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P r e r e q u i s i t e s

In this book we presuppose some familiarity with the basic notions of

differential topology and geometry. Good references are e.g. Guillemin–

Pollack (1974) and Bott–Tu (1982). We shall list some of these notions,

partly to fix the notations.

Recall that a smooth manifold (or a C∞-manifold) of dimension n

(where n = 0, 1, . . . ) is a second-countable Hausdorff space M , together

with a maximal atlas of open embeddings (charts)

(× i: U i 2³ R
n)i∈I

of open subsets U i ¢ M into R
n, such that M =

⋃
i∈I U i and the

change-of-charts homeomorphisms

× ij = × i ç(× j |Ui∩Uj
)−1: × j(U i + U j) 2³ × i(U i + U j)

are smooth, for any i , j * I . Note that these satisfy the cocycle condition

× ij(× jk(x )) = × ik(x ), x * × k(U i+U j+U k). There is an associated notion

of a smooth map between smooth manifolds. Any smooth manifold

(Hausdorff and second-countable) is paracompact, which is sufficient for

the existence of partitions of unity.

The notions of (maximal) atlas and of smooth map also make sense

if M is any topological space, not necessarily second countable or Haus-

dorff. We refer to such a space with a maximal atlas as a non-Hausdorff

manifold or a non-second-countable manifold. There are many more non-

Hausdorff manifolds than the usual Hausdorff ones, even in dimension

1 (see Haefliger–Reeb (1957)). We shall have occasion to consider such

non-Hausdorff manifolds later in this book.

The reader should be familiar with the notion of the tangent bundle

T (M ) of M , which is a vector bundle over M of rank n , where n is

the dimension of the manifold M . The tangent space T x(M ) of M at
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2 Prerequisites

x * M is the fibre of T (M ) over x . The (smooth) sections of the tangent

bundle T (M ) are the vector fields on M . The C∞(M )-module X(M )

of all vector fields on M is a Lie algebra, and the Lie bracket on X(M )

satisfies the Leibniz identity

[X , f Y ] = f [X , Y ] + X (f )Y

for all X , Y * X(M ) and f * C∞(M ).

Also, we have the space Ωk(M ) of differential k -forms on M , for any

k = 0, 1, . . . , n , with exterior differentiation d : Ωk(M ) ³ Ωk+1(M )

and exterior product ' : Ωk(M ) · Ωl(M ) ³ Ωk+l(M ). With this,

Ω(M ) =
⊕n

k=0 Ωk(M ) becomes a differential graded algebra, which is

commutative (in the graded sense). The cohomology of (Ω(M ), d ) is

called the de Rham cohomology of M , and denoted by

H dR(M ) =

n⊕

k=0

H k
dR(M ) .

A smooth map f : M ³ N between smooth manifolds has a derivative

d f : T (M ) ³ T (N ), which is a bundle map over f . The derivative of f at

x * M is the restriction of d f to the corresponding tangent spaces over

x and f (x ), and denoted by (d f )x: T x(M ) ³ T f(x)(N ). The map f is

an immersion if each (d f )x is injective, and a submersion if each (d f )x is

surjective. These have canonical local forms on a small neighbourhood

of x * M :

(i) If f is an immersion, there exist open neighbourhoods U ¢ M

of x and V ¢ N of f (x ) with f (U ) ¢ V and diffeomorphisms

× : U ³ R
n and Ë : V ³ R

p such that

(Ë ç f ç × −1)(y ) = (y , 0)

with respect to the decomposition R
p = R

n × R
p−n.

(ii) If f is a submersion, there exist open neighbourhoods U ¢ M

of x and V ¢ N of f (x ) with f (U ) = V and diffeomorphisms

× : U ³ R
n and Ë : V ³ R

p such that

(Ë ç f ç × −1)(y , z ) = y

with respect to the decomposition R
n = R

p × R
n−p.

A smooth map f : M ³ N is a diffeomorphism if it is a bijection and

has a smooth inverse. The map f is a local diffeomorphism (or étale

map) if (d f )x is an isomorphism for any x * M . Any bijective local

diffeomorphism is a diffeomorphism.
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Prerequisites 3

A smooth map g : K ³ N is said to be an embedding if it is an

immersion and a topological embedding. This makes K a submanifold

of N , and T (K ) a subbundle of T (N ).

If K is a submanifold of N and f : M ³ N a smooth map, one says

that f is transversal to K if (d f )x(T x(M )) + T f(x)(K ) = T f(x)(N ) for

every x * f −1(K ).

For every submanifold K of N there exists an open neighbourhood

U ¢ N of K which has the structure of a vector bundle over K , with

the inclusion K �³ U corresponding to the zero section. In particular,

the projection U ³ K of this bundle is a retraction. Such a U is called

a tubular neighbourhood of K .

