THE ORIGIN OF CHONDRULES AND CHONDRITES

Chondrites are the largest group of meteorites. They can provide unique insights into the origins and early evolution of our Solar System, and even into the relationships between our Solar System and other stars in the vicinity of our Sun. The largest structural components of most chondrites are the glass-bearing chondrules, and there are numerous theories for their origin. This clear and systematic text summarizes the ideas surrounding the origin and history of chondrules and chondrites, drawing on research from the various scientific disciplines involved. With citations to every known published paper on the topic, it forms a comprehensive bibliography of the latest research, and extensive illustrations provide a clear visual representation of the scientific theories. This text will be a valuable reference for graduate students and researchers in planetary science, geology, and astronomy.

DEREK SEARS was born in England and obtained a bachelor's degree in chemistry at the University of Kent at Canterbury, and a Ph.D. in Astronomy and Geology at the University of Leicester. He is now Professor of Chemistry and Director of the Arkansas–Oklahoma Center for Space and Planetary Sciences. He teaches chemistry and performs meteorite research, and is currently involved in creating new research and graduate teaching programs in space and planetary sciences. Professor Sears is probably best known for his pioneering studies on the use of thermoluminescence to characterize primitive meteorites and to determine the thermal and radiation history of Antarctic meteorites. In 1999 he received the University of Arkansas' highest award for research and service, and asteroid 4473 Sears was named in his honor. This is his third book on meteorites.

CAMBRIDGE PLANETARY SCIENCE

Series Editors: Fran Bagenal, David Jewitt, Carl Murray, Jim Bell, Ralph Lorenz, Francis Nimmo, Sara Russell

Books in the series

- Jupiter: The Planet, Satellites and Magnetosphere Edited by Fran Bagenal, Timothy E. Dowling, and William B. McKinnon 0 521 81808 7
- 2. *Meteorites: A Petrologic, Chemical, and Isotopic Synthesis* Robert Hutchison 0 521 47010 2
- The Origin of Chondrules and Chondrites Derek W. G. Sears 0 521 83603 4

THE ORIGIN OF CHONDRULES AND CHONDRITES

DEREK W. G. SEARS

Arkansas–Oklahoma Center for Space and Planetary Sciences, and Department of Chemistry and Biochemistry, University of Arkansas, USA

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> > CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge, CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org

> > > © D. Sears 2004

 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2004
Printed in the United Kingdom at the University Press, Cambridge *Typeface* Times 11/14 pt. System LaTeX 2_e [TB]
A catalog record for this book is available from the British Library Library of Congress Cataloging in Publication data

ISBN 0 521 83603 4 hardback

The publisher has used its best endeavors to ensure that the URLs for external websites referred to in this book are correct and active at the time of going to press. However, the publisher has no responsibility for the websites and can make no guarantee that a site will remain live or that the content is or will remain appropriate.

Contents

	List	of figures	<i>page</i> vii
	List of tables		ix
	Preface		xi
1	Historical introduction		1
	1.1	Rocks from the sky	1
	1.2	Museums and collectors	4
	1.3	The instruments	4
	1.4	The space age	10
	1.5	The great expeditions	11
	1.6	Cosmic sediments	12
2	Pote	ential meteorite parent bodies	21
	2.1	Asteroids as potential meteorite parent bodies	21
	2.2	Impact and cratering processes	40
3	Chondrites and their main properties		49
	3.1	Classification and composition	49
	3.2	Formation history	60
	3.3	The challenge	70
4	Cho	ndrules and their main properties	73
	4.1	The diversity of chondrules	73
	4.2	Chondrule groups	75
	4.3	Composition of chondrules	80
	4.4	Physical processes affecting chondrule history	90
	4.5	Chondrule rims and matrix – implications for	
		formation history	94
	4.6	Stable isotope studies of chondrules	98
	4.7	Radiogenic isotope studies of chondrules	103
	4.8	Interclass comparisons	105
	4.9	Refractory inclusions	106

