Elementary Probability

2nd Edition

Now available in a fully revised and updated new edition, this well-established textbook provides a straightforward introduction to the theory of probability. The presentation is entertaining without any sacrifice of rigour; important notions are covered with the clarity that the subject demands.

Topics covered include conditional probability, independence, discrete and continuous random variables, basic combinatorics, generating functions and limit theorems, and an introduction to Markov chains. This edition includes an elementary approach to martingales and the theory of Brownian motion, which supply the cornerstones for many topics in modern financial mathematics such as option and derivative pricing. The text is accessible to undergraduate students, and provides numerous worked examples and exercises to help build the important skills necessary for problem solving.

'[T]he author succeeds in combining the utmost succinctness with clarity and genuine readability.... This textbook can be recommended unreservedly.'

Internationale Mathematische Nachrichten

'[T]his book is a superb resource of theory and application, which should be on every lecturer's shelves, and those of many students. You may never need to buy another book on probability.' Keith Hirst, *The Mathematical Gazette*

'Excellent! A vast number of well-chosen worked examples and exercises guide the reader through the basic theory of probability at the elementary level... an excellent text which I am sure will give a lot of pleasure to students and teachers alike.'

International Statistics Institute

'[W]ould make a fine addition to an undergraduate library. A student with a solid background in calculus, linear algebra, and set theory will find many useful tools of elementary probability here.'

Phil Gilbert, The Mathematics Teacher

'Stirzaker does an excellent job of developing problem-solving skills in an introductory probability text. Numerous examples and practice exercises are provided that only serve to enhance a student's problem-solving abilities.... Highly recommended.'

D.J. Gougeon, Choice

'The book would make an excellent text for the properly prepared class, a solid instructor's reference for both probability applications and problems, as well as a fine work for purposes of self-study.'

J. Philip Smith, School Science and Mathematics

Elementary Probability

2nd Edition

by DAVID STIRZAKER

Mathematical Institute and St. John's College, University of Oxford

© Cambridge University Press

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> > CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

> > > http://www.cambridge.org

© David Stirzaker 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United States of America

Typeface Times 10.5/12.5 pt. System $\text{LATEX } 2_{\mathcal{E}}$ [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Stirzaker, David Elementary probability / David Stirzaker. – 2nd ed.

p. cm. Includes bibliographical references and index.

ISBN 0-521-83344-2 (hbk) - ISBN 0-521-53428-3 (pbk.)

1. Probabilities. I. Title. QA273 .S7534 2003 519.2 - dc21 2002042904

ISBN 0 521 83344 2 hardback ISBN 0 521 53428 3 paperback

Contents

Preface to the Second Edition

0	Intro	duction	1
	0.1	Chance	1
	0.2	Models	3
	0.3	Symmetry	5
	0.4	The Long Run	7
	0.5	Pay-Offs	8
	0.6	Introspection	9
	0.7	FAQs	10
	0.8	History	14
	Appe	ndix: Review of Elementary Mathematical Prerequisites	15
1	Prob	ability	24
	1.1	Notation and Experiments	24
	1.2	Events	26
	1.3	The Addition Rules for Probability	32
	1.4	Properties of Probability	34
	1.5	Sequences of Events	36
	1.6	Remarks	37
	1.7	Review and Checklist for Chapter 1	38
		Worked examples and exercises	40
	1.8	Example: Dice	40
	1.9	Example: Urn	41
	1.10	Example: Cups and Saucers	42
	1.11	Example: Sixes	43
	1.12	Example: Family Planning	44
	1.13	Example: Craps	45
	1.14	Example: Murphy's Law	46
		Problems	47
2	Cond	litional Probability and Independence	51
	2.1	Conditional Probability	51
	2.2	Independence	57
	2.3	Recurrence and Difference Equations	60
	2.4	Remarks	62

