
1

An introduction to rippling

1.1 Overview

This book describes rippling, a new technique for automating mathematical
reasoning. Rippling captures a common pattern of reasoning in mathemat-
ics: the manipulation of one formula to make it resemble another. Rippling
was originally developed for proofs by mathematical induction; it was used to
make the induction conclusion more closely resemble the induction hypothe-
ses. It was later found to have wider applicability, for instance to problems in
summing series and proving equations.

1.1.1 The problem of automating reasoning

The automation of mathematical reasoning has been a long-standing dream of
many logicians, including Leibniz, Hilbert, and Turing. The advent of elec-
tronic computers provided the tools to make this dream a reality, and it was
one of the first tasks to be tackled. For instance, the Logic Theory Machine
and the Geometry Theorem-Proving Machine were both built in the 1950s and
reported in Computers and Thought (Feigenbaum & Feldman, 1963), the earli-
est textbook on artificial intelligence. Newell, Shaw and Simon’s Logic Theory
Machine (Newell et al., 1957), proved theorems in propositional logic, and
Gelernter’s Geometry Theorem-Proving Machine (Gelernter, 1963), proved
theorems in Euclidean geometry.

This early work on automating mathematical reasoning showed how the
rules of a mathematical theory could be encoded within a computer and how a
computer program could apply them to construct proofs. But they also revealed
a major problem: combinatorial explosion. Rules could be applied in too many
ways. There were many legal applications, but only a few of these led to a
proof of the given conjecture. Unfortunately, the unwanted rule applications

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
052183449X - Rippling: Meta-Level Guidance for Mathematical Reasoning
Alan Bundy, David Basin, Dieter Hutter and Andrew Ireland
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052183449X

2 An introduction to rippling

cluttered up the computer’s storage and wasted large amounts of processing
power, preventing the computer from finding a proof of any but the most trivial
theorems.

What was needed were techniques for guiding the search for a proof:
for deciding which rule applications to explore and which to ignore. Both
the Logic Theory Machine and the Geometry Theorem-Proving Machine
introduced techniques for guiding proof search. The Geometry Machine, for
instance, used diagrams to prevent certain rule applications on the grounds
that they produced subgoals that were false in the diagram. From the earliest
days of automated reasoning research, it was recognized that it would be
necessary to use heuristic proof-search techniques, i.e. techniques that were
not guaranteed to work, but that were good “rules of thumb”, for example,
rules that often worked in practice, although sometimes for poorly understood
reasons.

1.1.2 Applications to formal methods

One of the major applications of automated reasoning is to formal methods
of system development. Both the implemented system and a specification of
its desired behavior are described as mathematical formulas. The system can
then be verified by showing that its implementation logically implies its spec-
ification. Similarly, a system can be synthesized from its specification and an
inefficient implementation can be transformed into an equivalent, but more ef-
ficient, one. Formal methods apply to both software and hardware. The use of
formal methods is mandatory for certain classes of systems, e.g. those that are
certified using standards like ITSEC or the Common Criteria.

The tasks of verification, synthesis, and transformation all require math-
ematical proof. These proofs are often long and complicated (although not
mathematically deep), so machine assistance is desirable to avoid both error
and tedium. The problems of search control are sufficiently hard that it is of-
ten necessary to provide some user guidance via an interactive proof assistant.
However, the higher the degree of automation then the lower is the skill level
required from the user and the quicker is the proof process. This book focuses
on a class of techniques for increasing the degree of automation of machine
proof.

Mathematical induction is required whenever it is necessary to reason about
repetition. Repetition arises in recursive data-structures, recursive or itera-
tive programs, parameterized hardware, etc., i.e. in nearly all non-trivial sys-
tems. Guiding inductive proof is thus of central importance in formal meth-
ods proofs. Inductive proof raises some especially difficult search-control

© Cambridge University Press www.cambridge.org

Cambridge University Press
052183449X - Rippling: Meta-Level Guidance for Mathematical Reasoning
Alan Bundy, David Basin, Dieter Hutter and Andrew Ireland
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052183449X

Overview 3

problems, which are discussed in more detail in Chapter 3. We show there
how rippling can assist with these control problems.

