PLANAR MICROWAVE ENGINEERING

Modern wireless communications hardware is underpinned by RF and microwave design techniques. This insightful book contains a wealth of circuit layouts, design tips, and measurement techniques for building and testing practical gigahertz systems. The book covers everything you need to know to design, build, and test a high-frequency circuit. Microstrip components are discussed, including tricks for extracting good performance from cheap materials. Connectors and cables are also described, as are discrete passive components, antennas, low-noise amplifiers, oscillators, and frequency synthesizers. Practical measurement techniques are presented in detail, including the use of network analyzers, sampling oscilloscopes, spectrum analyzers, and noise figure meters. Throughout the focus is practical, and many worked examples and design projects are included. A CD-ROM included with the book contains a variety of design and analysis programs. The book is packed with indispensable information for students taking courses on RF or microwave circuits and for practicing engineers.

Thomas H. Lee received his Sc.D. from the Massachusetts Institute of Technology and is an Associate Professor of Electrical Engineering at Stanford University. He has been a Distinguished Lecturer of both the IEEE Solid-State Circuits Society and the IEEE Microwave Theory and Techniques Society. He is the winner of four “best paper” awards at international conferences as well as a Packard Foundation Fellowship winner. Professor Lee has written more than a hundred technical papers and authored the acclaimed text The Design of CMOS Radio-Frequency Integrated Circuits, now in its second edition. He holds thirty-five U.S. patents and has co-founded several companies, including Matrix Semiconductor.
PLANAR MICROWAVE ENGINEERING

A Practical Guide to Theory, Measurement, and Circuits

THOMAS H. LEE

Stanford University
for Angelina
CONTENTS

Preface xiii

1 A MICROHISTORY OF MICROWAVE TECHNOLOGY 1
 1. Introduction 1
 2. Birth of the Vacuum Tube 11
 3. Armstrong and the Regenerative Amplifier/Detector/Oscillator 14
 4. The Wizard War 18
 5. Some Closing Comments 27
 6. Appendix A: Characteristics of Other Wireless Systems 27

2 INTRODUCTION TO RF AND MICROWAVE CIRCUITS 37
 1. Definitions 37
 2. Conventional Frequency Bands 38
 3. Lumped versus Distributed Circuits 41
 4. Link between Lumped and Distributed Regimes 44
 5. Driving-Point Impedance of Iterated Structures 44
 6. Transmission Lines in More Detail 46
 8. Summary of Transmission Line Equations 53
 9. Artificial Lines 54
 10. Summary 58

3 THE SMITH CHART AND S-PARAMETERS 60
 1. Introduction 60
 2. The Smith Chart 60
 3. S-Parameters 66
 4. Appendix A: A Short Note on Units 69
 5. Appendix B: Why 50 (or 75) Ω? 71
CONTENTS

4 IMPEDANCE MATCHING
1. Introduction 74
2. The Maximum Power Transfer Theorem 75
3. Matching Methods 77

5 CONNECTORS, CABLES, AND WAVEGUIDES
1. Introduction 108
2. Connectors 108
3. Coaxial Cables 115
4. Waveguides 118
5. Summary 120
6. Appendix: Properties of Coaxial Cable 121

6 PASSIVE COMPONENTS
1. Introduction 123
2. Interconnect at Radio Frequencies: Skin Effect 123
3. Resistors 129
4. Capacitors 133
5. Inductors 138
6. Magnetically Coupled Conductors 147
7. Summary 157

7 MICROSTRIP, STRIPLINE, AND PLANAR PASSIVE ELEMENTS
1. Introduction 158
2. General Characteristics of PC Boards 158
3. Transmission Lines on PC Board 162
4. Passives Made from Transmission Line Segments 178
5. Resonators 181
6. Combiners, Splitters, and Couplers 183
7. Summary 230
8. Appendix A: Random Useful Inductance Formulas 230
9. Appendix B: Derivation of Fringing Correction 233
10. Appendix C: Dielectric Constants of Other Materials 237

8 IMPEDANCE MEASUREMENT
1. Introduction 238
2. The Time-Domain Reflectometer 238
3. The Slotted Line 246
4. The Vector Network Analyzer 254
5. Summary of Calibration Methods 264
6. Other VNA Measurement Capabilities 265
7. References 265
8. Appendix A: Other Impedance Measurement Devices 265
9. Appendix B: Projects 268
CONTENTS