vi		Contents	
	2.5	Review and Checklist for Chapter 2	64
		Worked examples and exercises	65
	2.6	Example: Sudden Death	65
	2.7	Example: Polya's Urn	66
	2.8	Example: Complacency	67
	2.9	Example: Dogfight	68
	2.10	Example: Smears	69
	2.11	Example: Gambler's Ruin	70
	2.12	Example: Accidents and Insurance	72
	2.13	Example: Protocols	73
	2.14	Example: Eddington's Controversy	/5 70
2	Cour	Problems	/6
3	3 1	First Principles	83
	3.1	Permutations: Ordered Selection	83
	33	Combinations: Unordered Selection	86
	3.4	Inclusion–Exclusion	80
	3.5	Recurrence Relations	88
	3.6	Generating Functions	90
	3.7	Techniques	93
	3.8	Review and Checklist for Chapter 3	95
		Worked examples and exercises	97
	3.9	Example: Railway Trains	97
	3.10	Example: Genoese Lottery	98
	3.11	Example: Ringing Birds	99
	3.12	Example: Lottery	101
	3.13	Example: The Ménages Problem	101
	3.14	Example: Identity	102
	3.15	Example: Runs	103
	3.16	Example: Fish	105
	3.1/	Example: Colouring	106
	3.18	Example: Matching (Rencontres)	107
4	Dond	Producting	108
4		Random Variables	114
	4.1	Distributions	114
	43	Expectation	120
	4.4	Conditional Distributions	120
	4.5	Sequences of Distributions	130
	4.6	Inequalities	131
	4.7	Review and Checklist for Chapter 4	134
		Worked examples and exercises	137
	4.8	Example: Royal Oak Lottery	137
	4.9	Example: Misprints	138
	4.10	Example: Dog Bites: Poisson Distribution	139

	vii		
	4.11	Example: Guesswork	141
	4.12	Example: Gamblers Ruined Again	142
	4.13	Example: Postmen	143
	4.14	Example: Acme Gadgets	144
	4.15	Example: Roulette and the Martingale	145
	4.16	Example: Searching	146
	4.17	Example: Duelling	147
	4.18	Binomial Distribution: The Long Run	149
	4.19	Example: Uncertainty and Entropy	150
		Problems	151
5	Rand	om Vectors: Independence and Dependence	158
	5.1	Joint Distributions	158
	5.2	Independence	162
	5.3	Expectation	165
	5.4	Sums and Products of Random Variables: Inequalities	172
	5.5	Dependence: Conditional Expectation	177
	5.6	Simple Random Walk	183
	5.7	Martingales	190
	5.8	The Law of Averages	196
	5.9	Convergence	199
	5.10	Review and Checklist for Chapter 5	203
		Worked examples and exercises	206
	5.11	Example: Golf	206
	5.12	Example: Joint Lives	208
	5.13	Example: Tournament	209
	5.14	Example: Congregations	210
	5.15	Example: Propagation	211
	5.16	Example: Information and Entropy	212
	5.17	Example: Cooperation	214
	5.18	Example: Strange But True	215
	5.19	Example: Capture–Recapture	216
	5.20	Example: Visits of a Random Walk	218
	5.21	Example: Ordering	219
	5.22	Example: More Martingales	220
	5.23	Example: Simple Random Walk Martingales	221
	5.24	Example: You Can't Beat the Odds	222
	5.25	Example: Matching Martingales	223
	5.26	Example: Three-Handed Gambler's Ruin	224
		Problems	226
6	Gene	rating Functions and Their Applications	232
	6.1	Introduction	232
	6.2	Moments and the Probability Generating Function	236
	6.3	Sums of Independent Random Variables	239
	6.4	Moment Generating Functions	245
	6.5	Joint Generating Functions	247

