
1
Introduction

The motivations for writing the present monograph are three-fold: firstly from
a physical point of view and secondly from two related, but different mathe-
matical angles.

At the present time our mathematical understanding of a conservative quan-
tum mechanical system is reasonably complete, both from the direction of
a consistent abstract theory as well as from the one of mathematical theo-
ries of applications in many explicit physical systems like atoms, molecules
etc. (see for example the books [12] and [108]). However, a nonconservative
(open/dissipative) quantum mechanical system does not enjoy a similar status.
Over the last seven decades there have been many attempts to make a the-
ory of open quantum systems beginning with Pauli [104]. Some of the typical
references are: Van Hove [126], Ford et al. [52], along with the mathematical
monograph of Davies [35]. The physicists’ Master equation (or Langevin equa-
tion) was believed to describe the evolution of a nonconservative open quantum
(or classical) mechanical system, a mathematical description of which can be
found in Feller’s book [50].

Physically, one can conceive of an open system as the ‘smaller subsystem’ of
a total ensemble in which the system is in interaction with its ‘larger’ environ-
ment (sometimes called the bath or reservoir). The total ensemble with a very
large number of degrees of freedom undergoes (conservative) evolution, obey-
ing the laws of standard quantum mechanics. However, for various reasons,
practical or otherwise, it is of interest only to observe the system and not the
reservoir, and this ‘reduced dynamics’ in a certain sense obeys the Master equa-
tion (for a more precise description of these, see [35]). Since it is often impos-
sible and impractical to solve the equation of evolution of the total ensemble,
it is often meaningful to replace the reservoir by a ‘suitable stochastic process’
and couple the system with the stochastic process. In the case in which the
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2 Introduction

stochastic process is classical, the total evolution can be described by a suit-
able stochastic differential equation (for an introduction to this, the reader is
referred to [75] and [41]). The standard Langevin equation [52] involving the
stochastic process should restore the conservativeness of the total system albeit
for almost all paths. However, in many of the models studied by physicists this
is not so.

The simplest quantum mechanical system is the so-called harmonic oscilla-
tor. However, the (sub-critically) damped harmonic oscillator which has been
studied in classical physics since the time of Newton eludes a consistent treat-
ment in conventional quantum mechanics. In the view of the present authors,
this happens because the damped harmonic oscillator is a nonconservative,
dissipative system and cannot be understood as a flow in a symplectic man-
ifold (classical case) or in a standard Weyl canonical commutation relations
(CCR) algebra (quantum case). One possible way to model this is to repre-
sent the environment or reservoir (responsible for the friction or the damping
term) by an appropriate stochastic process, restore the unitary stochastic evo-
lution of the quantum system and then project back to the ‘system space’ by
‘washing out’ the influence of the stochastic process (taking expectation with
respect to the stochastic part) to get back the required nonconservative dynam-
ics. This has been studied in [119] and has also been described in some detail
in Chapter 7. Thus one can enunciate a philosophy, not too far away from that
of the physicists, that given a nonconservative dynamics of a quantum system,
one aim is to canonically construct the stochastic process which will repre-
sent the environment so that the two together undergo a conservative evolution
and the projection to the system space restores exactly the nonconservative
evolution. There is a further aim of the physicist, viz. to obtain the stochas-
tic process mentioned above in a suitable approximation from the mechanical
descriptions of the particles constituting the reservoir and of their interactions
with the observed system. This aspect is not treated in this monograph and the
reader is referred to [4], [8] and [35].

There is an exact mathematical counterpart to the picture in physicists’ mind
as described above. Given a finite probability space S ≡ {1, 2, . . . , n} with
probability distribution given by the vector p ≡ (p1, p2, . . . , pn) on it and a
stochastic (or Markov) matrix (ti j )

n
i j=1 such that ti j ≥ 0,

∑n
j=1 ti j = 1, one

can associate a (discrete) evolution (T f )(i) = ∑n
j=1 ti j f ( j) with

f : {1, 2, . . . , n} → R. Then one observes that

(i) T maps positive functions f to positive functions and maps identity func-
tion to itself.

