methods,
I end this chapter by discussing the organization of the rest of the book.

1.1 Spaces

Let us begin with a discussion of spaces. A space is a set of points as shown in
Figure 1.1(a). We cannot define what a set is, other than accepting it as a prim-
itive notion. Intuitively, we think of a set as a collection or conglomeration of
objects. In the case of a space, these objects are points, yet another primitive
notion in mathematics. The concept of a space is too weak to be interesting,
as it lacks structure. We make this notion slightly richer with the addition of
a topology. We shall see in Chapter 2 what a topology formally means. Here,
we think of a topology as the knowledge of the connectivity of a space: Each
point in the space knows which points are near it, that is, in its neighborhood.
In other words, we know how the space is connected. For example, in Fig-
ure 1.1(b), neighbor points are connected graphically by a path in the graph.
We call such a space a topological space. At first blush, the concept of a topo-
logical space may seem contrived, as we are very comfortable with the richer
metric spaces, as in Figure 1.1(c). We are introduced to the prototypical metric
space, the Euclidean space R

d , in secondary school, and we often envision our
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2 1 Introduction

(a) A space (b) A topological space
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(c) A metric space

Fig. 1.1. Spaces.

world as R
3. A metric space has an associated metric, which enables us to

measure distances between points in that space and, in turn, implicitly define
their neighborhoods. Consequently, a metric provides a space with a topol-
ogy, and a metric space is a topological one. Topological spaces feel alien to
us because we are accustomed to having a metric. The spaces arise naturally,
however, in many fields.

Example 1.1 (graphics) We often model a real-world object as a set of ele-
ments, where the elements are triangles, arbitrary polygons, or B-splines.

Example 1.2 (geography) Planetary landscapes are modeled as elevations over
grids, or triangulations, in geographic information systems.

Example 1.3 (robotics) A robot must often plan a path in its world that con-
tains many obstacles. We are interested in efficiently capturing and represent-
ing the configuration space in which a robot may travel.

Example 1.4 (biology) A protein is a single chain of amino acids, which folds
into a globular structure. The Thermodynamics Hypothesis states that a protein
always folds into a state of minimum energy. To predict protein structure, we
would like to model the folding of a protein computationally. As such, the
protein folding problem becomes an optimization problem: We are looking for
a path to the global minimum in a very high-dimensional energy landscape.

All the spaces in the above examples are topological spaces. In fact, they
are metric spaces that derive their topology from their metrics. However, the
questions raised are often topological in nature, and we may solve them easier
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1.2 Shapes of Spaces 3

by focusing on the topology of the space, and not its geometry. I will refer to
topological spaces simply as spaces from this point onward.

1.2 Shapes of Spaces

We have seen that spaces arise in the process of solving many problems. Con-
sequently, we are interested in capturing and understanding the shapes of
spaces. This understanding is really in the form of classifications: We would
like to know how spaces agree and differ in shape in order to categorize them.
To do so, we need to identify intrinsic properties of spaces. We can try trans-
forming a space in some fixed way and observe the properties that do not
change. We call these properties the invariants of the space. Felix Klein
gave this famous definition for geometry in his Erlanger Programm address
in 1872. For example, Euclidean geometry refers to the study of invariants
under rigid motion in R

d , e.g., moving a cube in space does not change its
geometry. Topology, on the other hand, studies invariants under continuous,
and continuously invertible, transformations. For example, we can mold and
stretch a play-doh ball into a filled cube by such transformations, but not into
a donut shape. Generally, we view and study geometric and topological prop-
erties separately.

1.2.1 Geometry

There are a variety of issues we may be concerned with regarding the geometry
of a space. We usually have a finite representation of a space for computation.
We could be interested in measuring the quality of our representation, trying to
improve the representation via modifications, and analyzing the effect of our
changes. Alternatively, we could attempt to reduce the size of the representa-
tion in order to make computations viable, without sacrificing the geometric
accuracy of the space.

Example 1.5 (decimation) The Stanford Dragon in Figure 1.2(a) consists of
871,414 triangles. Large meshes may not be appropriate for many applica-
tions involving real-time rendering. Having decimated the surface to 5% of its
original size (b), I show that the new surface approximates the original surface
quite well (c). The maximum distance between the new vertices and the orig-
inal surface is 0.08% of the length of the diagonal of the dragon’s bounding
box.
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4 1 Introduction

(a) Stanford Dragon, rep-
resented by a triangulated
surface

(b) Decimated to 5% of
the number of triangles

(c) Normalized distance
to original surface, in in-
creasing intensity

Fig. 1.2. Geometric simplification.

Fig. 1.3. The string on the left is cut into two pieces. The loop string on the right is cut
but still is in one piece.

1.2.2 Topology

While Klein’s unifying definition makes topology a form of geometry, we of-
ten differentiate between the two concepts. Recall that when we talk about
topology, we are interested in how spaces are connected. Topology concerns
itself with how things are connected, not how they look. Let’s start with a few
examples.