V1	1	1

Contents

	6.6	Sequences	251
	6.7	Regeneration	254
	6.8	Random Walks	259
	6.9	Review and Checklist for Chapter 6	263
		Appendix: Calculus	265
		Worked examples and exercises	268
	6.10	Example: Gambler's Ruin and First Passages	268
	6.11	Example: "Fair" Pairs of Dice	269
	6.12	Example: Branching Process	271
	6.13	Example: Geometric Branching	272
	6.14	Example: Waring's Theorem: Occupancy Problems	274
	6.15	Example: Bernoulli Patterns and Runs	275
	6.16	Example: Waiting for Unusual Light Bulbs	277
	6.17	Example: Martingales for Branching	278
	6.18	Example: Wald's Identity	279
	6.19	Example: Total Population in Branching	280
		Problems	281
7	Cont	inuous Random Variables	287
	7.1	Density and Distribution	287
	7.2	Functions of Random Variables	297
	7.3	Simulation of Random Variables	301
	7.4	Expectation	302
	7.5	Moment Generating Functions	306
	7.6	Conditional Distributions	310
	7.7	Ageing and Survival	312
	7.8	Stochastic Ordering	314
	7.9	Random Points	315
	7.10	Review and Checklist for Chapter 7	318
		Worked examples and exercises	321
	7.11	Example: Using a Uniform Random Variable	321
	7.12	Example: Normal Distribution	323
	7.13	Example: Bertrand's Paradox	324
	7.14	Example: Stock Control	326
	7.15	Example: Obtaining Your Visa	327
	7.16	Example: Pirates	329
	7.17	Example: Failure Rates	330
	7.18	Example: Triangles	330
	7.19	Example: Stirling's Formula	332
0		Problems	334
8	Joint	ly Continuous Random Variables	337
	8.1	Joint Density and Distribution	337
	8.2	Change of Variables	342
	8.3	Independence	344
	8.4	Sums, Products, and Quotients	348
	8.5	Expectation	351
	8.6	Conditional Density and Expectation	355

Contents			ix
	8.7	Transformations: Order Statistics	361
	8.8	The Poisson Process: Martingales	364
	8.9	Two Limit Theorems	368
	8.10	Review and Checklist for Chapter 8	371
		Worked examples and exercises	375
	8.11	Example: Bivariate Normal Density	375
	8.12	Example: Partitions	376
	8.13	Example: Buffon's Needle	377
	8.14	Example: Targets	379
	8.15	Example: Gamma Densities	380
	8.16	Example: Simulation – The Rejection Method	381
	8.17	Example: The Inspection Paradox	382
	8.18	Example: von Neumann's Exponential Variable	383
	8.19	Example: Maximum from Minima	385
	8.20	Example: Binormal and Trinormal	387
	8.21	Example: Central Limit Theorem	388
	8.22	Example: Poisson Martingales	389
	8.23	Example: Uniform on the Unit Cube	390
	8.24	Example: Characteristic Functions	390
		Problems	391
9	Marl	xov Chains	396
	9.1	The Markov Property	396
	9.2	Transition Probabilities	400
	9.3	First Passage Times	406
	9.4	Stationary Distributions	412
	9.5	The Long Run	418
	9.6	Markov Chains with Continuous Parameter	425
	9.7	Forward Equations: Poisson and Birth Processes	428
	9.8	Forward Equations: Equilibrium	431
	9.9	The Wiener Process and Diffusions	436
	9.10	Review and Checklist for Chapter 9	449
		Worked examples and exercises	451
	9.11	Example: Crossing a Cube	451
	9.12	Example: Reversible Chains	453
	9.13	Example: Diffusion Models	454
	9.14	Example: The Renewal Chains	456
	9.15	Example: Persistence	457
	9.16	Example: First Passages and Bernoulli Patterns	459
	9.17	Example: Poisson Processes	461
	9.18	Example: Decay	462
	9.19	Example: Disasters	463
	9.20	Example: The General Birth Process	465
	9.21	Example: The Birth–Death Process	466
	9.22	Example: Wiener Process with Drift	468
	9.23	Example: Markov Chain Martingales	469
	9.24	Example: Wiener Process Exiting a Strip	470

х		Contents	
	9.25 9.26	Example: Arcsine Law for Zeros Example: Option Pricing: Black–Scholes Formula Problems	471 472 473
	Appe	ndix: Solutions and Hints for Selected Exercises and Problems	478
	Furth	er Reading	514
	Index	of Notation	515
	Index		517

Preface to the Second Edition

The calculus of probabilities, in an appropriate form, should interest equally the mathematician, the experimentalist, and the statesman.... It is under its influence that lotteries and other disgraceful traps cunningly laid for greed and ignorance have finally disappeared.

