
Introduction

The goal of this book is to present smooth ergodic theory from a contemporary
point of view. Among other things this theory provides a rigorous mathematical
foundation for the phenomenon known as deterministic chaos – a term coined
by Yorke – the appearance of highly irregular, unpredictable,“chaotic” motions in
pure deterministic dynamical systems. The main idea beyond this phenomenon is
that one can deduce a sufficiently complete description of topological and ergodic
properties of the system from relatively weak requirements on its local behavior,
known as nonuniform hyperbolicity conditions: the reason this theory is also called
nonuniform hyperbolicity theory.

It originated in the seminal works of Lyapunov [134] and Perron [164] on
stability of solutions of ordinary differential equations. To determine whether a
given solution is stable one proceeds as follows. First, the equation is linearized
along the solution and then the stability of the zero solution of the corresponding
nonautonomous linear differential equation is examined. There are several meth-
ods (due to Hadamard [79], Perron [165], Fenichel [70], and Irwin [92]) aimed
at exhibiting stability of solutions via certain information on the linear system.
The approach by Lyapunov uses a special real-valued function on the space of
solutions of the linear system known as the Lyapunov exponent. It measures in
the logarithmic scale the rate of convergence of solutions so that the zero solution
is asymptotically exponentially stable along any subspace where the Lyapunov
exponent is negative.

The Lyapunov exponent is arguable the best way to characterize stability: the
requirement that the Lyapunov exponent is negative is the weakest one that still
guarantees that solutions of the linear system eventually decay exponentially to
zero. The price to pay is that stability of the zero solution in this weak sense does
not necessarily imply stability of the original solution of the nonlinear equation.
The latter can be ensured under an additional and quite subtle requirement known
as the Lyapunov–Perron regularity.

Verifying this requirement for a given solution may be a very difficult if not vir-
tually impossible task, making verification more a principle than practical matter.
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2 Introduction

This could deem the whole approach useless if not for an important particular
case when the differential equation is given by a vector field on a smooth compact
Riemannian manifold. In this case, the celebrated Multiplicative Ergodic Theo-
rem, also known as Oseledets’ theorem, claims that a “typical” solution of the
equation is Lyapunov–Perron regular, thus making the difficult task of checking
the regularity requirement unnecessary. Here “typical” means that the statement
holds for almost every trajectory with respect to a finite Borel measure invariant
under the flow generated by the vector field.

A principal application of Oseledets’ theorem in the context of smooth dy-
namical systems is that the Lyapunov exponent alone can be used to characterize
stability of trajectories. Building upon this idea, in the beginning of 1970s Pesin
introduced the class of systems whose Lyapunov exponent is nonzero along almost
every trajectory with respect to some smooth invariant measure (i.e., a measure,
which is equivalent to the Riemannian volume) and then he developed the sta-
bility theory (constructing local and global stable and unstable manifolds; see
Section 7.5), as well as described their ergodic properties (including ergodicity,
K - and Bernoulli properties; see Chapter 9). The collection of these results is
known as Pesin’s theory (see [18]). A crucial manifestation of this theory is the
formula for the entropy connecting the measure-theoretic entropy of the system
with its Lyapunov exponent (see Chapter 10). It should be pointed out that these
results require that the system is of class of smoothness C1+α for some α > 0 and
that they may indeed fail if the system is only of class C1 (see Section 7.8).

Unlike classical uniformly hyperbolic systems (i.e., Anosov or more general
axiom A systems) where contractions and expansions are uniform everywhere on a
compact invariant set, Pesin’s theory deals with systems satisfying the substantially
weaker requirement that contractions and expansions occur asymptotically almost
everywhere with respect to a smooth invariant measure. Because this requirement
is weak, there are no topological obstructions for the existence of such systems on
any phase space. Indeed, any smooth compact Riemannian manifold (of dimension
≥ 2 in the discrete-time case and of dimension ≥ 3 in the continuous-time case)
admits a volume preserving system whose Lyapunov exponent is nonzero almost
everywhere (see Sections 11.4 and 11.5). It is therefore remarkable that such a
weak requirement ensures highly nontrivial ergodic and topological properties of
the system.

