Index

2025 time horizon 2
apaus mires (patterned fens, string bogs) 115, 116
abalone (Haliotis spp.) 215, 218
Acanthaster planci (crown-of-thorns starfish) 250, 251, 258
acid neutralizing capacity of streams and lakes 23
acid rain and river recovery 23–4
acidification oceans 6–7
small freshwater lakes 71–3
adaptive management 26
African Great Lakes 81–2
eutrophication 83–4
Freshwater Protected Areas (FPAs) 92
impacts of land-use changes 83
invasive species 89
overfishing 86
pollution 85
potential states in 2025 90, 91–2
water diversion threats 89
Agenda 21, 301
agricultural irrigation, pressures on water resources 7
agriculture
demand for groundwater 34
impacts of fertilizer use 25
pollution of groundwater 34–5
albedo 2
polar surface albedo feedback mechanisms 322
alewife (Alosa pseudoharengus) 87
Alosa pseudoharengus (alewife) 87
amphibian species, declines and extinctions 11, 12
amphipod (Echinogammarus ischnus) 88
Antarctic ice sheet, effects of warming 5, 6
see also polar and ice-edge marine systems
Antarctic krill (Euphausia superba) 322, 329–30, 331
antibiotic contamination of groundwater 35
Aplodinotus grunniens (sheepshead) 86
Astropecten forsteri (emperor penguin) 330
aquaculture, impacts on fishing pressure 10–11
aquarium fish, source 86
aquatic biodiversity, global trends 11–13
aquatic ecosystem trends
coastal wetlands 357–8
flowing waters 354–5
freshwater wetlands 355–7
human dependence on water 353–4
projections to the year 2025 363–5
rocky shores 358–9
soft shores 359–61
still fresh waters 355
vast marine systems 361–2
vast marine systems 361–2
aquifers see groundwater
Aral Sea 82, 89, 98, 99, 101, 103, 104, 106
conservation efforts 107
Arctic see polar and ice-edge marine systems
Arctic char (Salvelinus alpinus) 69
Arctic Oscillation 322–3
Arctocephalus gazella (southern fur seal) 321, 331
Artemia (brine shrimp)
harvest from salt lakes 97
introduction into salt lakes 104
Asian carps (cyprinid fishes) 89
Asian clam (Perna perna) 199, 216
Atlantic salmon (Salmo salar) 24, 83, 86
Atlantic thermohaline circulation 6
Atriplex (Halimione) pedunculata (pedunculate sea-purslane) 170
Aurilia aurita (moon jellyfish) 104
Axicennia spp. (mangroves) 173, 176, 182, 183
Bayesian modelling 26
beaches see sandy shores
biodiversity, global trends in aquatic ecosystems 11–13
biodiversity loss, impacts on streams and rivers 27–8
biological control agents 26–7
biome 2
biotope 2
blue pike (Sander glaucum formerly Stizostedion vitreum glaucum) 84
bogs see cool temperate peatlands
Boreogadus saida (polar cod) 329
brine shrimp see Artemia
brown mussel (Polydora pectinata) 199, 216
Buccinum undatum (common whelk) 215
burbot (Lota lota) 86
California cordgrass (Spartina foliosa) 159, 163
Canadian water weed (Eloides canadensis) 89
capelin (Mallotus villosus) 331
carbon balance in cool temperate peatland 118–19
carbon dioxide (CO2)
adification of the oceans 6–7
greenhouse gas 3
carbon reservoir in cool temperate peatlands 114
carbon trading 186
Carcinus maenas (common shore crab) 216, 218, 219
Caribbean monk seal (Monachus tropicalis) 12
carp, see common carp
Caspian Sea 95, 98
drilling for oil 102
introduction of exotic species 104
pollution 103
sturgeon fishery 97, 103–4
Champsocephalus gunnari (icefish) 331
chemical pollutants of streams and rivers 25–6
chemical wastes, water pollution 7
Chen caerulescens caerulescens (snow goose)
impact on marshes 165–6
Chilean abalone (Concholepas concholepas) 215, 216, 223
chlorofluorocarbons, greenhouse gases 3
cichlid fishes (African Great Lakes) 66, 84, 89, 92, 150
cisco (Coregonus artedi) 84, 86, 87
Cladophora 88, 90
collapse change and floods 6
drivers for change 2
measures of change 2
climate change impacts 3–7 see also specific ecosystems
climate change projections
Integrated Global System Model (IGSM) 3–5
level of uncertainty 5
Clupea harengus (herring, Atlantic herring) 331
costal development, ports and shipping facilities 8
costal ecosystems, vulnerability to climate change 6
costal systems, impacts of climate change 6
cod (Gadus morhua) 331
colony (Cordylophora caspia) 88
common carp (Cyprinus carpio) 150, 180–1
common carp (Cyprinus carpio) (colonial hydroid) 88
commercial reed (Phragmites australis) 159, 160, 163, 164, 168, 199
common shore crab (Carcinus maenas) 216, 218, 219
common whelk (Buccinum undatum) 215
Concholepas concholepas (Chilean abalone) 215, 216, 223
continental-shelf benthic ecosystems changes induced by commercial fishing 297–9
creating genuine value propositions 306
ecologically sustainable development 301–6
ecological value 295
eutrophication 300
financial drivers of environmental management 305–6
fishing down the food web 297–9