9 MICROWAVE DIODES

1. Introduction 275
2. Junction Diodes 276
3. Schottky Diodes 279
4. Varactors 281
5. Tunnel Diodes 284
6. PIN Diodes 287
7. Noise Diodes 289
8. Snap Diodes 290
9. Gunn Diodes 293
10. MIM Diodes 295
11. IMPATT Diodes 295
12. Summary 297
13. Appendix: Homegrown “Penny” Diodes and Crystal Radios 297

10 MIXERS

1. Introduction 305
2. Mixer Fundamentals 306
3. Nonlinearity, Time Variation, and Mixing 312
4. Multiplier-Based Mixers 317

11 TRANSISTORS

1. History and Overview 341
2. Modeling 351
3. Small-Signal Models for Bipolar Transistors 352
4. FET Models 361
5. Summary 368

12 AMPLIFIERS

1. Introduction 369
2. Microwave Biasing 101
3. Bandwidth Extension Techniques 381
4. The Shunt-Series Amplifier 395
5. Tuned Amplifiers 413
6. Neutralization and Unilateralization 417
7. Strange Impedance Behaviors and Stability 420
8. Appendix: Derivation of Bridged T-Coil Transfer Function 427

13 LNA DESIGN

1. Introduction 440
2. Classical Two-Port Noise Theory 440
3. Derivation of a Bipolar Noise Model 445
4. The Narrowband LNA 451
5. A Few Practical Details 455
CONTENTS

6. Linearity and Large-Signal Performance 457
7. Spurious-Free Dynamic Range 462
8. Cascaded Systems 464
9. Summary 467
10. Appendix A: Bipolar Noise Figure Equations 468
11. Appendix B: FET Noise Parameters 468

14 NOISE FIGURE MEASUREMENT 472
1. Introduction 472
2. Basic Definitions and Noise Measurement Theory 472
3. Noise Temperature 477
4. Friis’s Formula for the Noise Figure of Cascaded Systems 479
5. Noise Measure 480
6. Typical Noise Figure Instrumentation 481
7. Error Sources 487
8. Special Considerations for Mixers 491
9. References 492
10. Appendix: Two Cheesy Eyeball Methods 492

15 OSCILLATORS 494
1. Introduction 494
2. The Problem with Purely Linear Oscillators 494
3. Describing Functions 495
4. Resonators 515
5. A Catalog of Tuned Oscillators 519
6. Negative Resistance Oscillators 524
7. Summary 528

16 SYNTHESIZERS 529
1. Introduction 529
2. A Short History of PLLs 529
3. Linearized PLL Model 532
4. PLL Rejection of Noise on Input 536
5. Phase Detectors 537
6. Sequential Phase Detectors 542
7. Loop Filters and Charge Pumps 544
8. Frequency Synthesis 551
9. A Design Example 561
10. Summary 564
11. Appendix: Inexpensive PLL Design Lab Tutorial 565

17 OSCILLATOR PHASE NOISE 574
1. Introduction 574
2. General Considerations 576
CONTENTS

3. Detailed Considerations: Phase Noise 579
4. The Roles of Linearity and Time Variation in Phase Noise 582
5. Circuit Examples – LC Oscillators 592
6. Amplitude Response 597
7. Summary 599
8. Appendix: Notes on Simulation 600

18 MEASUREMENT OF PHASE NOISE 601
1. Introduction 601
2. Definitions and Basic Measurement Methods 601
3. Measurement Techniques 604
4. Error Sources 611
5. References 612

19 SAMPLING OSCILLOSOPES, SPECTRUM ANALYZERS, AND PROBES 613
1. Introduction 613
2. Oscilloscopes 614
3. Spectrum Analyzers 625
4. References 629

20 RF POWER AMPLIFIERS 630
1. Introduction 630
2. Classical Power Amplifier Topologies 631
3. Modulation of Power Amplifiers 650
4. Additional Design Considerations 679
5. Summary 687

21 ANTENNAS 688
1. Introduction 688
2. Poynning’s Theorem, Energy, and Wires 690
3. The Nature of Radiation 691
4. Antenna Characteristics 695
5. The Dipole Antenna 697
6. The Microstrip Patch Antenna 707
7. Miscellaneous Planar Antennas 720
8. Summary 721

22 LUMPED FILTERS 723
1. Introduction 723
2. Background – A Quick History 723
3. Filters from Transmission Lines 726
4. Filter Classifications and Specifications 738
5. Common Filter Approximations 740
CONTENTS

6. Appendix A: Network Synthesis 766
7. Appendix B: Elliptic Integrals, Functions, and Filters 774
8. Appendix C: Design Tables for Common Low-pass Filters 781