A small perturbation of a diffeomorphism with nonzero Lyapunov exponents (in
the Cr topology, r > 1) may not bear the same properties – the price to pay for the
great generality of the nonuniformly hyperbolic theory. However, experts believe
that nonuniformly hyperbolic conservative systems (i.e., systems preserving a
smooth measure, in particular, volume preserving) are typical in some sense. This
is reflected in the following conjectures: (We consider the case of systems with
discrete time.)

1. Let f be a Cr , r > 1, volume preserving diffeomorphism of a smooth
compact Riemannian manifold M . Assume that the Lyapunov exponent of f is
nonzero along almost every trajectory of f . Then there exists a neighborhood U
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Introduction 3

of f in the space of Cr volume preserving diffeomorphisms of M and a residual
subset A ⊂ U such that for every g ∈ A the Lyapunov exponent of g is nonzero
along every orbit in a subset of positive volume.

2. Let f be a Cr , r > 1, volume preserving diffeomorphism of a smooth
compact Riemannian manifold M . Then arbitrarily close to f in the space of Cr

volume preserving diffeomorphisms of M , there exists a diffeomorphism g whose
Lyapunov exponent is nonzero along every orbit in a subset of positive volume.

We stress that the assumption r > 1 is crucial as the conjectures fail if r = 1
due to a recent result of Bochi and Viana [28]. So far there has been little progress
in solving these conjectures (see Section 11.7). On the positive side, crucial results
on genericity of hyperbolic cocycles over dynamical systems have been recently
obtained by Viana [221].

A persistent obstruction to nonuniform hyperbolicity is presence of elliptic be-
havior (see [232, 233]). For example, for area preserving surface diffeomorphisms,
as predicted by KAM theory, elliptic islands survive under small perturbations of
the system. Numerical studies of such maps suggest that in this case elliptic is-
lands coexist with what appears to be a “chaotic sea” – an ergodic component of
positive area with nonzero Lyapunov exponents (see [135, 136]). In fact, one often
considers a one-parameter family of area preserving surface diffeomorphisms,
which starts from a completely integrable (nonchaotic) system and evolves even-
tually into a completely hyperbolic (chaotic) one demonstrating, for intermediate
values of the parameter, the appearance of elliptic islands gradually giving way
to a “chaotic sea”. For billiard dynamical systems, coexistence of elliptic and
hyperbolic behavior has been shown for the so-called “mushroom billiards” (see
[41]). In the category of smooth maps, establishing coexistence is arguably one
of the most difficult problems in the theory of dynamical systems. A simple but
somewhat “artificial” example of coexistence was constructed in [183] (see also
[130] and Section 6.6; for a more elaborate construction see [90]). Much more
complicated examples where coexistence is expected are (1) the famous standard
map (also known as the Chirikov–Taylor map; see [51] and [188, Section 8.5])
and (2) automorphisms of real K 3 surfaces (see [151]).

The requirement that the Lyapunov exponent is nonzero along almost every
trajectory with respect to an invariant Borel probability measure – such a measure
is said to be hyperbolic – is equivalent to the fact that the system is nonuniformly
hyperbolic. Thus nonuniform hyperbolicity can be viewed as presence of hyper-
bolic invariant measures leading to challenging problems of studying ergodic and
topological properties of general (not necessarily smooth) hyperbolic measures as
well as of constructing some natural hyperbolic measures.