global and sectoral agreements on 301–4
human drivers of change 296–301
impacts affecting biodiversity 296
impacts of fishing subsidies 305
implementation of goals and objectives 304–8
implications of human welfare goals 303–4
Marine Stewardship Council certification of fisheries 306
sediment loading 300–1
social dimensions of environmental management 304–5
society’s goals for 301–4
water quality 299–301
Convention on Biological Diversity (1992) 11, 301
cool temperate peatland types
aapa mires (patterned fens, string bogs) 115, 116
Arctic polygon mires 115–16
blanket mires 116
lagg fen 116
ombrotrophic (rain-fed) 115–16
ombrotrophic mires (raised bogs) 115, 116
palsa mires 116
quaking mires 116
rhetrophic (flow-fed) 115–16
tundra mires 115, 116
cool temperate peatland accumulation of organic matter 114
acrotelm (upper layer) 116–17
age of 116
biomass 117
carbon balance 118–19
carbon reservoir 114
carbon sequestration 117–19
catotelm (deeper layer) 116–17
definition 113
factors affecting decomposition rate 118–19
formation 116
fossil evidence of development 121
gaseous emissions 119–20
global distribution 113–14
greenhouse gas emissions 119–20
human impacts 120–1
Late Holocene development 121
long-term trends 121–5
methane formation and release 114, 119–20
nitrous oxides emissions 120
pH 115
primary productivity 117
recent changes in vegetation 121–2
rehabilitation efforts 120–1
role of Sphagnum mosses 114–15,
117–18, 120, 121–2
sensitivity to the physical environment 116–17
cool temperate peatlands in the future 122–6
effects of airborne pollutants 123
effects of climate change 123–6
effects of destructive exploitation 122–3
coral bleaching 246, 249, 250, 251, 252, 256
coral bycatch in deep-water fisheries 339–40
coral reef predictions to 2025 252–8
climatic oscillations and disturbances 252–4
corals 254
consumption 257–8
diseases 258
disturbance frequency and reef recovery 254
fisheries 257
herbivorous fish populations 257
increase in ultraviolet light levels 256
invertebrate populations 257
nutrient enrichment 255–6
oceanographic and environmental change 254–6
physicochemical factors 252–4
production 256
Symbiodinium dimoflagellate coral symbiont 256–7
symbiotic relationships 256–7
coral reefs
Asian Pacific reef trends 250–1
Atlantic reef trends 247, 249–50
Australian reef trends 250–1
biological forcing factors 247
Caribbean reef trends 247, 249–50
characteristics 242–3
conditions for reef formation 243
coral bleaching 246, 249, 250, 251, 252, 256
crown-of-thorns starfish predation 250, 251, 258
diseases 247, 249, 250
Eastern Pacific reef trends 250
effects of acidification of the oceans 6–7
effects of aragonite saturation levels in seawater 245
effects of seawater temperature increase 243–6
environmental forcing factors 243–7
factors affecting calcification rates 245
impacts of fishing pressures 247
impacts of global warming 243
impacts of human development 246–7
impacts of increasing CO2 levels 242–3
impacts of loss of Diadema antillarum (long-spined sea urchin) 247, 249
ingenious of nutrient enrichment 246–7
impacts of sea-level changes 246
origins and evolution 242–3
physicochemical forcing factors 243–7
recommendations for further research 258–9
recommendations for management 259–60
Red Sea reef trends 251–2
temperature records from coral cores 246
Western Indian Ocean reef trends 251–2
Cordylophora caspia (colonial hydroid) 88
Coregonus artedi (cisco) 84, 86, 87
Coregonus autumnalis migratorius (omul) 87
Index 475

Cambridge University Press
978-0-521-83327-1 - Aquatic Ecosystems: Trends and Global Prospects
Edited by Nicholas V. C. Polunin
Index

More information
 extinctions of aquatic species
 causes of 11
 fish species 12–13
 freshwater animal species 12
 marine species 12–13
 Exxon Valdez oil spill 214

flood plains in the future 57–9
flood disturbances, impacts on streams 24
fertilizers
fish migration, impacts of dams 24
fisheries
 driver for change in aquatic ecosystems 3
economic pressures 8–10
 fishing down marine food webs 8–9
 impacts of aquaculture 10–11
 impacts of overfishing 8–11
 marine fish biomass declines 8–9
 need for change in the industry 10, 11
 overfishing and declining catches 12–13
 vulnerable species 8–10

flood disturbances, impacts on streams and rivers 22–3

flood plains
biodiversity 45, 51–2
biodiversity decline 55
biological productivity 45, 52
cultural value 45, 54
definition 46
drivers of change 54–7
drivers of river–floodplain ecology 51–2
dryland salinity 57, 58
dynamic nature 45
ecological values 51–2
economic value 45, 52–3
ecosystem services and functions 52–3
flood and flow pulses 51
flood benefits 52–3, 53–4
flood losses 53, 54