1.1.3 Proof planning and how it helps

Most of the heuristics developed for guiding automated reasoning are local,
i.e., given a choice of deductive steps, they suggest those that are most promis-
ing. Human mathematicians often use more global search techniques. They
first form an overall plan of the required proof and then use this plan to fill in
the details. If the initial plan fails, they analyze the failure and use this analy-
sis to construct a revised plan. Can we build automated reasoners that work in
this human way? Some of us believe we can. We have developed the technique
of proof planning (Bundy, 1991), which first constructs a proof plan and then
uses it to guide the search for a proof.

To build an automated reasoner based on proof planning requires:

• The analysis of a family of proofs to identify the common patterns of rea-
soning they usually contain.

• The representation of these common patterns as programs called tactics.
• The specification of these tactics to determine in what circumstances they

are appropriate to use (their preconditions), and what the result of using
them will be (their effects).

• The construction of a proof planner that can build a customized proof
plan for a conjecture from tactics by reasoning with the tactics’ specifica-
tions.

A proof planner reasons with methods. A method consists of a tactic together
with its specification, i.e. its preconditions and effects. Methods are often hier-
archical in that a method may be built from sub-methods. Figure 1.1 describes
a method for inductive proofs, using nested boxes to illustrate a hierarchical
structure of sub-methods, which includes rippling.

1.1.4 Rippling: a common pattern of reasoning

Rippling is one of the most successful methods to have been developed within
the proof-planning approach to automated reasoning. It formalizes a particular
pattern of reasoning found in mathematics, where formulas are manipulated in
a way that increases their similarities by incrementally reducing their differ-
ences. By only allowing formulas to be manipulated in a particular, difference-
reducing way, rippling prevents many rule applications that are unlikely to
lead to a proof. It does this with the help of annotations in formulas. These

© Cambridge University Press www.cambridge.org

Cambridge University Press
052183449X - Rippling: Meta-Level Guidance for Mathematical Reasoning
Alan Bundy, David Basin, Dieter Hutter and Andrew Ireland
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052183449X

4 An introduction to rippling

induction

�
���

�
���

base case step case

ripple

fertilize

�

Figure 1.1 A proof method for inductive proofs. Each box represents a method.
Arrows represent the sequential order of methods. Nesting represents the hier-
archical structure of the methods. Note the role of rippling within the step case
of inductive proofs. One base and one step case are displayed for illustration; in
general, an inductive proof can contain several of each.

annotations specify which parts of the formula must be preserved and which
parts may be changed and in what ways. They prevent the application of rules
that would either change preserved parts or change unpreserved parts in the
wrong way.

Rippling is applicable whenever one formula, the goal, is to be proved with
the aid of another formula, the given. In the case of inductive proofs, the goal is
an induction conclusion, and the given is an induction hypothesis. More gen-
erally, the goal is the current conjecture and the given might be an assumption,
an axiom, or a previously proved theorem. Rippling attempts to manipulate the
goal to make it more closely resemble the given. Eventually, the goal contains
an instance of the given. At this point, the given can be used to help prove the
goal: implemented by a proof method called fertilization.

To understand rippling, the following analogy may be helpful, which also
explains rippling’s name. Imagine that you are standing beside a loch1 in which
some adjacent mountains are reflected. The reflection is disturbed by some-
thing thrown into the loch. The mountains represent the given and their reflec-
tion represents the goal. The ripples on the loch move outwards in concentric
rings until the faithfulness of the reflection is restored. Rippling is the move-
ment of ripples on the loch: it moves the differences between goal and given to
where they no longer prevent a match. This analogy is depicted in Figure 1.2.

1 Rippling was invented in Edinburgh, so basing the analogy in Scotland has become traditional.

© Cambridge University Press www.cambridge.org

Cambridge University Press
052183449X - Rippling: Meta-Level Guidance for Mathematical Reasoning
Alan Bundy, David Basin, Dieter Hutter and Andrew Ireland
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052183449X

A logical calculus of rewriting 5

The mountains repre-
sent the given and the
reflection represents
the goal. The moun-
tains are reflected in
the loch.