(ii) The probability distribution vector p is in one-to-one correspondence
with the dual φp of the algebra of functions on S by p �→ φp, where
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Introduction 3

φp( f ) = ∑n
i=1 pi f (i), and this induces a dual dynamics T ∗ given by

(T ∗φp)(χ j ) = ∑n
i=1 pi ti j , where χk denotes the characteristic function

of the singleton set {k}.
(iii) T n, n = 0, 1, . . . , and T ∗n, n = 0, 1, 2 . . . provide two discrete (dynami-

cal) semigroups, the second being dual to the first; and clearly T n for each
n satisfies the property (i).

There is a standard construction of a Markov process (in this case Markov
chain); see e.g. Feller’s book [50]. This procedure extends naturally, begin-
ning with the consideration of the algebra of functions on S as the algebra of
n × n diagonal matrices and {T n}n=0,1,2,... as a positive semigroup on that, to
the more general picture considering semigroups (discrete or continuous para-
meter) on the noncommutative algebra of all n × n matrices. What is perhaps
surprising and is contrary to intuition in classical probability is that a very
large class of Markov processes (including Markov chains) can be described
by quantum stochastic differential equations in Fock space, again facilitating
many computations ([99, 100]).

At this point an important generalization of the class of positive maps on
an algebra makes its entrance. From a physical point of view, consider the fol-
lowing scenario. Let H be the Hilbert space of a localized quantum system A
in a box and let there exist another quantum system B with associated Hilbert
space Cn . The system B is so far removed from A that there is no interac-
tion between A and B and thus the Hilbert space for the joint system A and
B is H ⊗ Cn . Let Tn be the positive linear map which describes an operation
on the joint system that does not affect B, given by Tn(x ⊗ y) = T (x) ⊗ y
for x ∈ B(H), y ∈ B(Cn) (here B(H) is the set of all bounded linear oper-
ators on the Hilbert space H defined everywhere) for some positive linear
map T on B(H). It seems reasonable to expect that given a positive linear map
T on B(H), it should be such that for every natural number n, Tn given above
should be positive. In such a case, T is said to be completely positive (CP) and
such CP maps or semigroups of such maps play a very important role in the
description of nonconservative dynamics on quantum systems. It is also useful
to note that if the algebra involved is commutative (like the algebra of n × n
diagonal matrices in the first example instead of B(H) or the whole matrix
algebra) positivity and complete positivity are equivalent and that is why com-
plete positivity does not surface in the context of nonconservative evolutions of
classical physical systems. A detailed mathematical study of CP maps and of
semigroups of CP maps on an algebra is done in Chapters 2 and 3, respectively.

As we had mentioned earlier in the context of a physical subsystem interact-
ing with a reservoir in such a way that the reduced dynamics is governed by a
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4 Introduction

Master equation, it is natural to assume that the Master equation is just the dif-
ferential form of a contractive semigroup of CP maps on the algebra describing
the subsystem. Now we can turn this into a very interesting (and demanding)
mathematical question: does there exist a ‘suitable’ probabilistic model for (a)
the reservoir and for (b) its interaction with the given subsystem such that the
expectation of the total evolution with respect to the probabilistic variables give
the CP semigroup we started with? This is the general problem of ‘dilation of a
contractive semigroup of CP maps on a given algebra’. This problem is solved
in Chapter 6 in complete generality under the hypotheses that the given semi-
group of CP maps is uniformly continuous so that its generator acting on the
given algebra is bounded.