flood management developments 54
flow regime 51
global distribution and extent 45–51
hazards and benefits to humans 53–4
human impacts on riparian zones 46, 47, 52
hydrologic connectivity 51
impacts of climate change 56
impacts of flow modification 56–7
impacts of human population growth 55
invasive species 57
Mesopotamian wetlands 55
pollution of the parent river 57
riparian obligate species 51–2
flood plains in the future 57–9
impacts of land-use changes 59
species population decline 58–9
time lag between impact and response 58
flooding, effects of loss of wetlands 6
floodplain management requirements 59–61
cost–benefit calculations 60
environmental flow requirements 60
floodplain restoration 60–1
indicators of environmental conditions 59
institutional framework 60–1
inventory of level of anthropogenic impact 59
food production, pressures on water resources 7–8
forestry, impacts on groundwater 35–6
fragmentation of lotic habitats 24–5
Framework Convention on Climate Change 2
freshwater ecosystems, classification schemes 13–14, 15
Freshwater Ecosystems Index (FEI) 11–12
Freshwater Protected Areas (FPAs) 92
freshwater species, population trends 12
freshwater wetlands see temperate freshwater wetlands
Fundulus parvipinnis (California killfish) 166
Gadus morhua (cod) 331
Genotoo penguin (Pygoscelis papua) 330
glacial relict flora and fauna, large freshwater lakes 82
glaciers, retreat of 6
Gloeotrichia (planktonic cyanobacterium) 79
global circulation models 22
global cooling, drivers 2
global warming, drivers 2
global warming impacts see specific ecosystems
golden mussel (Lemnomera fortunei) 151
granular limpet (Scutellastra granularis) 218
Great Lakes see African Great Lakes; St Lawrence Great Lakes
Great Salt Lake, USA 96, 97, 98, 100, 103
greenhouse effect 2
radiative forcing 3
greenhouse gases 3
emissions from cool temperate peatlands 119–20
release from contaminated aquifers 36
Greenland ice sheet, effects of warming 5, 6
groundwater, importance of 30
groundwater ecosystems
agricultural demand for water 34
components 31–3
freshwater reserves in aquifers 31, 32
functions of microorganisms 32–3
glacial component 31–2
geological component 31–2
groundwater–surface water interactions 33–4
human dependence on water from aquifers 31
human impacts 34–6
impacts of climate change 36
impacts of land use and deforestation 35–6
industrial demand for water 34
living organisms 32–3
role in the hydrological cycle 31, 33–4
sources of groundwater pollution 34–6
stygobionts 33
urban domestic water demand 34
variations in size and structure 33
groundwater ecosystems projections to 2025 42–4
biodiversity loss 43
changes in surface ecosystems 44
land subsidence 42–3
lower water tables 42–3
restriction in functionality 43
salinization 43–4
groundwater management 36–42
cultural attitudes to water use 38
ecological engineering 39
economic aspects of water use 37–8
establishment of conservation areas 41–2
human attitudes to groundwater use 37–9
improved water-use efficiency 39–40
integrated hydrological and ecological framework 30–1
integrated water management 40–1
need for sustainable management 36–7
potential for future water crisis 36
protection of groundwater systems 41–2
reduction of poverty 41
safe yield concept 36
 technological aspects of water use 38–9
use of ecological risk assessment 41–2
Gulf porpoise (Phocoena sinus) 12
Gulf Stream, influence on lakes in the English Lake District 75, 76, 77
Halotis spp. (abalone) 215, 218
heavy metals
pollution of groundwater 35
pollution of streams and rivers 25
herring (Atlantic herring, Clupea harengus) 331
high-latitude climate changes 324
horned turban snail (Turbo truncatus) 215
human population
coastal settlements 2
demand for fresh water 7
impacts on aquatic ecosystems 2–3
impacts on fresh water 7–8
projected growth 7, 8
rate of growth 2
size 2
uneven global distribution 2
uses for fresh water 7–8
Hydrella (Esthwaite waterweed) 26
Hydrodamalis gigas (Steller’s sea cow) 12
hydrogeological setting (HGS) of wetlands 138
hydrogeomorphic (HGM) classification of wetlands 136, 137, 138
icefish (Champsocephalus gunnari) 331
industrial demand for groundwater 34
industrial waste, pollution of
invaded species
invasion ecology 29
invasive species
flooding plains 57
impacts on streams and rivers 26–7
models of establishment and dispersal 26–7
strategies for control 26
invasive/introduced species, estuaries 198–9
IPCC (International Panel on Climate Change) 3
kelp forest ecosystems
biodiversity and deforestation rates 235–7
characteristics 226
consequences of kelp deforestation 235–7
development of kelp forests 228–9
ecological processes 228–37
global distribution 227, 228–9