23 MICROSTRIP FILTERS 784
 1. Background 784
 2. Distributed Filters from Lumped Prototypes 784
 3. Coupled Resonator Bandpass Filters 803
 4. Practical Considerations 841
 5. Summary 843
 6. Appendix: Lumped Equivalents of Distributed Resonators 844

Index 847
First, it was called wireless, then radio. After decades in eclipse wireless has become fashionable once again. Whatever one chooses to call it, the field of RF design is changing so rapidly that textbook authors, let alone engineers, are hard pressed to keep up. A significant challenge for newcomers in particular is to absorb an exponentially growing amount of new information while also acquiring a mastery of those foundational aspects of the art that have not changed for generations. Compounding the challenge is that many books on microwave engineering focus heavily on electromagnetic field theory and never discuss actual physical examples, while others are of a cookbook nature with almost no theory at all. Worse still, much of the lore on this topic is just that: an oral tradition (not always correct), passed down through the generations. The rest is scattered throughout numerous applications notes, product catalogs, hobbyist magazines, and instruction manuals – many of which are hard to find, and not all of which agree with each other. Hobbyists are almost always unhappy with the theoretical bent of academic textbooks (“too many equations, and in the end, they still don’t tell you how to make anything”), while students and practicing engineers are often unhappy with the recipe-based approaches of hobby magazines (“they don’t give you the theory to show how to change the design into what I actually need”). This book is a response to the students, hobbyists, and practicing engineers who have complained about the lack of a modern reference that balances theory and practice.

This book is a much-expanded version of notes used in the teaching of EE414, a one-term advanced graduate laboratory course on gigahertz transceiver design at Stanford University. Even so, it is intended to satisfy a much broader audience than simply those seeking a Ph.D. In EE414, students spend approximately nine weeks designing, building, and testing every building block of a 1-GHz transceiver using microstrip construction techniques. These building blocks include various antennas and microstrip filters as well as a low-noise amplifier, mixer, PLL-based frequency synthesizer and FM modulator/demodulator, and power amplifier. The “final exam” is a successful demonstration of two-way communications with these FM transceivers.

I am deeply grateful to the students of the first class in particular, who graciously and
enthusiastically served as guinea pigs as the course material and notes were being developed in real time (at best). The present form of the text owes a great deal to their suggestions.

It is true that you will find here a certain number of theoretical discussions of measurement techniques and microwave design, replete with complex transfer functions and transforms galore. That’s necessary because an important function of a Ph.D. program is the mental torment of graduate students. But hobbyists who just want to “get to the good stuff” right away are free to ignore all of the equations and to focus instead on the many practical rules of thumb or on the numerous ways to build and characterize microwave circuits with inexpensive components and equipment. Every effort is made to provide verbal and physical explanations of what the equations mean. The weekend experimenter may enjoy in particular the projects included in many of the chapters, ranging from homemade diodes to a sub-$10 microwave impedance measurement system. The practicing engineer will find much useful information about how to extract the most reliable data from leading-edge instrumentation, with a special focus on understanding calibration methods (and their limitations) in order to avoid making subtle, but surprisingly common, errors. Younger engineers may also enjoy finding answers to many of their questions about everyday RF items (Does **BNC** really stand for “baby N connector”? Why is everything 50 Ω? Who was Smith, and why did he invent a chart?). Readers are invited to pick and choose topics to suit their tastes; this book is a smorgasbord, as is clear from the following brief descriptions of the chapters.

Chapter 1 provides a short history of RF and microwave circuits. It is impossible to provide anything remotely approaching a comprehensive overview of this vast topic in one chapter, and we don’t even try. Our hope is that it provides some entertainment while establishing a context for the rest of the book.

Chapter 2 introduces some definitions and basic concepts. We try to devise a less arbitrary definition of **microwave** than the simple frequency-based one offered in many other places. We also try very hard to avoid actually solving Maxwell’s equations anywhere, preferring instead to appeal to physical intuition. Again, this book is about design and testing, not pure analysis, so any analysis we perform is dedicated to those aims.

The Smith chart and S-parameters are staples of classical microwave design, so Chapter 3 provides a brief introduction to them. The complex appearance of the chart is off-putting to many who would otherwise be interested in RF and microwave design. We therefore offer a brief history of the Smith chart to explain why it’s useful, even today. In the process, we hope to make the Smith chart a little less intimidating.