vi		Contents	
	4.10	Relationship between chondrules and refractory inclusions	107
	4.11	"Chondrules" from other planetary bodies	109
5	Theorem	ries for the origin of chondrules	111
	5.1	Some general comments	111
	5.2	Processes occurring in the primordial solar nebula	112
	5.3	Processes occurring on parent bodies	119
6	Discu	ssion of theories for the origin of chondrules	125
	6.1	The primordial solar nebula and possible cosmochemistry	125
	6.2	Critique of nebula theories for chondrule formation	129
	6.3	Formation of chondrules by impact into a regolith	137
7	Discu	ssion of theories for metal-silicate fractionation	141
	7.1	Chondrule sorting	141
	7.2	The metal-silicate fraction in the nebula	143
	7.3	Metal-silicate fractionation on the parent body	147
8	So ho	w far have we come and where do we go next?	151
	8.1	Chondrules and chondrite classes as impact pyroclastics	151
	8.2	The details	154
	8.3	So far, so near	158
	8.4	Why the impasse?	159
	8.5	Breaking the log jam?	160
	Refer	ences	163
	Index		199

Figures

1.1	Edward Howard – an early investigator	page 2
1.2	Cartoon showing texture and components of chondrites	3
1.3	Chondrites under the microscope	5
1.4	Solar vs chondrite composition	7
1.5	Urey–Craig plot	8
1.6	The age of chondrites	9
1.7	Astrophysical history of chondritic material	13
1.8	Mineral and phase composition of chondrites	16
1.9	Chondrule diameters vs metal grain sizes	16
1.10	Metamorphism in chondrites	17
1.11	Brecciated textures of chondrites	19
2.1	Orbital parameters for asteroids	24
2.2	Spectra of asteroids	26
2.3	Distribution of asteroid and meteorite classes	28
2.4	Texture of gas-rich regolith breccias	30
2.5	Cosmic ray exposure ages for chondrites	33
2.6	Ar–Ar ages for chondrites	34
2.7	Thermal models for chondrites	36
2.8	Cartoon of hypothetical ejecta blanket	37
2.9	Structure of a meteorite parent body	38
2.10	Asteroids and their surfaces	41
2.11	Fraction of ejecta escaping	44
2.12	Melt produced by asteroid impact	46
3.1	Phase diagrams for Mg–Fe silicates in a solar gas	52
3.2	Composition of chondrites	54
3.3	Thermodynamic calculations for a solar gas	56
3.4	Three oxygen isotope plot for chondrites	59
3.5	Petrographic evidence for aqueous alteration	65
3.6	Initial ⁸⁷ Sr/ ⁸⁶ Sr ratios in chondrites	66
3.7	I–Xe ages of chondrites	68
4.1	Representative chondrule textures (Tschermak)	74
4.2	Representative chondrule textures (Merrill)	76

viii	List of figures	
4.3	Representative chondrule textures (Scott and Taylor)	78
4.4	Definition of compositional chondrule classes	80
4.5	Bulk composition of chondrules	83
4.6	Factor analysis of chondrule compositions	84
4.7	Laboratory experiments on composition of chondrules	86
4.8	Proposed phase diagrams for chondrule and matrix formation	87
4.9	Chondrules as open and closed systems	89
4.10	Production of synthetic chondrules	91
4.11	Formation of chondrule rims	95
4.12	Chondrule diameter vs rim thickness	96
4.13	Oxygen isotopes in chondrules	99
4.14	Oxygen isotopes in a zoned chondrule	100
4.15	Oxygen isotopes in FUN inclusions	102
4.16	Oxygen isotopes in an Allende inclusion	103
4.17	Xenon isotopes in chondrules	104
4.18	Chondrules from non-asteroid parent bodies	108
5.1	Chondrules from the nebula	113
5.2	Cartoon – chondrules from parent bodies	120
6.1	Formation of the Solar System	126
6.2	Stability of minerals and the adiabat	128
6.3	Fragmentation of meteorites in the atmosphere	132
6.4	Charged particle tracks and microcraters	136
6.5	Outcomes for ejecta impacting an asteroid	139
7.1	Schematic drawings of metal-silicate separation in nebula	144
7.2	Aerodynamic sorting of chondrules and metal	146
7.3	Cartoon – metal-silicate separation on a parent body	147
8.1	Mount Saint Helens	153
8.2	Pyroclastic flows	154
8.3	Cartoon – the history of a chondrule	155
8.4	Cartoon – the history of chondrites	156
8.5	The Hayabusa spacecraft	161
8.6	The Hera spacecraft	162