Recall that, on a vector bundle E of rank n over a manifold M , one

can always choose a Riemannian structure (by using partitions of unity).

A Riemannian metric on M is a Riemannian structure on T (M ). The

structure group of E can be reduced to O (n ). The bundle E is called

orientable if its structure group can be reduced to S O (n ). An orienta-

tion of an orientable vector bundle E is an equivalence class of oriented

trivializations of E .
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1

F o l i a t i o n s

Intuitively speaking, a foliation of a manifold M is a decomposition of

M into immersed submanifolds, the leaves of the foliation. These leaves

are required to be of the same dimension, and to fit together nicely.

Such foliations of manifolds occur naturally in various geometric con-

texts, for example as solutions of differential equations and integrable

systems, and in symplectic geometry. In fact, the concept of a foliation

first appeared explicitly in the work of Ehresmann and Reeb, motivated

by the question of existence of completely integrable vector fields on

three-dimensional manifolds. The theory of foliations has now become

a rich and exciting geometric subject by itself, as illustrated be the fa-

mous results of Reeb (1952), Haefliger (1956), Novikov (1964), Thurston

(1974), Molino (1988), Connes (1994) and many others.

We start this book by describing various equivalent ways of defining

foliations. A foliation on a manifold M can be given by a suitable

foliation atlas on M , by an integrable subbundle of the tangent bundle

of M , or by a locally trivial differential ideal. The equivalence of all these

descriptions is a consequence of the Frobenius integrability theorem. We

will give several elementary examples of foliations. The simplest example

of a foliation on a manifold M is probably the one given by the level sets

of a submersion M ³ N . In general, a foliation on M is a decomposition

of M into leaves which is locally given by the fibres of a submersion.

In this chapter we also discuss some first properties of foliations, for

instance the property of being orientable or transversely orientable. We

show that a transversely orientable foliation of codimension 1 on a mani-

fold M is given by the kernel of a differential 1-form on M , and that this

form gives rise to the so-called Godbillon–Vey class. This is a class of

degree 3 in the de Rham cohomology of M , which depends only on the

foliation and not on the choice of the specific 1-form. Furthermore, we
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1.1 Definition and first examples 5

discuss here several basic methods for constructing foliations. These in-

clude the product and pull-back of foliations, the formation of foliations

on quotient manifolds, the construction of foliations by ‘suspending’ a

diffeomorphism or a group of diffeomorphisms, and foliations associated

to actions of Lie groups.

1.1 Definition and first examples

Let M be a smooth manifold of dimension n . A foliation atlas of codi-

mension q of M (where 0 f q f n ) is an atlas

(× i: U i 2³ R
n = R

n−q × R
q)i*I

of M for which the change-of-charts diffeomorphisms × ij are locally of

the form

× ij(x , y ) = (g ij(x , y ), h ij(y ))

with respect to the decomposition R
n = R

n2q × R
q. The charts of a

foliation atlas are called the foliation charts. Thus each U i is divided

into plaques, which are the connected components of the submanifolds

× 21
i (Rn2q × {y }), y * R

q, and the change-of-charts diffeomorphisms

preserve this division (Figure 1.1). The plaques globally amalgamate

Fig. 1.1. Two foliation charts

into leaves, which are smooth manifolds of dimension n 2 q injectively

immersed into M . In other words, two points x , y * M lie on the same

leaf if there exist a sequence of foliation charts U 1 , . . . , U k and a sequence

of points x = p 0 , p 1 , . . . , p k = y such that p j21 and p j lie on the same

plaque in U j , for any 1 f j f k .

A foliation of codimension q of M is a maximal foliation atlas of M

of codimension q . Each foliation atlas determines a foliation, since it is
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6 Foliations

included in a unique maximal foliation atlas. Two foliation atlases define

the same foliation of M precisely if they induce the same partition of

M into leaves. A (smooth) foliated manifold is a pair (M , F), where

M is a smooth manifold and F a foliation of M . The space of leaves

M / F of a foliated manifold (M , F) is the quotient space of M , obtained

by identifying two points of M if they lie on the same leaf of F . The

dimension of F is n 2 q . A (smooth) map between foliated manifolds

f : (M , F) ³ (M � , F �) is a (smooth) map f : M ³ N which preserves

the foliation structure, i.e. which maps leaves of F into the leaves of F �.

This is the first definition of a foliation. Instead of smooth foliations

one can of course consider C r-foliations, for any r * {0, 1, . . . , >}, or

(real) analytic foliations. Standard references are Bott (1972), Hector–

Hirsch (1981, 1983), Camacho–Neto (1985), Molino (1988) and Tondeur

(1988). In the next section we will give several equivalent definitions:

in terms of a Haefliger cocycle, in terms of an integrable subbundle of

T (M ), and in terms of a differential ideal in Ω(M ). But first we give

some examples.