There are complete descriptions of the structure of the generator of a uni-
formly continuous semigroup of CP maps on an algebra in the third chapter.
Unfortunately the situation is far from settled for a similar question if the semi-
group is only strongly continuous, which is, as is often the case, more inter-
esting from the point of view of applications. However, if we pretend that the
generator of the strongly continuous semigroup of CP maps on the algebra for-
mally looks similar to that for the uniformly continuous case, then under certain
hypotheses a class of strongly continuous semigroups can be constructed such
that its generator coincides with the formal one on suitable domains. This is
described in the second section of the same chapter along with an applications
to a large class of classical Markov processes and also to the irrational rotation
algebra which is a type �1 factor von Neumann algebra. More details on these
constructions and results on the unital nature of the semigroups, so constructed,
can be found in Chebotarev [25]. This chapter ends with an important abstract
theorem on noncommutative Dirichlet forms associated with a strongly con-
tinuous semigroup of CP maps on a von Neumann algebra equipped with a
normal faithful semifinite trace. This result is then used in Chapter 8 to solve
the dilation problem for such semigroups.

In order to carry out the program charted out in an earlier paragraph, it is
necessary to develop some language and machinery. In Chapter 4, the basic
theories of Hilbert C∗- and von Neumann modules and of group actions on
them are presented. These ideas are then used to develop an elaborate the-
ory of stochastic integration and quantum Itô formulae in symmetric Fock
spaces extending the earlier theory as described in [97]. This language seems
to be sufficiently powerful to allow a large class of unbounded operator-valued
processes in Fock space to be treated. These methodologies were then used to
solve Hudson–Parthasarathy (H–P)-type stochastic quantum differential equa-
tions with bounded coefficients (Chapter 5) and with unbounded coefficients
(Chapter 7) giving unitary or isometric evolutions in a suitable Hilbert space as
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Introduction 5

solutions. The Evans–Hudson (E–H)-type equation of observable or of an ele-
ment of an algebra is re-interpreted as an equation on the space of maps on a
suitable Fock Hilbert module and for bounded coefficient case, such equations
are solved in Chapter 5. This language and associated machinery are important
because they allow us to answer in the affirmative the problem of the dilation
of a uniformly continuous semigroup of CP maps on an algebra.

Chapter 6 uses the tools of Chapters 4 and 5 to show that given a uniformly
continuous semigroup of CP maps on a von Neumann algebra, there exists
a quantum probabilistic model in the Fock space such that there is a E–H-type
quantum stochastic differential equation describing the stochastic evolution of
the observable algebra of the quantum subsystem coupled to the quantum sto-
chastic process in Fock space modeling the reservoir, and such that the expec-
tation gives back the original CP semigroup. This construction is canonical and
interestingly gives a quantum stochastic differential equation for the evolution
so that further computations for any other observable effects may be facilitated.

The mathematical problem of stochastic dilation of a semigroup of CP maps
on a C∗- or von Neumann algebra, uniformly or strongly continuous, with the
additional requirement that the dilated map on the algebra satisfies a quantum
stochastic differential equation in Fock space and is a ∗-homomorphism on the
algebra of observables is the central mathematical problem treated in this book.
The property of ∗-homomorphism of such maps is a basic requirement of any
quantum theory and the fact that these also satisfy a differential equation makes
the family of dilated maps a stochastic flow of ∗-homomorphisms on the alge-
bras. In fact, Chapters 6 and 8 are devoted to the final steps of the solution of
this problem, the first for the uniformly continuous semigroup and the second
for the strongly continuous one, while the Chapters 2 to 5 and Chapter 7 deal
with preliminary materials and develop the machinery needed. This completes
our discussions on the central mathematical problem treated here along with its
connection to applications, arising from the physics of open quantum systems.