impacts of physical structure and biomass 227–8
kelp deforestation 229–37
loss of top predators 235
sea surface temperature effects 229
sea-urchin herbivory 230, 231–5
spatial and temporal scale of change 235, 236
diversity species 227
kelp forest ecosystems in the year 2025 238–40
changing coastal biodiversity 239–40
decreasing water quality 240
extrapolation of known trends 238
impacts of El Niño and La Niña events 238, 239
impacts of global warming 238–9
impacts of ocean-climate change 238–9
impacts of pollution 240
invading species 240
new apex predators 239–40
keystone species, loss to overfishing 9
killfish (California killifish, Fundulus parvipinnis) 166
Kyoto Protocol 2, 186
La Niña events 223, 239
Lahontan cutthroat trout (Oncorhynchus clarki henshawi) 96, 101
lake associations and citizen concern 72, 74
Lake Baikal 81–2
eutrophication 84
impacts of land-use changes 83
invasive species 89
overfishing 86–7
potential state in 2025 90, 92
water diversion 89
Lake Cantara South, Australia 98
Lake Corangamite, Australia 99, 101
Lake Erie see St Lawrence Great Lakes
Lake Finjasjön, Sweden 79, 80
Lake Huron see St Lawrence Great Lakes
Lake Issyk-kul, Kyrgyzstan 98
Lake Michigan see St Lawrence Great Lakes
Lake Michigan see Lake Superior
Lake Naiasha, Kenya (case study) 66
Lake Ontario see St Lawrence Great Lakes
lake recreation culture 72, 74
Lake Superior see St Lawrence Great Lakes
Lake Tanganyika see African Great Lakes
lake trout (Salvelinus namaycush) 86, 90
Lake Van, Turkey 98
Lake Victoria see African Great Lakes
Lake Windermere, England 72, 75, 76, 77
lakes

- cultural and inspirational aspects 64
- definition of large and small 64
- impacts of climate change 6
- threat from water shortages 64
- see also African Great Lakes; large freshwater lakes; salt lakes; small freshwater lakes; St Lawrence Great Lakes and specific lakes

land use, impacts on groundwater 35–6
landfill waste leakage, pollution of groundwater 35
large freshwater lakes

- definition 81
- endemism 82
- eutrophication 83–4

- glacial relict flora and fauna 82
- glacial scour lakes 82 see also
- St Lawrence Great Lakes
- impacts of land-use change 83
- invasive species 87–9
- major impacts 82–9
- overfishing 86–7
- pollution 84–6
- potential states in 2025 89–93
- tropical tectonic lakes 82 see also
- African Great Lakes
- water diversion threats 89
- large lakes, definition 64
- Lates niloticus (Nile perch) 8, 12, 84, 86, 89, 150
- Lamnoperna fornesi (golden mussels) 151
- Limpet (Scutellastra aragonensis) 218, 219
- Litoraria tronora (marsh periwinkle) 164–5
- Litorina littorea (common periwinkle) 215, 218, 199
- Littorina saxatilis (rough periwinkle) 212
- Living Planet Index (LPI) 11–12
- Living Planet Report (WWF) 11
- long-spined sea urchin (Diadema antillarum) 247, 249, 257, 258
- Lota lota (burbot) 86
- lotic ecosystems 18 see also streams and rivers
- macroecosystems approach to wetlands 136–7
- Mallotus villosus (capelin) 331
- management approach, acid rain and river recovery 23–4
- mangrove ecosystems
- basin mangroves 177, 178
- characteristics 172–3
- classification of mangrove formations 176–8
- diversity of forms and species composition 176–8
- economic valuation of mangroves 184
- global area and distribution 173–6
- mangroves as keystone species 172
- palaeohistorical perspective on distribution 176
- physiological adaptations in plants 173
- potential expansion following climate change 183–4
- potential for wastewater treatment 182
- river-dominated mangroves 177–8
- sustainable management for timber 180
- tide-dominated (fringe) mangroves 176–7
- trends in loss of area 174–6
- values 173
mangrove ecosystems future threats climate change 182–4
economic market failure 184–5
effects of elevated CO₂ 182–3
heavy metal pollution 182
human population demography 178
hydrological change 180–1
nutrient pollution 182
oil pollution 181–2
pollution 181–2
response to sea-level rise 183, 184
shrimp farming 179
timber extraction for rayon 180
tourism 178–9
urban development 178–9
mangrove ecosystems mitigation 185–7
carbon trading 186
conservation areas 186
educational role in ecosystem management 186–7
management for sustainable use 186–7
participation of local communities 186–7
rehabilitation 185–6
role of the international community 187
mangroves (Avicennia spp.) 173, 176, 182, 183
marbled rockcod (Nototthenia rossii) 331
marine ecosystems, classification schemes 13, 14, 15
Marine Ecosystems Index (MEI) 11–12
marine life effects of acidification of the oceans 6–7
population trends in marine species 12–13
risk from introduced diseases 8
marine pelagic ecosystem alien species invasions 312
disease epidemics 312