A general hyperbolic measure does not have “good” ergodic properties. (Simply
note that any invariant measure on a horseshoe is hyperbolic.) It is therefore quite
remarkable that hyperbolic measures have abundance of topological properties
whose study was initiated in the work of Katok [101] (see Chapters 14 and 15).
For example, the set of hyperbolic periodic orbits is dense in the support of
the measure. Surprisingly, general hyperbolic measures asymptotically have local

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-83258-8 - Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero
Lyapunov Exponents
Luis Barreira and Yakov Pesin
Excerpt
More information

http://www.cambridge.org/0521832586
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

product structure (similar to the one of Gibbs measures on horseshoes) and one
can compute their Hausdorff dimension and entropy. The formula for the entropy
of a general hyperbolic measure due to Ledrappier and L.-S. Young is a substantial
generalization of the entropy formula for smooth hyperbolic measures but unlike
the latter, it involves quite subtle characteristics of the measure other than the
Lyapunov exponent.

Smooth measures form an important yet particular case of natural hyperbolic
measures. The latter were introduced by Ledrappier as an extension to nonuni-
formly hyperbolic systems of the Sinai–Ruelle–Bowen (SRB) measures for clas-
sical uniformly hyperbolic attractors (see Chapter 13). These generalized SRB
measures describe the limit distribution of the time averages of continuous func-
tions along forward orbits for a set of initial points of positive Lebesgue measure
in a small neighborhood of the attractor. According to a result by Ledrappier and
Strelcyn, these measures can be characterized as being the only measures for which
the entropy formula of Pesin holds. Ledrappier showed that the methods used in
studying ergodic properties of smooth hyperbolic measures can be adjusted to
describe ergodic properties of SRB measures.

Constructing SRB measures for nonuniformly hyperbolic systems is a difficult
problem. Beyond uniform hyperbolicity, there are very few examples, of which
best known are Hénon-like attractors, where existence of SRB measures was
rigorously shown. L.-S. Young has introduced a class of dynamical systems with
nonzero Lyapunov exponents, which admit the so-called Young’s tower. For these
systems, she established existence of SRB measures (see Section 13.3).

The recent theory of Hénon-like diffeomorphisms (see [25, 26, 219, 222, 223])
suggests the following approach to the genericity problem for nonuniformly hy-
perbolic dissipative systems: given a one-parameter family of C2 diffeomorphisms
fa , a ∈ [α, β] with a trapping region R (i.e., R is an open set for which fa(R) ⊂ R
for any a ∈ [α, β]), there exists a set A ⊂ [α, β] of positive Lebesgue measure
such that for every a ∈ A, the diffeomorphism fa possesses an SRB measure
supported on the attractor �a = ⋂

n>0 f n
a (R).

Evaluating Lyapunov exponents by a computer is a relatively easy procedure
and in many models in science, the absence of zero exponents can be shown
numerically. This is often viewed as a convincing evidence that the system un-
der investigation exhibits chaotic behavior. In mathematics, several “artificial”
examples of systems with nonzero exponents have been constructed (and the
reader can find most of them in Chapter 6) and for some interesting “natural”
dynamical systems (e.g., geodesic flows on nonpositively curved manifolds and
Teichmüller geodesic flows; see Chapter 12) absence of zero exponents have been
shown. In addition, various powerful methods have been developed (e.g., cone and
Lyapunov function techniques; see Chapter 4) that allow one to verify whether a
given dynamical system has some positive Lyapunov exponents.

Many results of the nonuniform hyperbolicity theory hold in greater gener-
ality than for actions of single dynamical systems and wherever possible we
describe the theory with this view in mind. For example, the linear hyperbolicity
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Introduction 5

theory (including the theory of Lyapunov exponents and its principal result – the
Multiplicative Ergodic Theorem) is presented for linear cocycles over dynamical
systems (or even over higher-rank Abelian actions), and the stable manifold theory
is developed for sequences of diffeomorphisms. Even in the case of an action of a
single dynamical system, we consider a more general case of nonuniform partial
hyperbolicity where the requirement that the values of the Lyapunov exponent are
all nonzero is replaced by a weaker one that some of the values of the Lyapunov
exponent are nonzero. Such generalizations require some more complicated tech-
niques and tools from various areas of mathematics to be used and thus make
the exposition more complicated but they substantially broaden applications and
show the great power of the nonuniform hyperbolicity theory.
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Part I