The faithfulness of this
reflection is disturbed
by the ripples. As the
ripples move outwards,
the faithfulness of the
reflection is restored.

In proofs, the rippling
of goals creates a copy
of the given within
the goal. This pattern
occurs frequently in
proofs.

Figure 1.2 A helpful analogy for rippling.

1.2 A logical calculus of rewriting

In order to describe rippling we must have a logical calculus for representing
proofs. At this point we need introduce only the simplest kind of calculus: the
rewriting of mathematical expressions with rules.1 This calculus consists of
the following parts.

1 We assume a general familiarity with first-order predicate calculus and build on that. An easy
introduction to first-order predicate calculus can be found in Velleman (1994).

© Cambridge University Press www.cambridge.org

Cambridge University Press
052183449X - Rippling: Meta-Level Guidance for Mathematical Reasoning
Alan Bundy, David Basin, Dieter Hutter and Andrew Ireland
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052183449X

6 An introduction to rippling

• The goal to be rewritten. The initial goal is usually the conjecture and sub-
sequent goals are rewritings of the initial one.

• Some (conditional or unconditional) rewrite rules, which sanction the re-
placement of one subexpression in the goal by another.

• A procedure, called the rewrite rule of inference, that specifies how this
replacement process is performed.

In this simple calculus, all quantifiers are universal. Section 4.1.2 gives a more
formal account of rewriting.

Rewrite rules can be based on equations, L = R, implications R → L , and
other formulas. They will be written as L ⇒ R to indicate the direction of
rewriting, i.e. that L is to be replaced by R and not vice versa. Sometimes they
will have conditions, Cond, and will be written as Cond → L = R. We will
use the single shafted arrow → for logical implication and the double shafted
arrow ⇒ for rewriting. We will usually use rewriting to reason backwards from
the goal to the givens. When reasoning backwards, the direction of rewriting
will be the inverse of logical implication, i.e. R → L becomes L ⇒ R.

To see how rewrite rules are formed, consider the following equation and
implication.

(X + Y) + Z = X + (Y + Z) (1.1)

(X1 = Y1 ∧ X2 = Y2) → (X1 + X2 = Y1 + Y2). (1.2)

Equation (1.1) is the associativity of + and (1.2) is the replacement axiom
for +. These can be turned into the following rewrite rules.

(X + Y) + Z ⇒ X + (Y + Z) (1.3)

(X1 + X2 = Y1 + Y2) ⇒ (X1 = Y1 ∧ X2 = Y2). (1.4)

The orientation of (1.3) is arbitrary. We could have oriented it in either direc-
tion. However, there is a danger of looping if both orientations are used. We
will return to this question in Section 1.8. Assuming we intend to use it to rea-
son from goal to given, the orientation of (1.4) is fixed and must be opposite to
the orientation of implication.

In our calculus we will adopt the convention that bound variables and con-
stants are written in lower-case letters and free variables are written in upper
case. Only free variables can be instantiated. For instance, in ∀x . x + Y = c
we can instantiate Y to f (Z), but we can instantiate neither x nor c.1 The

1 And nor can we instantiate Y to any term containing x , of course, since this would capture any
free occurrences of x in the instantiation into the scope of ∀x , changing the meaning of the
formula.

© Cambridge University Press www.cambridge.org

Cambridge University Press
052183449X - Rippling: Meta-Level Guidance for Mathematical Reasoning
Alan Bundy, David Basin, Dieter Hutter and Andrew Ireland
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052183449X

A logical calculus of rewriting 7

upper-case letters in the rewrite rules above indicate that these are free vari-
ables, which can be instantiated during rewriting.

We will usually present rewrite rules and goals with their quantifiers
stripped off using the validity-preserving processes called skolemization and
dual skolemization, respectively. In our simple calculus, with only universal
quantification, skolemization is applied to rewrite rules to replace their univer-
sal variables with free variables, and dual skolemization is applied to goals to
replace their universal variables with skolem constants, i.e. constants whose
value is undefined.

The conditional version of the rewrite rule of inference is

Cond → Lhs ⇒ Rhs Cond E[Rhsφ]
E[Sub] .