impact of commercial fishing 312
impacts of fish farming 313
impacts on the pelagic food web 314–16
indicators of decline in health 312
natural variability of marine ecosystems 313
numbers of endangered species 312
phytoplanktonic blooms 312
potential for fisheries collapse 312
state of the ecosystem 312
sustainability of human influence (fisheries example) 313
timescale of changes 312
‘tragedy of the commons’ 313
marine pelagic ecosystem to the year 2025
anthropogenic impacts 313–16
future issues 316–17
integration across research sectors 316–17
limitations of global ocean programmes 316
natural oscillations 313–16
philosophical perspective 318
scientific perspective 317–18
societal issues 316
Marine Protected Areas (MPAs)
for deepwater ecosystems 348–9
on the high seas 348–9
Marine Stewardship Council certification of fisheries 306
marsh periwinkle (Littoraria irrorata) 164–5
Mediterranean monk seal (Monachus monachus) 12
Mediterranean mussel (Mytilus galloprovincialis) 218, 219
mercury pollution
African Great Lakes 85
small freshwater lakes 72
streams and rivers 25–6
Mesopotamian wetlands 55
methane (CH₄)
formation and release in cool temperate
peatlands 114, 119–20
greenhouse gas 3
methylmercury pollution 344, 345
microbial resistance to antibiotics 26
Microcystis (cyanobacterium) 79, 88, 90
mires see cool temperate peatlands
Mnemiopsis leidyi (warty comb jelly) 104
Monachus monachus (Mediterranean monk seal) 12
Monachus tropicalis (Caribbean monk seal) 12
Mono Lake, California 96, 97, 98, 100, 101, 106–7
Moon jellyfish (Aurelia aurita) 104
Morone saxatilis (striped bass) 199
Myriophyllum spicatum (milfoil) 26, 74
Myxus relictus (oosperm shrimp) 83
Mytilus galloprovincialis (Mediterranean mussel) 218, 219
Neogobius melanostomus (round goby) 87, 88
Nile perch (Lates niloticus) 8, 12, 84, 86, 89, 150
Nile tilapia (Oreochromis niloticus) 86, 89
nitrate pollution
groundwater 34–5
streams and rivers 25
nitrogen loading in rivers 7
nitrous oxide (N₂O)
emissions from cool temperate
peatlands 120
greenhouse gas 3
release from contaminated aquifers 36
North Atlantic Oscillation (NAO) 22, 222, 245, 252, 322
Northern Annular Mode 323
Nototthenia rossii (marbled rockcod) 331
nutrient concentrations in streams and rivers 25
oceans, impacts of climate change 6–7
oil spills, impacts on rocky intertidal shores 213–14
Oncorhynchus clarki henshawi (Lahontan cutthroat trout) 96, 101
Oncorhynchus spp. (salmon) 56
operational landscape unit (OLU) concept 133, 138, 139
Opossum shrimp (Mysis relicta) 82
Oreochromis niloticus (Nile tilapia) 86, 89
organic pollution of groundwater 35, 36
Oserus mordax (smelt) 87
Owens Lake, USA 100–1
ozone hole over Antarctica 323–4
Pacific swampfire, pickleweed (Sarcocornia pacifica) 162
Patagonian toothfish (Dissostichus eleginoides) 331, 332
PCBs (polychlorinated biphenyls) pollution
deep-sea ecosystems 344–5
Lake Baikal 86
St Lawrence Great Lakes 84–5
peatlands see cool temperate peatlands
Pediculate sea-purslane (Atriplex (Halimone) pedunculata) 170
Perca flavescens (yellow perch) 86
Perna perna (brown mussel) 199, 215
pesticide pollution see specific ecosystems
petroleum products, pollution of groundwater 35
Petromyzon marinus (sea lamprey) 87–8, 90
pharmaceuticals, pollution of streams and rivers 25
Phacops rana (Gulf porpoise) 12
Phragmites australis (common reed) 159, 160, 163, 164, 168, 199
Pickleweed, Pacific swampfire (Sarcocornia pacifica) 162
Planktonic cyanobacterium (Gloecichloris) 79
polar and ice-edge marine systems
Antarctic sea ice 326–7
Arctic Oscillation 322–3
Arctic sea ice 324–6
climate change effects in the future 322–4
climate change impacts on higher
predators 329–30
collapse of Arctic fish stocks 331
decline in albatross and petrel populations 332
differences between the Arctic and Antarctic 319–20
ecosystem responses to loss of sea ice 328–30
feedbacks in the polar climate system 322
fishing impacts 330–2
food web responses to climate change 330
future sea-ice conditions 327–8
global thermohaline circulation 324
harvesting of Antarctic marine living resources 331–2
harvesting of Arctic marine resources 330–1
high-latitude climate changes 324
human impacts 320–2
illegal, unreported and unregulated fishing (IUU) 332
impacts of reduction in sea-ice 320
major Antarctic trends 321
major Arctic trends 320–1
marine mammal exploitation 330–1
North Atlantic Oscillation 322
Northern Annular Mode 323
ozone hole over Antarctica 323–4
predictions for 2025 332–3
primary production in the future 328
sea-ice reduction 324–8
sea ice seasonal variations 324
seabird bycatch in long-line fisheries 332
secondary (anthropogenic) salinization 103–4