Tables

1.1	The chondrite classes	page 14
1.2	The petrographic types	18
2.1	Asteroid densities	22
2.2	Water and density of C chondrites	23
2.3	Asteroids and water	23
2.4	The asteroid-meteorite link	27
2.5	Asteroids visited by spacecraft	40
2.6	Regoliths on asteroids	45
3.1	Temperatures and cooling rates for chondrites	62
3.2	Aqueous alteration of CM chondrites	64
4.1	Compositional groups of chondrules	79
4.2	References to analyses of chondrules	81
4.3	Comparison of chondrule classification schemes	82
4.4	Open- and closed-system evolution of chondrules	90
4.5	Temperatures and cooling rates for chondrules	93
4.6	Chondrule classes and chondrite classes	105
7.1	Fluidization and metal-silicate ratios	148

Preface

Rocks falling from the sky have a long and colorful history. I mean this both in a socio-economic sense and, perhaps more obviously, in a scientific sense. Stories of stones from the heavens have been with us for as long as humans have left traces of themselves. In ancient tombs and burial sites, in their earliest writings and during the faltering steps of the industrial revolution and the creation of modern science, people wrote about rocks from the sky now known as meteorites. In many respects the history of modern science instrumention is inextricably linked with the history meteorite studies.

Meteorites are major witnesses of the history of our Solar System. Everyone agrees that meteorites are ancient materials from the earliest stages in the history of the Solar System. Their age, composition, and texture clearly point to this conclusion. Everyone also agrees that meteorites are fragments from near-Earth asteroids, which occasionally threaten us with impact, and it seems that such asteroids largely come out of the Main Asteroid Belt between Mars and Jupiter although a small fraction of them are probably related to comets. These rocks are fascinating to study. They are sufficiently like terrestrial rocks that similar techniques and approaches can be used, yet they present a whole new range of physical and chemical processes to consider, processes that take the researcher from petrologist, mineralogist, and geochemist to the astronomer and the astrophysicist. But while they reward us with many new observations and insights, much about them remains covered in a veil of obscurity "of truly delphic proportions." For example, what is the origin of the chondrules from which chondrites get their name? What processes have given rise to the differences in the accumulation of metal and silicates that characterize the various classes?

This book emerged from a paper I was invited to give at the annual conference on Antarctic meteorites hosted by the National Institute for Polar Research (NIPR) in Tokyo. I am very grateful to K. Yanai and H. Kojima for the invitation and their extraordinary hospitality. In an age of endless specialization and highly focussed

xii

Preface

expertise, I wanted to present a discussion of the big picture – laying out the variety of ideas that have been published and trying to stimulate some new thoughts. I wanted to give an overview of both where we have been in our thinking and where we are now, whilst remaining very aware that many major issues in the study of these precious rocks have not yet been resolved. I also wanted to do this in an easily digestible form. So throughout the book appear lists of theories, cartoons, and figures. Lists can be dull, but they can be read easily, used for reference, and they give an idea of real constraints that exist on some of our theories. I also wanted to collect together in one place as many literature references as possible, because many good ideas are becoming lost in the explosion in recent literature. I wonder how many of our new ideas are restatements of old ideas and I wonder how many good ideas were prematurely interred.

In addition to my NIPR hosts, I am grateful to a number of people for helping me assemble this book. Simon Mitton of Cambridge University Press persuaded me to finish what had become a decade-long project. Four anonymous reviewers gave me an objective perspective on what I was proposing to do that encouraged me to finish and helped me improve the project. The University of Arkansas has provided the means for me to achieve much that I have done, including this book. Hazel Sears helped in the mechanics of book assembly and proofed the final product. To them all my thanks, and I hope they feel I have justified their efforts.