Linear Theory
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1

The Concept of Nonuniform Hyperbolicity

In this chapter we consider sequences of linear maps in the Euclidean space
and we introduce the principal notions of Lyapunov exponents, Lyapunov–Perron
regularity, normal bases, and so on. These concepts are used in a variety of settings
of which the main one is the study of linearizations of a dynamical system along
its orbits. Thus a sequence of linear maps can be thought of as the sequence of
derivatives (differentials) of a smooth map along an orbit.

We stress that in the situations we consider there are no preferred coordinate
systems. Accordingly, even though we often use matrix representations of linear
maps, we only study properties that are independent of certain classes of coordinate
changes. The most narrow class is that of orthogonal coordinate changes; in the
smooth situation, this corresponds to fixing a Riemannian metric in the phase
space. A broader class includes coordinate changes uniformly bounded from above
and below; in the case of a smooth system on a compact space, this corresponds
to an arbitrary choice of a smooth coordinate atlas.

As it turns out, of greatest importance for the theory developed in this book
is still a broader class of tempered coordinate changes. This reflects the primary
role that exponential behavior plays in our considerations. A tempered change
allows arbitrarily large distortions if these distortions change with time with a
subexponential rate. Thus it preserves not only the exponential character of the
asymptotic behavior but also the actual rates of expansion and contraction in
various directions.

In the next chapter these considerations will be extended to the case of cocycles
over dynamical systems. The principal difference is in paying attention to the
dependence on the base point that may be measurable, continuous, differentiable,
and so on.

1.1 Motivation

Consider an invertible linear transformation A of an Euclidean space R
n . Let

λ1, . . ., λn be its eigenvalues. The transformation A is said to be hyperbolic if

9
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10 1 The Concept of Nonuniform Hyperbolicity

0
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Figure 1.1. Hyperbolic fixed point of a linear map: the trajectory of a point x lies on the
hyperbola passing through x .

|λi | �= 1 for every i . If A is hyperbolic then there is a decomposition R
n = Es ⊕ Eu

into stable and unstable subspaces, where

Es = R
n ∩

⊕
i :|λi |<1

Hλi and Eu = R
n ∩

⊕
i :|λi |>1

Hλi .

Here Hλi is the root space

Hλi = {v ∈ C
n : (A − λi Id)mv = 0 for some m ∈ N}.

Set

λ = max

{
max
|λi |<1

|λi |, max
|λi |>1

|λi |−1

}
∈ (0, 1).

Note that for any ε > 0, there exists c = c(ε) > 0 such that for every m > 0,

‖Amv‖ ≤ cλm eεm‖v‖ if v ∈ Es,

and

‖A−mv‖ ≤ cλm eεm‖v‖ if v ∈ Eu .

Therefore the origin is a saddlelike point for A (see Fig. 1.1).
Notice that if A is diagonalizable, a similar estimate holds with δ = 0 but if A

has Jordan blocks then the growth in the corresponding root space has an extra
subexponential factor.
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1.1 Motivation 11
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Figure 1.2. Hyperbolic fixed point of a diffeomorphism: near 0 the trajectory of a point x
lies on a curve, which is the pre-image of a hyperbola under the conjugacy map h.

Let now f be a C1 diffeomorphism of an open set U of R
n and p ∈ U a

fixed point for f , that is, f (p) = p. The point p is called hyperbolic if the
linear transformation A = dp f is hyperbolic. By the Grobman–Hartman The-
orem (see e.g., [104, Theorem 6.3.1]), there is a homeomorphism h defined
in a small neighborhood Ũ ⊂ U of p such that h( f (x)) = A(h(x)) for every
x ∈ Ũ ∩ f −1(Ũ ). This implies that the local orbit structure of a diffeomorphism
in a small neighborhood of a hyperbolic fixed point resembles that of the linear
transformation that is the differential (the linearization) of the map at that point
(see Fig. 1.2).