At high frequencies, power gain is hard to come by, so impedance matching is a standard task of every microwave engineer. Chapter 4 presents a number of impedance matching methods, along with a brief explanation of the Bode–Fano limit, which helps let us know when we should quit trying (or when we shouldn’t even try).
After having witnessed eager students inadvertently destroy expensive fixturing, it became clear that a chapter on the care and feeding of connectors was necessary. Chapter 5 surveys a number of popular connectors, their historical origins, their domain of application, and the proper ways to care for them. Cables and their characteristics are discussed as well.

Chapter 6 examines the characteristics of lumped passive elements at microwave frequencies. Simple circuit models (appropriate for design, but not necessarily accurate enough for analysis) are presented to alert the student to issues that may prevent circuits from functioning as desired. To no small degree, an important lesson in RF and microwave design is that there are always irreducible parasitics. Rather than conceding defeat, one must exploit them as circuit elements. Retaining simple mental models of parasitics allows you to devise clever ways of accomplishing this goal.

In Chapter 7 we introduce the most common way of building microwave circuits (either in discrete or integrated form): microstrip. Although the chapter focuses on this one particular method of implementing planar circuits, we also spend a little time discussing coplanar waveguide and coplanar strips, as well as stripline. After introducing basic concepts and some simple (but reasonably accurate) design equations, we examine a large number of passive components that may be realized in microstrip form.

Once you’ve designed and built some circuits, you’ll need to characterize them. One of the most basic measurements you will make is that of impedance. Chapter 8 presents several methods for making impedance measurements, ranging from time-domain reflectometry to vector network analysis. We spend considerable time describing various calibration techniques, for maladroitness here often causes engineers to obtain $1 answers from a $100,000 instrument. For those who don’t want to choose between buying a home and buying a network analyzer, we present a simple “slotted line” measurement device that can be fashioned for about $10 yet functions up to at least several gigahertz. The 40-dB cost reduction is not accompanied by a 40-dB utility reduction, fortunately. For example, once calibrated, the device can even be used to determine frequency within 1–2%.

Chapter 9 is devoted to microwave diodes. Engineers accustomed to lower-frequency design are often surprised at the wide variety of functions that diodes can perform. Especially surprising to many newcomers is that some diodes are capable of amplification and even of oscillation.

Chapter 10 builds on that foundation to describe numerous mixers, heart of the modern superheterodyne transceiver. Lumped and distributed implementations are presented, as are active and passive circuits. Depending on the available technology and the design constraints, any of these may be appropriate in a given situation.

Active circuits are more interesting, of course (at least to the author), and so Chapter 11 presents a survey of transistors. The device physicists have been working overtime for decades to give us JFETs, MOSFETs, MESFETs, HEMTMs, VMOS, UMOS, LDMOS, HBTs, . . . , and the list just keeps growing. We attempt to provide a somewhat unified treatment of these transistors, and focus on just two types (MOSFETs and bipolar) as representative of a much wider class.
Chapter 12 considers how to squeeze the most out of whatever transistor technology you are given. We spend a few pages describing how to bias transistors because, at microwave frequencies, many of the lower-frequency techniques have serious implementation consequences (parasitics, again). We then describe methods for extending bandwidth by factors of 2–3 with modest increases in circuit complexity. And for the first time anywhere (to the author’s knowledge), we present a detailed derivation of the transfer function and optimum conditions for the bridged T-coil bandwidth boost network.

In Chapter 13, we shift our goals from “give me all the bandwidth you can” to “give me the lowest-noise amplification possible.” We discuss noise models and then present the theory of noise matching. We discover that the conditions that maximize power transfer almost never coincide with those that minimize noise factor, and so a compromise strategy is necessary. Again, although we focus the discussion on just one or two types of transistors, the general concepts presented apply to all amplifiers.

Once you’ve built what you believe is a low-noise amplifier, you have to prove it. Chapter 14 describes the principles underlying noise figure measurement, along with descriptions of how to get the wrong answer (it’s very easy). Depending on your objectives (making your LNA look good, or your competitor’s look bad), you can either commit or avoid those errors.

Chapter 15 describes how to produce controlled instability to build oscillators. The old joke among frustrated microwave engineers is that “amplifiers oscillate, and oscillators amplify.” We hope that the simplified presentation here allows you to design oscillators that really do oscillate, and even on frequency.

Virtually every modern transceiver has a frequency synthesizer somewhere. Chapter 16 describes phase-locked loop synthesizers, along with an extended discussion of spur-producing design defects (and their mitigation). Although the theoretical discussion can get very complex, the design examples should help the impatient hobbyist put together a working design without having to understand every equation.