sludge from sewage treatment 104
snow algae (Chlorophyta) 87
snow albedo feedback mechanisms 322
Southern Annular Mode 323–4
surface albedo feedback mechanisms 322
whaling 330–1
polar bears, impacts of sea-ice reduction 329
polar cod (*Boreogadus saida*) 329
polar regions
- effects of warming 5, 6
- projected temperature increase 5
- pollution, sources of groundwater pollution 34–6
- ponds see small freshwater lakes
- population trends
- Freshwater Ecosystems Index (FEI) 11–12
- Marine Ecosystems Index (MEI) 11–12
- *Potamogeton annuus* (Asian class) 199
- *Pygocelis papua* (Gento penguin) 330
- Pyramid Lake, USA 96, 100, 101, 107
- *Pyura praepatula* (tunicate) 219
- *Quagga mussel* (*Dreissena bugensis*) 87, 88–9
- radiative forcing, greenhouse effect 3
- radioactive waste burial, pollution of groundwater 35
- rainfall, measure of change 2
- raised bogs (ombrotrophic mires) 115, 116
- *Rastreirobola argentea* (silver cyprinid) 86, 89
- red gum (*Eucalyptus camaldulensis*) 57
- Regional Seas Agreements 302
- *Rhizophora* spp. 173, 176, 177, 180, 182, 183, 185–6
- Rio ‘Earth Summit’ (1992) 11, 301
- river systems, impacts of alteration and damming 11
- rivers, human sources of pollution 7 see also streams and rivers
- rockfish, human sources of pollution 7 see also rockfish
- rocky intertidal shores
- actions to help preserve habitats 224–5
- capacity for recovery 210–11
- characteristics 210–11
- ecosystem services 211
- environmental gradients 212
- factors which influence communities 212
- interactions of physical and biological factors 212
- management issues 210–11
- vulnerability to human activities 210–11
- rocky-shore impacts
- actions to help preserve habitats 224–5
- alien species 216–19
- alteration of coastal geomorphological processes 219–20
- co-management strategies 224–5
- El-Niño–Southern Oscillation events 222–3
- elevated ultraviolet radiation 222
- endemic disruptors 213
- eutrophication 214
- generation of power 220
- global climate change 220–3
- harvesting for human food 215–16, 217, 224–5
- marine mollusc harvesting 215–16, 217, 224–5
- mining activities 220–1
- modelling 214–15
- oil spills 213–14
- pollution 212–15
- present and future human impacts 212–23
- projecting into the future 223–4
- recreational uses 220
- research and educational uses 220
- responses to warming 221–2
- sea defences 219–20
- sea-level rise 222
- sedimentation 220
- storms and extreme weather events 222
- toxic algal blooms 214
- rough periwinkle (*Littorina saxatilis*) 212
- round goby (*Neogobius melanostomus*) 87, 88
- salinization
- anthropogenic 101–2
- future of salt lakes 109
- land in Australia 57, 58, 99, 102
- *Salmo salar* (Atlantic salmon) 24, 83, 86
- salmon (*Oncorhynchus* spp.) 56
- salmonids, escape of genetically modified or farm-selected fish 72
- salt lakes 64
- calcite branch point 94
- conservation value 96
- critical habitat for waterbirds 96
- cultural value 96
- definition 94
- distribution and extent 94–5
- ecological value 96
- economic and non-economic values 95–7
- likely status in 2025 108–10
- recreational and aesthetic values 97
- scientific value 96
- salt lakes threats and impacts 97–105
- biological disturbances 104
- catchment area uses and development 104
- changes in ultraviolet radiation 98
- conservation threat of freshwater crisis 105–8
- global climate change 97–8
- groundwater pumping 101
- introduction of exotic species 104
- mining 102–3
- overfishing 103–4
- pollution 103
- secondary (anthropogenic) salinization 101–2
- surface inflow diversions 98–101
- saltmarsh bird’s beak (*Cordylineau* maritimus *ssp. maritimus*) 160, 163
- saltmarshes
- disease risk to humans 159
- ecological goods and services 158
- functions 158
- history of human impact 158–9
- insect populations 159
- old marshes 158
- sedimentation and erosion 158
- types of settings 157
- values 158
- wider linkages 158
- zonation of vegetation 157–8
saltmarshes in the future 159–71
actions required 170
coastal development pressures 166–8
conflicting environmental policies 169
conservation of rare plant species 169–70
consumer pressure 164–6
effects of climate change 161–2
effects of global warming 161–2
effects of increased CO₂ levels 161–2
effects of sea-level rise 160–1, 161–2
eutrophication 163–4
fish use of saltmarshes 166
hybridization among saltmarsh plants 163
impact of grazing by geese 165–6
invasive species 162–3
managed coastal realignment 168–9
mitigation of losses 168
restoration of damage 168–70
shoreline development 165
value judgements about changes 160
Salton Sea, California 97, 102, 104, 107
Salcéllus alpinus (Arctic char) 69
Salcéllus namaycush (lake trout) 86, 90