Example 1.6 (loops of string) Imagine we are given two pieces of strings.
We tie the ends of one of them, so it forms a loop. Are they connected the
same way, or differently? One way to find out is to cut both, as shown in Fig-
ure 1.3. When we cut each string, we are obviously changing its connectivity.
Since the result is different, they must have been connected differently to begin
with.

Example 1.7 (sphere and torus) Suppose you have a hollow ball (a sphere)
and the surface of a donut (a torus.) When you cut the sphere anywhere,
you get two pieces: the cap and the sphere with a hole, as shown in Fig-
ure 1.4(a). But there are ways you can cut the torus so that you only get one
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1.2 Shapes of Spaces 5

(a) No matter where we cut the sphere, we
get two pieces

(b) If we’re careful, we can cut the torus
and still leave it in one piece.

Fig. 1.4. Two pieces or one piece?

piece. Somehow, the torus is acting like our string loop and the sphere like the
untied string.

Example 1.8 (holding hands) Imagine you’re walking down a crowded street,
holding somebody’s hand. When you reach a telephone pole and have to walk
on opposite sides of the pole, you let go of the other person’s hand. Why?

Let’s look back to the first example. Before we cut the string, the two points
near the cut are near each other. We say that they are neighbors or in each
other’s neighborhoods. After the cut, the two points are no longer neighbors,
and their neighborhood has changed. This is the critical difference between
the untied string and the loop: The former has two ends. All the points in the
loop have two neighbors, one to their left and one to their right. But the untied
string has two points, each of whom has a single neighbor. This is why the two
strings have different connectivity. Note that this connectivity does not change
if we deform or stretch the strings (as if they are made of rubber.) As long as
we don’t cut them, the connectivity remains the same. Topology studies this
connectivity, a property that is intrinsic to the space itself.

In addition to studying the intrinsic properties of a space, topology is con-
cerned not only with how an object is connected (intrinsic topology), but how
it is placed within another space (extrinsic topology.) For example, suppose
we put a knot on a string and then tie its ends together. Clearly, the string has
the same connectivity as the loop we saw in Example 1.6. But no matter how
we move the string around, we cannot get rid of the knot (in topology terms,
we cannot unknot the knot into the unknot.) Or can we? Can we prove that we
cannot?

So, topological properties include having tunnels, as shown in Figure 1.5(a),
being knotted (b), and having components that are linked (c) and cannot be
taken apart. We seek computational methods to detect these properties. Topo-
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6 1 Introduction

(a) Gramicidin A, a pro-
tein, with a tunnel

(b) A knotted DNA (c) Five pairwise-linked
tetrahedral skeletons

Fig. 1.5. Topological properties. (b) Reprinted with permission from S Wasserman et
al., SCIENCE, 229:171–174 (1985). © 1985 AAAS.

(a) Sampled point set
from a surface

(b) Recovered topology (c) Piece-wise linear sur-
face approximation

Fig. 1.6. Surface reconstruction.

logical questions arise frequently in many areas of computation. Tools de-
veloped in topology, however, have not been used to address these problems
traditionally.

Example 1.9 (surface reconstruction) Usually, a computer model is created
by sampling the surface of an object and creating a point set, as in Figure 1.6(a).
Surface reconstruction, a major area of research in computer graphics and
computational geometry, refers to the recovery of the lost topology (b) and,
in turn, geometry of a space. Once the connectivity is reestablished, the sur-
face is often represented by a piece-wise linear approximation (c).
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1.2 Shapes of Spaces 7

Fig. 1.7. Topological simplification.

As for geometry, we would also like to be able to simplify a space topolog-
ically, as in Figure 1.7. I have intentionally made the figures primitive com-
pared to the previous geometric figures to reflect the essential structure that
topology captures. To simplify topology, we need a measure of the importance
of topological attributes. I provide one such measure in this book.

1.2.3 Relationship

The geometry and topology of a space are fundamentally related, as they are
both properties of the same space. Geometric modifications, such as decima-
tion in Example 1.5, could alter the topology. Is the simplified dragon in Fig-
ure 1.2(c) connected the same way as the original? In this case, the answer is
yes, because the decimation algorithm excludes geometric modifications that
have topological impact. We have changed the geometry of the surface without
changing its topology.

When creating photo-realistic images, however, appearance is the dominant
issue, and changes in topology may not matter. We could, therefore, allow for
topological changes when simplifying the geometry. In other words, geometric
modifications are possible with, and without, induced changes in topology.
The reverse, however, is not true. We cannot eliminate the “hole” in the surface
of the donut (torus) to get a sphere in Figure 1.7 without changing the geometry
of the surface. We further examine the relationship between topology and
geometry by looking at contours of terrains.