Its parts are defined as follows.

• The usual, forwards reading of this notation for rules of inference is “if
the formulas above the horizontal line are proven, then we can deduce the
formula below the line”. Such readings allow us to deduce a theorem from
a set of axioms. However, we will often be reasoning backwards from the
theorem to be proved towards the axioms. In this mode, our usual reading
of this rewrite rule of inference will be: “if E[Sub] is our current goal and
both Cond → Lhs ⇒ Rhs and Cond can be proven then E[Rhsφ] is our
new goal”.

• E[Sub] is the goal being rewritten and Sub is the subexpression within it
that is being replaced. Sub is called the redex (for reducible expression)
of the rewriting. E[Sub] means Sub is a particular subterm of E and in
E[Rhsφ] this particular subterm is replaced by Rhsφ.

• The φ is a substitution of terms for variables. It is the most general substitu-
tion such that Lhsφ ≡ Sub, where ≡ denotes syntactic identity. Note that φ

is only applied to the rewrite rule and not to the goal.
• Cond is the condition of the rewrite rule. Often Cond is vacuously true in

which case Cond → and Cond are omitted from the rule of inference.

For instance, if rewrite rule (1.3) is applied to the goal

((c + d) + a) + b = (c + d) + 42

to replace the redex (c + d) + 42, then the result is

((c + d) + a) + b = c + (d + 42).

© Cambridge University Press www.cambridge.org

Cambridge University Press
052183449X - Rippling: Meta-Level Guidance for Mathematical Reasoning
Alan Bundy, David Basin, Dieter Hutter and Andrew Ireland
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052183449X

8 An introduction to rippling

1.3 Annotating formulas

Rippling works by annotating formulas, in particular, the goals and those oc-
curring in rewrite rules. Those parts of the goal that correspond to the given are
marked for preservation, and those parts that do not are marked for movement.
Various notations have been explored for depicting the annotations. The one
we will use throughout this book is as follows.

• Those parts of the goal that are to be preserved are written without any
annotation. These are called the skeleton. Note that the skeleton must be a
well-formed formula.

• Those parts of the goal that are to be moved are each placed in a grey box
with an arrow at the top right, which indicates the required direction of
movement. These parts are called the wave-fronts. Note that wave-fronts
are not well-formed formulas. Rather they define a kind of context, that is,
formulas with holes. The holes are called wave-holes and are filled by parts
of the skeleton.

This marking is called wave annotation. A more formal account of wave an-
notation will be given in Section 4.4.2.

Wave annotations are examples of meta-level symbols, which we contrast
with object-level symbols. Object-level symbols are the ones used to form ex-
pressions in the logical calculus. Examples are 0, +, = and ∧. Any symbols
we use outside this logical calculus are meta-level. Annotation with meta-level
symbols will help proof methods, such as rippling, to guide the search for a
proof.

For instance, suppose our given and goal formulas are

Given: a + b = 42
Goal: ((c + d) + a) + b = (c + d) + 42,

and that we want to prove the goal using the given. The a, + b =, and 42
parts of the goal correspond to the given, but the (c + d) + part does not. This
suggests the following annotation of the goal

((c + d) + a
↑
) + b = (c + d) + 42

↑
.

This annotation process can be automated. Details of how this can be done will
be given in Section 4.3.

Note the wave-holes in the two grey boxes. The well-formed formulas in
wave-holes are regarded as part of the skeleton and not part of the wave-fronts.
So the skeleton of the goal is a +b = 42, which is identical to the given. There
are two wave-fronts. Both contain (c + d)+. Each of the wave-fronts has an

© Cambridge University Press www.cambridge.org

Cambridge University Press
052183449X - Rippling: Meta-Level Guidance for Mathematical Reasoning
Alan Bundy, David Basin, Dieter Hutter and Andrew Ireland
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052183449X

A simple example of rippling 9

upwards-directed arrow in its top right-hand corner. These arrows indicate the
direction in which we want the wave-fronts to move: in this case outwards,1

which is the default direction. In Chapter 2 we will see situations in which
inwards movement is desirable.