Salvelinus alpinus (Arctic charr) 69
Salvelinus namaycush (lake trout) 86, 90
Sander glaucum (blue pike) 84
Sander vitreus (walleye) 86
sand dunes
coastal evolution 275–6
evolutions of beach and dune environments 274–5
improved coastal zone management 274
human pressure of activities 274
sandy shore impacts of human actions 265
altering external conditions 268, 273
altering faunal viability or use patterns 267, 273–4
altering landform mobility 267, 269–71
altering through use 266–8
creating landforms and habitats 271–2
dams and stream mining 273
nourishment and restoration 268, 271–2
pollutants 273
reshaping 267, 268–9
trends in intensity of development 265–6
sandy shores
impacts of climate change 265
natural characteristics of beaches 264
natural characteristics of dunes 264–5
natural threats 265
origins 263
sediment transport 263–4
sandy shores to the year 2025 276–9
direct human pressures 277–9
global warming 276–7
Sargocornia pacifica (pickleweed, Pacific swampfire) 162
sardines (Australia), herpes virus infection 8
Scatellastræa argensvilles (limpet) 218, 219
Scatellastræa granularis (granular limpet) 218
sea-fans (Caribbean), fungal infection 8
sea lamprey (Petromyzon marinus) 87–8, 90
sea-level rise
factors affecting 6
future effects on saltmarshes 160–1, 161–2
projections 5–6
see also specific ecosystems
seagrass ecosystems
biodiversity 283
characteristics 281–3
conservation prospects 290
cumulative impacts of multiple stressors 290
ecosystem services 283
global decline 281–2
global impacts and losses 285–8
global seagrass area 282
human impacts 285–8
impacts of climate change 288–90
losses from natural causes 289–90
management and protection 291–3
mapping of global distribution 282–3
monitoring programmes 291–3
outlook for 2025 293–4
productivity 282
regional status and trends 283–5
restoration practices 293
seagrass species 282
status of seagrass protection 291–3
widespread decline 283
Sebasites spp. (rockfish) 337, 338, 339
sheepshead (Aplodinotus grunniens) 86
silver cyprinid (Rastrineobola argentea) 86, 89
small freshwater lakes
acidification 71–3
bass fishing 74
clarity of pristine lake waters 67–8
colonization of pristine lakes 68
community structures 68
connections in the landscape 65–6
criteria of deterioration 70
dam building 72
deleterious factors 71–80
drainage or infill 72
effects of increased ultraviolet radiation 72
eutrophication 71
impact of fish 68, 69
impacts of climate change 73, 75, 76, 77
introduced species 66, 72
lake associations and citizen concern 72, 74
Lake Naivasha, Kenya (case study) 66
lake recreation culture 72, 74
liming of acidified lakes 71
nature of primary producers 68
nutrient scarcity in the pristine state 67
oligotrophication process 67
overfishing 72
pH of pristine lakes 67
pristine status determinants 66–8
range of origins of natural lake basins 67
restoration 74–80
shoreline development and recreational damage 72, 74
speciation and endemism 68
tension between conservation and exploitation 66
total ion concentrations in the pristine state 67
toxic pollutants 72
water abstraction 72
small islands, impacts of climate change 6
small lakes, definition 64
smelt (Omerus mordax) 87
smooth cordgrass (Spartina alternifolia) 161, 163, 164, 165, 167, 199
snow goose (Chen caerulescens caerulescens), impact on salt marshes 163–6
South Africa, National Water Policy (1997) 77, 78
Southern Annular Mode 323–4
southern fur seal (Arctocephalus gazella) 321, 331
Spartina alternifolia (smooth cordgrass) 160, 163, 164, 165, 167, 199
Spartina anglica (common cordgrass) 163, 167
Spartina foliosa (California cordgrass) 159, 163
Spartina maritima (small cordgrass) 163
Spartina spp., hybridizations in saltmarshes 163
Sphagnum mosses (peat mosses), role in cool temperate peatlands 114–15, 117–18, 120, 121–2
Spirulina (cyanobacteria) 97
St Lawrence Great Lakes 81–2
eutrophication 83
impacts of land-use changes 83
invasive species 87–9
overfishing 86, 87
pollution 84–5
potential states in 2025 89–91, 92–3
water diversion threats 89
Steller’s sea cow (*Hydrodamalis gigas*) 12
Steller’s sea lion (*Eumetopias jubatus*) 331
steroid contamination of groundwater 35
streams and rivers
acid rain and river recovery 23–4
chemical pollutants 25–6
drought and flood disturbances 22–3
ecologically informed future
management 28–9
ecosystem function and biodiversity
27–8
ecosystem services 19
effects of overexploitation 23
endocrine disruptor pollutants 25
forecasting future chemical impacts 26
genetic implications of habitat
fragmentation 25
heavy metal pollution 25
impacts of biodiversity loss 27–8
impacts of climate change 22–3
impacts of damming and fragmentation
23, 24–5
impacts of fertilizer use 25