There is a another mathematical direction from which we approach the cen-
tral mathematical problem of stochastic dilation, viz. that of noncommutative
geometry. Chapter 9 should not be and cannot be thought of as an exposi-
tion on the rapidly developing subject of noncommutative geometry as created
by Alain Connes [28] (the reader may also look at the books [82] and [56]).
Instead, after some introduction to basic concepts in differential geometry and
elements of noncommutative geometry, three explicit examples are worked out
and in each case an appropriate associated stochastic process (classical or quan-
tum) is constructed. Much more study in these areas remains to be done; for
example one can investigate whether the nontrivial curvature in the Quantum
Heisenberg manifold can be captured in terms of the stochastic processes on it.
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6 Introduction

We think the spirit of the book is perhaps well-described in the preface by
Luigi Accardi in Probability Towards 2000 [3] and we quote:

The reason why the interaction of probability with quantum physics is different
from the above mentioned ones is that the problem here is not only to apply
classical techniques or to extend them to situations which, being even more general,
still remain within the same qualitative type of intuition, language and techniques.
Furthermore, the formalism of quantum theory, with its complex wave functions
and Hilbert spaces, operators instead of random variables, creates a distance
between the mathematical model and the physical phenomena which is certainly
greater than that of classical physics. For these reasons, these new languages and
techniques might be perceived as extraneous by some classical probabilists and
researchers in mathematical statistics. However, the developments motivated by
quantum theory provide not only powerful theoretical tools to probability, but also
some conceptual challenges which can enter into the common education of all
mathematicians in the same way as happened for the basic qualitative ideas of
non-Euclidean geometries.
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2
Preliminaries

In this chapter we shall introduce all the basic materials and preliminary notions
needed later on in this book.

2.1 C∗ and von Neumann algebras

For the details on the material of this section, the reader may be referred to
[125], [40] and [76].

2.1.1 C∗-algebras

An abstract normed ∗-algebra A is said to be a pre-C∗-algebra if it satisfies
the C∗-property : ‖x∗x‖ = ‖x‖2. If A is furthermore complete under the norm
topology, one says that A is a C∗-algebra. The famous structure theorem due to
Gelfand, Naimark and Segal (GNS) asserts that every abstract C∗-algebra can
be embedded as a norm-closed ∗-subalgebra of B(H) (the set of all bounded
linear operators on some Hilbert space H). In view of this, we shall fix a com-
plex Hilbert space H and consider a concrete C∗-algebra A inside B(H). The
algebra A is said to be unital or nonunital depending on whether it has an iden-
tity or not. However, even any nonunital C∗-algebra always has a net (sequence
in case the algebra is separable in the norm topology) of approximate iden-
tity, that is, an nondecreasing net eµ of positive elements such that eµa → a
for all a ∈ A. Note that the set of compact operators on an infinite dimen-
sional Hilbert space H, to be denoted by K(H), is an example of nonunital
C∗-algebra.

We now briefly discuss some of the important aspects of C∗-algebra the-
ory. First of all, let us mention the following remarkable characterization of
commutative C∗-algebras.
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8 Preliminaries

Theorem 2.1.1 Every commutative C∗-algebra A is isometrically isomorphic
to the C∗-algebra C0(X) consisting of complex-valued functions on a locally
compact Hausdorff space X vanishing at infinity. In case A is unital, X is
compact.

If A is nonunital, there is a canonical method of adjoining an identity so that
A is embedded as an ideal in a bigger unital C∗-algebra Â. In view of this,
let us assume A to be unital for the rest of the subsection, unless otherwise
mentioned. For x ∈ A, the spectrum of x , denoted by σ(x), is defined as the
complement of the set {z ∈ C : (z1 − x)−1 ∈ A}. It is known that for a
self-adjoint element x , σ(x) ⊆ R, and moreover, a self-adjoint element x is
positive (that is, x is of the form y∗y for some y) if and only if σ(x) ⊆ [0,∞).
There is a rich functional calculus which enables one to form functions of ele-
ments of the C∗-algebra. For any complex function which is holomorphic in
some domain containing σ(x), one obtains an element f (x) ∈ A by the holo-
morphic functional calculus. Furthermore, for any normal element x (that is,
xx∗ = x∗x), there is a continuous functional calculus sending f ∈ C(σ (x))

to f (x) ∈ A where f �→ f (x) is a ∗-isometric isomorphism from C(σ (x))

onto C∗(x), the sub C∗-algebra of A generated by x . In particular, for any
positive element x , we can form a positive square root

