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Introduction

The first volume serves as a general introduction to some of the tech-
niques most commonly used in representation theory. The quiver technique,
the Auslander–Reiten theory and the tilting theory were presented with
some application to finite dimensional algebras over a fixed algebraically
closed field.

In particular, a complete classification of those hereditary algebras that
are representation-finite (that is, admit only finitely many isomorphism
classes of indecomposable modules) is given. The result, known as Gabriel’s
theorem, asserts that a basic connected hereditary algebra A is representa-
tion-finite if and only if the quiver QA of A is a Dynkin quiver, that is, the
underlying non-oriented graph QA of QA is one of the Dynkin diagrams

An : •−−−−•−−−− · · · −−−−•−−−−•; (n vertices, n ≥ 1);

Dn :
•
|

•−−−−•−−−−•−−−− · · · −−−−•−−−−•; (n vertices, n ≥ 4);

E6 :
•
|

•−−−−•−−−−•−−−−•−−−−•;

E7 :
•
|

•−−−−•−−−−•−−−−•−−−−•−−−−•;

E8 :
•
|

•−−−−•−−−−•−−−−•−−−−•−−−−•−−−−•;

We also study in Volume 1 the class of hereditary algebras that are
representation-infinite. It is shown in Chapter VIII that if B is a repre-
sentation-infinite hereditary algebra, or B is a tilted algebra of the form

B = EndTKQ,

where KQ is a representation-infinite hereditary algebra and TKQ is a post-
projective tilting KQ-module, then B is representation-infinite and the
Auslander–Reiten quiver Γ(modB) of B has the shape

ix
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x Introduction

where mod B is the category of finite dimensional right B-modules, P(B) is
the unique postprojective component of Γ(modB) containing all the inde-
composable projective B-modules, Q(B) is the unique preinjective compo-
nent of Γ(modB) containing all the indecomposable injective B-modules,
and R(B) is the (non-empty) regular part consisting of the remaining com-
ponents of Γ(modB).

A prominent rôle in the representation theory is played by the class
of hereditary algebras that are representation-infinite and minimal with
respect to this property. They are just the hereditary algebras of Euclidean
type, that is, the path algebras KQ, where Q is a connected acyclic quiver
whose underlying non-oriented graph Q is one of the following Euclidean
diagrams

✟
✟

✟
✟

✟✟ ❍
❍

❍
❍

❍❍

•

Ãn : •−−−−•−−−− · · · −−−−•−−−−•; (n+1 vertices, n ≥ 1);

D̃n :
• •
| |

•−−−−•−−−−•−−−− · · · −−−−•−−−−•−−−−•; (n+1 vertices, n ≥ 4);

Ẽ6 :

•
|
•
|

•−−−−•−−−−•−−−−•−−−−•;

Ẽ7 :
•
|

•−−−−•−−−−•−−−−•−−−−•−−−−•−−−−•;

Ẽ8 :
•
|

•−−−−•−−−−•−−−−•−−−−•−−−−•−−−−•−−−−•.

It is shown in Chapter VII that the underlying graph Q of a finite con-
nected quiver Q = (Q0, Q1) is a Dynkin diagram, or a Euclidean diagram,
if and only if the associated quadratic form qQ : Z|Q0| −→ Z is positive
definite, or positive semidefinite and not positive definite, respectively.

The main aim of Volumes 2 and 3 is to study the representation-infinite
tilted algebras B = EndTKQ of a Euclidean type Q and, in particular, to
give a fairly complete description of their indecomposable modules, their
module categories mod B, and the Auslander–Reiten quivers Γ(modB).

For this purpose, we introduce in Chapter X a special type of components
in the Auslander–Reiten quivers of algebras, namely stable tubes, and study
their behaviour in module categories. In particular, we present a handy
criterion on the existence of a standard self-hereditary stable tube, due to
Ringel [215], and a characterisation of generalised standard stable tubes,
due to Skowroński [246], [247], [254].
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Introduction xi

In Chapters XI and XII, we present a detailed description and properties
of the regular part R(B) of the Auslander–Reiten quiver Γ(modB) of any
concealed algebra B of Euclidean type, that is, a tilted algebra

B = EndTKQ

of a Euclidean type Q defined by a postprojective tilting KQ-module TKQ.
In particular, it is shown that:

• the regular part R(B) of the Auslander–Reiten quiver Γ(modB) is a
disjoint union of the P1(K)-family

TT B = {T B
λ }λ∈P1(K)

of pairwise orthogonal standard stable tubes T B
λ , where P1(K) is the

projective line over K,
• the family TT B separates the postprojective component P(B) from the

preinjective component Q(B),
• the module category modB is controlled by the Euler quadratic form

qB : K0(B) −→ Z of the algebra B.