impacts of water engineering projects 23
invasive species 26–7
large-scale forcing factors 20
large-scale stressors 20
local stressors 20–1
loss of habitat patches 24–5
metapopulation structure in freshwater
species 24, 29
nitrate pollution 25
nutrient concentrations 25
persistent (press) perturbations 21
pesticide pollution 25
pharmaceutical pollutants 25
predictions from global circulation
models 22
predictive models 28–9
pressures from human activities 19–22
pulsed perturbations 21
recolonization from refugia 21
recolonization of habitat patches 25
scales at which threats operate 20–1
temporal variations in threats 21
variation in threats along longitudinal
profiles 21
striped bass (*Morone saxatilis*) 199
sturgeon fishery, Caspian Sea 97, 103–4
Symbiodinium dinoflagellate coral symbiont
256–7
Tamaricaceae (Tamarix spp.) 26
Tamarix spp. (*Tamaricaceae*) 26
TBT (tributyl tin) pollution 213
temperate freshwater wetlands
approaches to wetland management 134–5
arid climates 128–9
assessment of condition 137
barriers to management and protection
135
biodiversity 130–1
capacity for protection and restoration
134–5
carbon accumulation 129–30
core genera 129
diversity 131
extent of losses 132–3
functions 129–31
global distribution 127
habitat classification approaches 136–7
human-induced alterations to water flow
131–2
humid climates 128–9
hydrogeological setting (HGS) 138
hydrogeomorphic (HGM) classification
136, 137, 138
inter-basin transfers of water 131–2
inventory and mapping 136–7
macroecosystems 136–7
nutrient cycling rates 130
operational landscape unit (OLU)
concept 133, 138, 139
organic matter accumulation 129–30
patterns across moisture gradients
128–34
patterns related to economics and culture
134–5
potential evapotranspiration (PET) ratio
128–9
prospects for the future 140
public education 139–40
requirements for effective management
136–40
restoration in a landscape setting 137–8
restoration practices 133–4
training of scientists and resource
managers 138–40
types of wetlands 128–9
vegetation 129
temperature
global mean surface temperature
projections 5
latitudinal distribution of warming 5
measure of change 2
terminology for ecological units 2
Torrey Canyon oil spill 214
toxic pollutants, small freshwater lakes 72
toxic waste burial, pollution of
groundwater 35
tropical wetlands
biophysical gradients 142–4
climatic gradients 143
definition of ‘tropical’ 142
economic and political gradients 145–6
ecosystem functions 147
factors affecting degradation 147–8
geomorphological gradient 143
global distribution 142
human-made or modified wetlands 143
hydrological gradient 143
hydrological regimes 147
impact of human population density 144
impacts of grazing by large herbivores
143–4
impacts of human activities 147–8
influence on human evolution 144
Neotropics 142
present state 146–7
pressures to develop wetlands 148
recent history of degradation and loss
148
role in the growth of human
civilization 144
sociocultural gradients 144–6
traditional management practices 147–8
tropical wetlands in the future 149–52
challenges facing local people 152–3
dependency of poor local people 153
ecological economies 153–4
global pressures on developing
countries 152
government pressures on local people
152
impacts of global climate change 151
invasion by exotic species 150–1
land use and water quality 150
pressures to cultivate wetlands 153
sustainable use and management 151–2,
153–4
value of non-economic goods 153–4
water pollution 150
water-resources management 149–50
wetland restoration 154
tundra mires 115, 116
tunicate (*Pyura praeputialis*) 219
Turbo truncatus (horned turban snail) 215
ultraviolet (UV) radiation, effects in
high-altitude lakes 72
uncertainty in climate change projections 5
United Nations Convention on the Law of
the Sea (UNCLOS) 349
urban domestic demand for
groundwater 34
urban waste, pollution of groundwater 35
Walker Lake, Nevada 100, 101, 107
walleye (*Stizostedion vitreum* formerly
Sander vitreus formerly) 86
water fleas, *Daphnia see Daphnia*
water hyacinth \textit{(Eichhornia crassipes)} 84, 89, 150
water scarcity, threat to human populations 7
water stress, threat to human populations 7
water vapour, as greenhouse gas 3
wetlands definition 112

impacts of climate change 6
\textit{see also} temperate freshwater wetlands; tropical wetlands
whales, globally endangered species 330–1
whaling 330–1
whitefish \textit{(Coregonus spp., Salmonidae)} 86, 331
Winnemucca Lake, USA 100

World Summit on Sustainable Development 302
yellow perch \textit{(Perca flavescens)} 86
Zebra mussel \textit{(Dreissena polymorpha)} 8, 26, 87, 88–9, 90, 199
Zuni Lake, New Mexico 96, 107