By the Hadamard–Perron Theorem (see e.g., [104, Theorem 6.4.9]), the stable
set

V s(p) = {x ∈ U : f m(x) ∈ U for all m > 0}

and the unstable set

V u(p) = {x ∈ U : f m(x) ∈ U for all m < 0}

are C1 submanifolds passing through p such that TpV s(p) = Es and TpV u(p) =
Eu . Moreover, similarly to the linear case above, given ε > 0, there exists c =
c(ε) > 0 such that for every m > 0,

‖ f m(x) − p‖ ≤ cλm eεm‖x‖ if x ∈ V s(p),
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12 1 The Concept of Nonuniform Hyperbolicity

and

‖ f −m(x) − p‖ ≤ cλm eεm‖x‖ if x ∈ V u(p).

We call V s(p) and V u(p) the local stable and unstable manifolds at p.
This discussion extends directly to hyperbolic periodic points. A point p ∈ U is

periodic if for some k ∈ N, we have f i (p) ∈ U for i = 1, . . ., k − 1 and f k(p) =
p. The periodic point p is called hyperbolic if the linear transformation dp f k

is hyperbolic. One can show that there exist open neighborhoods U0, . . ., Uk−1,
respectively, of p, . . ., f k−1(p) such that for each i = 0, . . ., k − 1, the sets

V s( f i (p)) = {x ∈ Ui : f m(x) ∈ Um+i for all m > 0}
and

V u( f i (p)) = {x ∈ Ui : f m(x) ∈ Um+i for all m < 0}
are C1 submanifolds passing through f i (p). We call V s( f i (p)) and V u( f i (p))
the local stable and unstable manifolds at f i (p). Let us point out that if p is a
hyperbolic periodic point of period k then for every i = 1, . . ., k − 1, the point
f i (p) is a hyperbolic periodic point. In other words, the trajectory { f i (p) : i =
0, . . ., k − 1} is hyperbolic.

Now consider a nonperiodic point p of a diffeomorphism f . We would like to
say that p is hyperbolic if the behavior of trajectories that start in a neighborhood
of p resembles that of the trajectories in a neighborhood of a periodic hyperbolic
point. More precisely, this means that one can construct local stable and unstable
manifolds V s(p) and V u(p) at p such that every trajectory f m(v) with v ∈ V s(p)
approaches f m(p) with an exponential rate and every trajectory f −m(v) with v ∈
V u(p) approaches f −m(p) with an exponential rate. In fact the orbit { f m(x)}m∈Z

of a point x ∈ V s(p) may first diverge from the orbit { f m(p)}m∈Z until some time
T = T (x) before it starts converging to it with an exponential rate. If the rate of the
exponential convergence does not depend on the point p in a compact f -invariant
subset � ⊂ U , and the angle between local stable and unstable manifolds at p is
uniformly bounded away from zero in p, then f is said to be uniformly hyperbolic
on �. In this case the function T (x) is uniformly bounded from above in x . Note
that hyperbolicity refers to the whole orbit { f m(p)}m∈Z.

In the general case, however, the rate of exponential convergence may vary from
orbit to orbit. Moreover, the function T (x) may not be bounded from above as x
approaches p, forcing contraction estimates to deteriorate along the orbit. If this
deterioration occurs with a subexponential rate (or a sufficiently small exponential
rate) on a set � of orbits, then f is said to be nonuniformly hyperbolic on �.
Observe that this set is invariant but not necessarily closed. The dynamics of f on
the nonuniformly hyperbolic set is the main object of our study.

In view of the Grobman–Hartman Theorem, it is natural to try to introduce
hyperbolicity in terms of the sequence of differentials dp f m . This leads us to the
consideration of a sequence of linear transformations of an Euclidean space. It
is important to keep in mind that unlike the case of a fixed or periodic point,
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