Examples 1.1 (1) The space R
n admits the trivial foliation of codimen-

sion q , for which the atlas consists of only one chart id: R
n ³ R

n2q×R
q.

Of course, any linear bijection A : R
n ³ R

n2q × R
q determines another

one whose leaves are the affine subspaces A 21(Rn2q × {y }).

(2) Any submersion f : M ³ N defines a foliation F(f ) of M whose

leaves are the connected components of the fibres of f . The codimension

of F(f ) is equal to the dimension of N . An atlas representing F(f ) is

derived from the canonical local form for the submersion f . Foliations

associated to the submersions are also called simple foliations. The foli-

ations associated to submersions with connected fibres are called strictly

simple. A simple foliation is strictly simple precisely when its space of

leaves is Hausdorff.

(3) (Kronecker foliation of the torus) Let a be an irrational real num-

ber, and consider the submersion s : R
2 ³ R given by s (x , y ) = x 2 a y .

By (2) we have the foliation F(s ) of R
n. Let f : R

2 ³ T 2 = S 1 × S 1 be

the standard covering projection of the torus, i.e. f (x , y ) = (e2πix , e2πiy).

The foliation F(s ) induces a foliation F of T 2: if × is a foliation chart

for F(s ) such that f |domϕ is injective, then × ç(f |domϕ)21 is a foliation

chart for F . Any leaf of F is diffeomorphic to R, and is dense in T 2

(Figure 1.2).

(4) (Foliation of the Möbius band) Let f : R
2 ³ M be the stan-

dard covering projection of the (open) Möbius band: f (x , y ) = f (x � , y �)
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1.1 Definition and first examples 7

Fig. 1.2. Kronecker foliation of the torus

precisely if x � 2 x * Z and y � = (21)x�
2x y . The trivial foliation of

codimension 1 of R
2 induces a foliation F of M , in the same way as in

(3). All the leaves of F are diffeomorphic to S 1, and they are wrapping

around M twice, except for the ‘middle’ one: this one goes around only

once (Figure 1.3).

Fig. 1.3. Foliation of the Möbius band

(5) (The Reeb foliation of the solid torus and of S 3) One can also define

the notion of a foliation of a manifold with boundary in the obvious way;

however, one usually assumes that the leaves of such a foliation behave

well near the boundary, by requiring either that they are transversal to

the boundary, or that the connected components of the boundary are

leaves. An example of the last sort is the Reeb foliation of the solid

torus, which is given as follows.

Consider the unit disk D = {z | z * C, |z | f 1 }, and define a submer-

www.cambridge.org/9780521831970
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-83197-0 — Introduction to Foliations and Lie Groupoids
I. Moerdijk , J. Mrcun 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 Foliations

sion f : Int(D ) × R ³ R by

f (z , x ) = e
1

12|z|2 2 x .

So we have the foliation F(f ) of Int(D ) × R, which can be extended to

a foliation of the cylinder D × R by adding one new leaf: the boundary

S 1 × R. Now D × R is a covering space of the solid torus X = D × S 1

in the canonical way, and the foliation of D × R induces a foliation of

the solid torus. We will denote this foliation by R. The boundary torus

of this solid torus is a leaf of R. Any other leaf of R is diffeomorphic to

R
2, and has the boundary leaf as its set of adherence points in X . The

Reeb foliation of X is any foliation F of X of codimension 1 for which

there exists a homeomorphism of X which maps the leaves of F onto

the leaves of R (Figure 1.4).

Fig. 1.4. The Reeb foliation of the solid torus

The three-dimensional sphere S 3 can be decomposed into two solid

tori glued together along their boundaries, i.e.

S 3 >= X *∂X X .

Since ∂ X is a leaf of the Reeb foliation of X , we can glue the Reeb

foliations of both copies of X along ∂ X as well. This can be done so

that the obtained foliation of S 3 is smooth. This foliation has a unique

compact leaf and is called the Reeb foliation of S 3.

Exercise 1.2 Describe in each of these examples explicitly the space

of leaves of the foliation. (You will see that this space often has a very

poor structure. Much of foliation theory is concerned with the study of

‘better models’ for the leaf space.)
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1.2 Alternative definitions of foliations 9

1.2 Alternative definitions of foliations

A foliation F of a manifold M can be equivalently described in the

following ways (here n is the dimension of M and q the codimension of

F).

(i) By a foliation atlas (ϕ i : U i ³ R
n2q × R

q) of M for which

the change-of-charts diffeomorphisms ϕ ij are globally of the form

ϕ ij(x , y ) = (g ij(x , y ), h ij(y )) with respect to the decomposition

R
n = R

n2q × R
q.