Example 1.10 (contours) In Figure 1.8, I show a flooded terrain with the wa-
ter receding. The boundaries of the components that appear are the iso-lines or
contours of the terrain. Contour lines are used often in map drawings. Noise in
sampled data changes the geometry of a terrain, introducing small mountains
and lakes. In turn, this influences how contour lines appear and merge as the
water recedes.
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8 1 Introduction

Fig. 1.8. Noah’s flood receding.

We may view the spaces shown in Figure 1.8 as a single growing space under-
going topological and geometric changes. The history of such a space, called
a filtration, is the primary object for this book. Note that the topology of the
iso-lines within this history is determined by the geometry of the terrain. Gen-
eralizing to a (d+ 1)-dimensional surface, we see that there is a relationship
between the topology of d-dimensional level sets of a space and its geometry,
one dimension higher. This relationship is the subject of Morse theory, which
we will encounter in this book.

1.3 New Results

We will also examine some new results in the area of computational topol-
ogy. There are three main groups of theoretical results: persistence, Morse
complexes, and the linking number.

Persistence. Persistence is a new measure for topological attributes. We call
it persistence, as it ranks attributes by their life time in a filtration: their persis-
tence in being a feature in the face of growth. Using this definition, we look at
the following:

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521836662 - Topology for Computing
Afra J. Zomorodian
Excerpt
More information

http://www.cambridge.org/0521836662
http://www.cambridge.org
http://www.cambridge.org


1.3 New Results 9

Fig. 1.9. A Morse complex over a terrain.

• Persistence: efficient algorithms for computing persistence over arbitrary
coefficients.

• Topological Simplification: algorithms for simplifying topology, based on
persistence. The algorithms remove attributes in the order of increasing per-
sistence. At any moment, we call the removed attributes topological noise,
and the remaining ones topological features.

• Cycles and Manifolds: algorithms for computing representations. The per-
sistence algorithm tracks the subspaces that express nontrivial topological
attributes, in order to compute persistence. We show how to modify this
algorithm to identify these subspaces (cycles), as well as the subspaces that
eliminate them (manifolds.)

Morse complexes. A Morse complex gives a full analysis of the behavior
of flow over a space by partitioning the space into cells of uniform flow.
In the case of a two-dimensional surface, such as the terrain in Figure 1.8,
the Morse complex connects maxima (peaks) to minima (pits) through saddle
points (passes) via edges, partitioning the terrain into quadrangles, as shown
in Figure 1.9. Morse complexes are defined, however, only for smooth spaces.
In this book, we will see how to extend this definition to piece-wise linear sur-
faces, which are frequently used for computation. In addition, we will learn
how to construct hierarchies of Morse complexes.

• Morse complex: We give an algorithm for computing the Morse complex
by first constructing a complex whose combinatorial form matches that of
the Morse complex and then deriving the Morse complex via local trans-
formations. This construction reflects a paradigm we call the Simulation of
Differentiability.

• Hierarchy: We apply persistence to a filtration of the Morse complex to get
a hierarchy of increasingly coarser Morse complexes. This corresponds to
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10 1 Introduction

modifying the geometry of the space in order to eliminate noise and simplify
the topology of the contours of the surface.

Linking number. The linking number is an integer invariant that measures the
separability of a pair of knots. We extend the definition of the linking number
to simplicial complexes. We then develop data structures and algorithms for
computing the linking numbers of the complexes in a filtration.

1.4 Organization

The rest of this book is divided into three parts: mathematics, algorithms, and
applications. Part One, Mathematics, contains background on algebra, geom-
etry, and topology, as well as the new theoretical contributions. In Chapter 2,
we describe the spaces we are interested in exploring, and how we examine
them by encoding their geometries in filtrations of complexes. Chapter 3 pro-
vides enough group theory background for the definition of homology groups
in Chapter 4. We also discuss other measures of topology and justify our choice
of homology. Switching to smooth manifolds, we review concepts from Morse
Theory in Chapter 5. In Chapter 6, we give the mathematics behind the new
results in this book.

Part Two, Algorithms, contains data structures and algorithms for the mathe-
matics presented in Part I. In each chapter, we motivate and present algorithms
and prove they are correct. In Chapter 7, we introduce algorithms for comput-
ing persistence: over Z2 coefficients, arbitrary fields, and arbitrary principal
ideal domains. We then address topological simplification using persistence
in Chapter 8. In Chapter 9, we describe an algorithm for computing two-
dimensional Morse complexes. We end this part by showing how one may
compute linking numbers in Chapter 10.

Part Three, Applications, contains issues relating to the application of the
theory and algorithms presented in Parts I and II. To apply theoretical ideas
to real-world problems, we need implementations and software, which we
present in Chapter 11. We give empirical proof of the speed of the algo-
rithms through experiments with our implementations in Chapter 12. We de-
vote Chapter 13 to applications of the work in this book and future work.
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