Chapter 17 analyzes the important subject of phase noise. It’s not sufficient for an oscillator to oscillate. The putative scarcity of spectrum obligates all transmitters to follow a “good neighbor” policy and not transmit much energy outside of its assigned band. All oscillators are imperfect in this regard, so Chapter 17 identifies where phase noise comes from and how you can reduce it.

Chapter 18 describes phase noise measurement methods. As with noise figure, there are many subtle (and not so subtle) ways to bungle a phase noise measurement, and we try to steer you clear of those.

Chapter 19 describes spectrum analyzers, oscilloscopes, and probes. Too often, engineers place all of their faith in the instrument, forgetting that connecting their circuit to these devices is up to them. And if done with insufficient care, the quality of the measurement can degrade rapidly. This chapter highlights the more common of these errors – and ways to avoid them. Also, since high-frequency probes are so expensive, we offer a way to build one for a few dollars. To supplement the probe, we also offer a couple of fast pulse-generator circuits with which you may test probe and oscilloscope combinations.
Chapter 20 presents numerous ways to implement power amplifiers at RF and microwave frequencies. At one time, it was sufficient to design for a particular gain and output power. Unfortunately, demands have increased steadily as the telecommunications revolution has unfolded, and now one must achieve high efficiency, low cost, high robustness to varying load conditions, and high linearity. We attempt to survey numerous methods for achieving all of these goals.

The aim of Chapter 21 is showing how to get power into and out of the air. Antennas are mysterious, and we hope to take at least some of the mystery out of antenna design with the material in this chapter. We focus on microstrip patch antennas, but we precede that discussion with an examination of classic nonplanar antennas (e.g., the dipole) to identify important concepts.

Finally, Chapters 22 and 23 focus on the design of passive filters. The presentation is divided roughly into lumped design in Chapter 22 and microstrip distributed filters in Chapter 23. Throughout, we make a concerted effort to focus on practical details, such as the effect of component tolerance, or finite Q. We hope that the numerous design examples and simulation results will illuminate the design procedures and allow you to converge rapidly on an acceptable, repeatable design.

Again, these chapters are ordered in a quasirandom way. You are in no way obligated to read them linearly in the sequence presented. Skip around as you like. It’s your book.

This text has been informed by the many wonderful mentors, colleagues, and students who have generously shared their knowledge and viewpoints over the years. Stanford Professor Malcolm McWhorter (now Emeritus) oversaw the development of a delightfully unorthodox BNC microstrip mounting arrangement for EE414’s prerequisite, an introductory microwave laboratory course called EE344. As discussed later in this book, this mounting method is ideal for students and hobbyists because it allows for the rapid and inexpensive prototyping of circuits in the low-gigahertz frequency range. Howard Swain and Dieter Scherer, both formerly of Hewlett-Packard and both virtuoso designers of widely used microwave instruments, helped to create EE344 and have continued to help teach it. The present mentor of the course, Professor Donald Cox, has graciously communicated lessons learned from teaching EE344 over the years, and the contents of this book have been adjusted as a direct result. I am also greatly indebted to Professor David Rutledge of Caltech, not only for generously allowing the inclusion of Puff in the CD-ROM collection of software accompanying this text but also for the great wealth of knowledge he has imparted to me, both in person and from his many publications. I’ve also benefitted enormously from the fact that simple proximity to David Leeson automatically increases your knowledge of microwave systems by several dB. Having so knowledgeable a faculty colleague has been a godsend.

I have also been the beneficiary of the hard work of several dedicated graduate students who built and tested most of the projects described in this book. Stanford Ph.D. candidates Sergei Krupenin, Arjang Hassibi, Talal Al-Attar, Moon-Jung Kim, and Michael Mulligan merit special mention in particular for their efforts. Rob Chavez of Agilent, while nominally a student in EE414, worked long hours to help other
students and the teaching assistant. Future EE414 students, as well as readers of this book, owe him thanks for the insights and suggestions that have shaped this material.

Funding is the fuel that keeps the academic engine purring, and here I have been most fortunate. Generous equipment grants from Hewlett-Packard and Agilent Technologies have given generations of students the privilege of hands-on work with leading-edge gear that not many schools can afford. Support from the William G. Hoover Faculty Scholar Chair and The David and Lucile Packard Foundation has given me tremendous freedom, making it possible to develop new courses, pursue some crazy research ideas, and write textbooks.

Finally, I am most deeply grateful to my loving wife, Angelina, for her patient support during the writing of this book, and for otherwise living up to her name in every way. Without her forbearance, it would have been impossible to complete two book manuscripts in one long year.