1.4 A simple example of rippling

To illustrate rippling, consider the example in Section 1.3. Suppose the rewrite
rules from Section 1.2 are available. Rule (1.3) can be used to rewrite the
goal

((c + d) + a) + b = (c + d) + 42

in three different ways:

((c + d) + a) + b = c + (d + 42)

(c + (d + a)) + b = (c + d) + 42

(c + d) + (a + b) = (c + d) + 42 (1.5)

but the first two of these are counterproductive. Only the rewriting to (1.5)
moves us towards the successful use of the given: a + b = 42. The other two
rewritings are examples of the kind of unwanted rule applications that would
cause a combinatorial explosion in a more complex example.

Using rippling we can reject the two unwanted rewritings but keep the de-
sired one. We first annotate each of them with respect to the given, a +b = 42:

((c + d) + a)
↑
) + b = c + (d + 42)

↑
(1.6)

(c + (d + a)
↑
) + b = (c + d) + 42

↑
(1.7)

(c + d) + (a + b)
↑ = (c + d) + 42

↑
. (1.8)

Afterwards we compare each of them in turn with the original annotated goal

((c + d) + a
↑
) + b = (c + d) + 42

↑
.

• In (1.6) the right-hand side wave-front changed in character, but is still in
the same place with respect to the skeleton, i.e. it has not moved from where
it was originally. From the viewpoint of rippling, things are no better.2 This
rewriting can be rejected as representing no progress.

1 Or upwards, if we think of the formula as being represented by its parse tree, cf. Figure 1.3.
2 In fact, as we will see in Section 2.1.3, things are actually worse.

© Cambridge University Press www.cambridge.org

Cambridge University Press
052183449X - Rippling: Meta-Level Guidance for Mathematical Reasoning
Alan Bundy, David Basin, Dieter Hutter and Andrew Ireland
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052183449X

10 An introduction to rippling

• In (1.7) the left-hand side wave-front has changed in character, but is also
still in the same place with respect to the skeleton. So this situation is similar
to the previous one.

• In (1.8) the left-hand side wave-front has moved outwards, i.e. it is attached
to the skeleton at a point outside where it was originally. From the view-
point of rippling, things have improved. This rewriting can be welcomed as
representing real progress.

In Section 4.7 we will make precise the concept of progress that we are ap-
pealing to informally above. We will give a well-founded measure that must
be reduced by every rippling step. This measure will be based on the position
of the wave-fronts within the skeleton. It will not only give us a basis for re-
jecting some rewrites as non-progressive or even regressive, it will also ensure
the eventual termination of rippling. Most automated reasoning methods do
not terminate; in general, the attempt to prove a conjecture may continue in-
definitely with neither success nor failure. Termination of a method is a very
desirable property, since it restricts the search space of the method to a finite
size. It will also play a role in Chapter 3, where termination is used to detect
failure, which starts a process that attempts to generate a patch.

We can now apply rewrite rule (1.4) to goal (1.8) and then annotate the
result to check for progress

c + d = c + d ∧ a + b = 42
↑
.

We see that the single wave-front is now attached at the outermost point in
the skeleton, i.e. it has moved outwards as far as it can. This represents real
progress, in fact, as much progress as is possible with rippling, which now
terminates with success.

If we write the three successive rewritings in sequence, we can see more
clearly the rippling effect:

((c + d) + a
↑
) + b = (c + d) + 42

↑

(c + d) + (a + b)
↑ = (c + d) + 42

↑

c + d = c + d ∧ a + b = 42
↑
.

With each successive ripple, the wave-fronts get progressively bigger and con-
tain more of the skeleton within their wave-holes. Eventually, the whole of the
skeleton is contained within a single wave-front. Compare this with the picture
of concentric ripples on a loch depicted in Figure 1.2. It may also help to see
the same ripple with the skeletons represented as trees, depicted in Figure 1.3.

© Cambridge University Press www.cambridge.org

Cambridge University Press
052183449X - Rippling: Meta-Level Guidance for Mathematical Reasoning
Alan Bundy, David Basin, Dieter Hutter and Andrew Ireland
Excerpt
More information

http://www.cambridge.org
http://www.cambridge.org
http://www.cambridge.org/052183449X