A crucial rôle in the investigation is played by the canonical algebras of
Euclidean type, introduced by Ringel [215]. As an application of the devel-
oped theory, we present in Chapter XIII a complete list of indecomposable
regular KQ-modules over any path algebra KQ of a canonically oriented
Euclidean quiver Q, and we show how a simple tilting process allows us to
construct the indecomposable regular modules over any path algebra KQ

of a Euclidean type Q.
In Chapter XIV, we give the Happel–Vossieck [112] characterisation of

the minimal representation-infinite algebras B having a postprojective com-
ponent in the Auslander–Reiten quiver Γ(modB). As a consequence, we
get a finite representation type criterion for algebras. We also present a
complete classification, by means of quivers with relations, of all concealed
algebras of Euclidean type, due independently by Bongartz [29] and Happel–
Vossieck [112].

In Volume 3, we introduce some concepts and tools that allow us to give
there a complete description of arbitrary representation-infinite tilted alge-
bras B of Euclidean type and the module category modB, due to Ringel
[215]. We also investigate the wild hereditary algebras A = KQ, where Q is
an acyclic quiver such that the underlying graph is neither a Dynkin nor a
Euclidean diagram. We describe the shape of the components of the regular
part R(A) of Γ(modA) and we establish a wild behaviour of the category
mod A, for any such an algebra A. Finally, we introduce in Volume 3 the
concepts of tame representation type and of wild representation type for
algebras, and we discuss the tame and the wild nature of module categories
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xii Introduction

mod B. Also, we present (without proofs) selected results of the represen-
tation theory of finite dimensional algebras that are related to the material
discussed in the book.

It was not possible to be encyclopedic in this work. Therefore many
important topics from the theory have been left out. Among the most
notable omissions are covering techniques, the use of derived categories and
partially ordered sets. Some other aspects of the theory presented here are
discussed in the books [10], [15], [16], [91], [121], [235], and especially [215].

We assume that the reader is familiar with Volume 1, but otherwise the
exposition is reasonably self-contained, making it suitable either for courses
and seminars or for self-study. The text includes many illustrative examples
and a large number of exercises at the end of each of the Chapters X-XIV.

The book is addressed to graduate students, advanced undergraduates,
and mathematicians and scientists working in representation theory, ring
and module theory, commutative algebra, abelian group theory, and combi-
natorics. It should also, we hope, be of interest to mathematicians working
in other fields.

Throughout this book we use freely the terminology and notation intro-
duced in Volume 1. We denote by K a fixed algebraically closed field. The
symbols N, Z, Q, R, and C mean the sets of natural numbers, integers, ra-
tional, real, and complex numbers. The cardinality of a set X is denoted by
|X|. Given a finite dimensional K-algebra A, the A-module means a finite
dimensional right A-module. We denote by ModA the category of all right
A-modules, by mod A the category of finite dimensional right A-modules,
and by Γ(modA) the Auslander–Reiten translation quiver of A. The ordi-
nary quiver of an algebra A is denoted by QA. Given a matrix C = [cij ],
we denote by Ct the transpose of C.

A finite quiver Q = (Q0, Q1) is called a Euclidean quiver if the under-

lying graph Q of Q is any of the Euclidean diagrams Ãm, with m ≥ 1, D̃m,

with m ≥ 4, Ẽ6, Ẽ7, and Ẽ8. Analogously, Q is called a Dynkin quiver

if the underlying graph Q of Q is any of the Dynkin diagrams Am, with
m ≥ 1, Dm, with m ≥ 4, E6, E7, and E8.

We take pleasure in thanking all our colleagues and students who helped
us with their comments and suggestions. We wish particularly to express
our appreciation to Ibrahim Assem, Sheila Brenner, Otto Kerner, and Kunio
Yamagata for their helpful discussions and suggestions. Particular thanks
are due to Dr. Jerzy Bia�lkowski and Dr. Rafa�l Bocian for their help in
preparing a print-ready copy of the manuscript.
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