√
x ∈ A satisfying√

x2 = x . For any element x ∈ A, we define its absolute value, denoted by |x |,
to be the element

√
x∗x . The real and imaginary parts of x , denoted by

Re(x) and Im(x) respectively, are defined by, Re(x) = (x + x∗)/2, Im(x) =
(x − x∗)/2i , so that we have, x = Re(x) + iIm(x). For a self-adjoint element
x , we define two positive elements x+ and x−, called respectively the positive
and negative parts of x , by setting x+ = (x + |x |)/2, x− = (|x | − x)/2.
Clearly, x can be decomposed as x = x+ − x− and furthermore x+x− = 0.
A linear functional φ : A → C is said to be positive if φ(x∗x) ≥ 0 for all x .
It is a useful result that an element x ∈ A is positive if and only if φ(x) ≥ 0
for every positive functional φ on A. It can be shown that the algebraic prop-
erty of positivity implies the boundedness of φ, in particular ‖φ‖ = φ(1).
Any positive linear functional φ with φ(1) = 1 is called a state on A. The set
of all states is a convex set which is compact in the weak-∗ topology, hence
it has extreme points, called pure states, and the set of states is obtained as
the closed convex hull of the pure states. A state φ is said to be a trace if
φ(ab) = φ(ba) for all a, b ∈ A. It is said to be faithful if φ(x∗x) = 0 implies
x = 0. The following result, known as the GNS construction for a state, is
worthy of mention.

Proposition 2.1.2 Given a state φ on A, there exists a triple (called the GNS
triple) (Hφ, πφ, ξφ), consisting of a Hilbert space Hφ , a ∗-representation πφ

of A into B(Hφ) and a vector ξφ ∈ Hφ which is cyclic in the sense that
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2.1 C∗ and von Neumann algebras 9

{πφ(x)ξφ : x ∈ A} is total in Hφ , satisfying

φ(x) = 〈ξφ, πφ(x)ξφ〉.
Moreover, φ is pure if and only if πφ is irreducible.

We shall need to extend the scope of the GNS construction to the case of
densely defined positive functionals, at least for semifinite, faithful, positive
traces, which we discuss now. Let us denote by A+ the set of positive ele-
ments of A. Let τ : A+ → [0,∞] be a map satisfying τ(a + b) = τ(a) +
τ(b), τ (λa) = λτ(a) and τ(aa∗) = τ(a∗a) for a, b ∈ A+, λ ∈ R+. Assume
furthermore that I ≡ {a ∈ A : τ(a∗a) < ∞} is norm-dense in A and
τ(a∗a) = 0 implies a = 0. Such a map τ is called a semifinite, faithful, posi-
tive trace, and it can be uniquely extended to the dense subspace (in fact a both-
sided ideal) I as a linear functional, also denoted by τ . The GNS construction
can be generalized to such a trace in the following sense.

Proposition 2.1.3 There exists a Hilbert space H, a ∗-representation π : A →
B(H) and a linear map η : I :→ H, such that τ(a∗bc) = 〈η(a), π(b)η(c)〉 for
all a, c ∈ I, b ∈ A. Furthermore, the range of η is dense in H. Such a triple
(H, π, η) is unique in the sense that for any other such triple (H′, π ′, η′), we
can find a unitary � : H → H′ such that π ′(b) = �π(b)�∗ and η′(a) = �η(a)

for a ∈ I, b ∈ A.

We shall denote the Hilbert space (unique upto identification) H in the above
proposition by L2(A, τ ) or simply L2(τ ) if A is understood from the context.
It can be shown that π(b)η(a) = η(ba), and thus, if A is unital and 1 ∈ I,

which is equivalent to the boundedness of τ, we have a cyclic vector η(1).
For a nonunital C∗-algebra, we say that a positive functional φ on A is a

state if lim φ(eµ) = 1 for any approximate identity eµ of A. A positive element
a ∈ A is said to be strictly positive if φ(a) is nonzero for every state φ on A. It
is known that b ∈ A+ is strictly positive if and only if bA+ := {ba, a ∈ A+}
is norm-dense in A+.