Francois Arago, Eulogy on Laplace, 1827

Lastly, one of the principal uses to which this Doctrine of Chances may be applied, is the discovering of some truths, which cannot fail of pleasing the mind, by their generality and simplicity; the admirable connexion of its consequences will increase the pleasure of the discovery; and the seeming paradoxes wherewith it abounds, will afford very great matter of surprize and entertainment to the inquisitive.

Abraham de Moivre, The Doctrine of Chances, 1756

This book provides an introduction to elementary probability and some of its simple applications. In particular, a principal purpose of the book is to help the student to solve problems. Probability is now being taught to an ever wider audience, not all of whom can be assumed to have a high level of problem-solving skills and mathematical background. It is also characteristic of probability that, even at an elementary level, few problems are entirely routine. Successful problem solving requires flexibility and imagination on the part of the student. Commonly, these skills are developed by observation of examples and practice at exercises, both of which this text aims to supply.

With these targets in mind, in each chapter of the book, the theoretical exposition is accompanied by a large number of examples and is followed by worked examples incorporating a cluster of exercises. The examples and exercises have been chosen to illustrate the subject, to help the student solve the kind of problems typical of examinations, and for their entertainment value. (Besides its practical importance, probability is without doubt one of the most entertaining branches of mathematics.) Each chapter concludes with problems: solutions to many of these appear in an appendix, together with the solutions to most of the exercises.

The ordering and numbering of material in this second edition has for the most part been preserved from the first. However, numerous alterations and additions have been included to make the basic material more accessible and the book more useful for self-study. In

xii

Preface to the Second Edition

particular, there is an entirely new introductory chapter that discusses our informal and intuitive ideas about probability, and explains how (and why) these should be incorporated into the theoretical framework of the rest of the book. Also, all later chapters now include a section entitled, "Review and checklist," to aid the reader in navigation around the subject, especially new ideas and notation.

Furthermore, a new section of the book provides a first introduction to the elementary properties of martingales, which have come to occupy a central position in modern probability. Another new section provides an elementary introduction to Brownian motion, diffusion, and the Wiener process, which has underpinned much classical financial mathematics, such as the Black–Scholes formula for pricing options. Optional stopping and its applications are introduced in the context of these important stochastic models, together with several associated new worked examples and exercises.

The basic structure of the book remains unchanged; there are three main parts, each comprising three chapters.

The first part introduces the basic ideas of probability, conditional probability, and independence. It is assumed that the reader has some knowledge of elementary set theory. (We adopt the now conventional formal definition of probability. This is not because of high principles, but merely because the alternative intuitive approach seems to lead more students into errors.) The second part introduces discrete random variables, probability mass functions, and expectation. It is assumed that the reader can do simple things with functions and series. The third part considers continuous random variables, and for this a knowledge of the simpler techniques of calculus is desirable.

In addition, there are chapters on combinatorial methods in probability, the use of probability (and other) generating functions, and the basic theory of Markov processes in discrete and continuous time. These sections can be omitted at a first reading, if so desired.

In general, the material is presented in a conventional order, which roughly corresponds to increasing levels of knowledge and dexterity on the part of the reader. Those who start with a sufficient level of basic skills have more freedom to choose the order in which they read the book. For example, you may want to read Chapters 4 and 7 together (and then Chapters 5 and 8 together), regarding discrete and continuous random variables as two varieties of the same species (which they are). Also, much of Chapter 9 could be read immediately after Chapter 5, if you prefer.

In particular, the book is structured so that the first two parts are suitable to accompany the probability component of a typical course in discrete mathematics; a knowledge of calculus is not assumed until the final part of the book. This layout entails some repetition of similar ideas in different contexts, and this should help to reinforce the reader's knowledge of the less elementary concepts and techniques.

The ends of examples, proofs, and definitions are indicated by the symbols \bullet , \blacksquare , and \blacktriangle , respectively.

Finally, you should note that the book contains a random number of errors. I entreat readers to inform me of all those they find.

D.S. Oxford, January 2003