We shall conclude the discussion on C∗-algebras with the definition of mul-
tiplier algebra. For a C∗-algebra A (possibly nonunital), its multiplier algebra,
denoted by M(A), is defined as the maximal C∗-algebra which contains A as
an essential two-sided ideal, that is, A is an ideal in M(A) and for y ∈ M(A),
ya = 0 for all a ∈ A implies y = 0. In case A is unital, one has M(A) = A
and for A = C0(X) where X is a noncompact, locally compact Hausdorff
space, M(A) = C(X̂), where X̂ denotes the Stone–Ĉech compactification of
X . The norm of M(A) is given by ‖x‖ := supa∈A,‖a‖≤1{‖xa‖, ‖ax‖}. Fur-
thermore, there is a canonical locally convex topology, called the strict topol-
ogy on M(A), which is given by the family of seminorms {‖.‖a, a ∈ A},
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10 Preliminaries

where ‖x‖a := Max(‖xa‖, ‖ax‖), for x ∈ M(A). We say that an embed-
ding A ⊆ B(H) for some Hilbert space H is nondegenerate if for u ∈ H,
au = 0 for all a ∈ A implies that u = 0. It is possible to show by simple
arguments that A ⊆ B(H) is nondegenerate if and only if {au, a ∈ A, u ∈ H}
is total in H. Given a nondegenerate embedding A ⊆ B(H), we have that
M(A) ∼= {x ∈ B(H) : xa, ax ∈ A, for all a ∈ A}.

2.1.2 von Neumann algebras

As a Banach space, B(H) is equipped with the operator-norm topology, but
there are other important and interesting topologies that can be given to it,
making it a locally convex (but not normable in general) topological space.
The most useful ones are weak, strong, ultra-weak and ultra-strong topologies.
However, although B(H) is complete in each of these topologies, a unital sub
C∗-algebra A of B(H) need not be so. It can be shown that A is complete in all
of the above four locally convex topologies if and only if it is complete in any
one of them, and in such a case A is said to be a von Neumann algebra. Fur-
thermore, the strong (respectively, weak) and ultra-strong (respectively, ultra-
weak) topologies coincide on norm-bounded convex subsets of A. It is known
that if H is separable, then any norm-bounded subset of A is metrizable in
each of the ultra-weak and ultra-strong topologies. The natural notion of iso-
morphism between two von Neumann algebras is an algebraic ∗-isomorphism
which is also a homeomorphism of the respective ultra-weak topologies. How-
ever, there is a stronger notion, called spatial isomorphism. Two von Neumann
algebras A1 ⊆ B(H1) and A2 ⊆ B(H2) are said to be spatially isomorphic if
there is a unitary operator U from H1 onto H2 such that U∗A2U = A1.

The following theorem, known as the Double commutant theorem due to von
Neumann is of fundamental importance in the study of von Neumann algebras.
Note that for any subset B of B(H), we denote by B′ the commutant of B, that
is, B′ = {x ∈ B(H) : xb = bx for all b ∈ B}.
Theorem 2.1.4 A unital ∗-subalgebra A ⊆ B(H) is a von Neumann algebra
if and only if A = A′′(≡ (A′)′).

For the rest of this subsection, let us denote by A a unital von Neumann subal-
gebra of B(H). A is said to be σ -finite if there does not exist any uncountable
family of mutually orthogonal nonzero projections in A.

We say that A is a factor if the center is trivial, that is, A∩A′ = {λ1, λ ∈ C}.
The importance of factors stems from the result (see [40]) that an arbitrary von
Neumann algebra can be decomposed in a suitable technical sense as a ‘direct
integral’ of factors. A factor A is called hyperfinite if there is an increasing
sequence of finite dimensional ∗-subalgebras, say An, n = 1, 2, . . ., of A such
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