(ii) By an open cover (U i) of M with submersions s i: U i ³ R
q such

that there are diffeomorphisms (necessarily unique)

γ ij: s j(U i + U j) 2³ s i(U i + U j)

with γ ij ç s j |Ui+Uj
= s i|Ui+Uj

. (The diffeomorphisms γ ij satisfy

the cocycle condition γ ij ç γ jk = γ ik. This cocycle is called the

Haefliger cocycle representing F .)

(iii) By an integrable subbundle E of T (M ) of rank n 2 q . (Here

integrable (or involutive) means that E is closed under the Lie

bracket, i.e. if X , Y * X(M ) are sections of E , then the vector

field [X , Y ] is also a section of E .)

(iv) By a locally trivial differential (graded) ideal J =
⊕n

k=1 J
k of

rank q in the differential graded algebra Ω(M ). (An ideal J is

locally trivial of rank q if any point of M has an open neigh-

bourhood U such that J |U is the ideal in Ω(M )|U generated

by q linearly independent 1-forms. An ideal J is differential if

d J ¢ J .)

Before we go into details of why these descriptions of the concept of

foliation are equivalent, we should point out that the bundle E of (iii)

consists of tangent vectors to M which are tangent to the leaves, while

a differential k -form is in the ideal J of (iv) if it vanishes on any k -tuple

of vectors which are all tangent to the leaves.

Ad (i): Any foliation atlas (ϕ i: U i ³ R
n2q×R

q) of F has a refinement

which satisfies the condition in (i). To see this, we may first assume that

(U i) is a locally finite cover of M . Next, we may find a locally finite

refinement (V k) of (U i) such that V k * V l is contained in some U i for

any non-disjoint V k and V l. As any V k is contained in a U ik
, we may

take ψ k = ϕ ik
|Vk

. Further we may choose each V k so small that for any

U j £ V k, the change-of-charts diffeomorphism ϕ j ç ψ
21
k is globally of the

form (g jk(x , y ), h jk(y )), and that h jk is an embedding. This refinement

(ψ k) of (ϕ i) is a foliation atlas of M which satisfies the condition in (i).
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10 Foliations

Ad (ii): If (U i , s i , γ ij) is a Haefliger cocycle on M , choose an atlas

(ϕ k: V k ³ R
n) so that each V k is a subset of an U ik

and ϕ k renders s ik

in the normal form for a submersion: it is surjective, and there exists a

diffeomorphism ψ k: s ik
(V k) ³ R

q such that ψ k ç s ik
= pr2 ç ϕ k. This is

a foliation atlas of the form in (i): if (x , y ) * ϕ k(V k + V l) ¢ R
n2q × R

q,

we have

(pr2 ç ϕ l ç ϕ
21
k )(x , y ) = (ψ l ç s il

ç ϕ 21
k )(x , y )

= (ψ l ç γ ilik
ç s ik

ç ϕ 21
k )(x , y )

= (ψ l ç γ ilik
ç ψ k)(y ) .

Conversely, if (ϕ i: U i ³ R
n2q × R

q) is a foliation atlas of the form in

(i), take s i = pr2 ç ϕ i and γ ij = h ij . This gives a Haefliger cocycle on

M which represents the same foliation.

Ad (iii): Let us assume that the foliation is given by a foliation atlas

(ϕ i: U i ³ R
n2q × R

q). Define a subbundle E of T (M ) locally over U i

by

E |Ui
= Ker(d (pr2 ç ϕ i)) ,

i.e. by the kernel of the R
q-valued 1-form α = d (pr2 ç ϕ i). For any

such a 1-form and any vector fields X , Y on U i we have 2d α (X , Y ) =

X (α (Y )) 2 Y (α (X )) 2 α ([X , Y ]). Since our α is closed, it follows that

α ([X , Y ]) = X (α (Y )) 2 Y (α (X )) .

Using this it is clear that E is an integrable subbundle of T (M ) of

codimension q .

The bundle E is uniquely determined by the foliation F : a tangent

vector ξ * T x(M ) is in E precisely if ξ is tangent to the leaf of L through

x . The bundle E is called the tangent bundle of F , and is often denoted

by T (F). A section of T (F) is called a vector field tangent to F . The

Lie algebra Γ(T (F)) of sections of T (F) will also be denoted by X(F).

Conversely, an integrable subbundle E of codimension q of T (M ) can

be locally integrated (Frobenius theorem, see Appendix of Camacho–

Neto (1985)): for any point x * M there exist an open neighbourhood

U ¢ M and a diffeomorphism ϕ : U ³ R
n2q × R

q such that E |U =

Ker(d (pr2 ç ϕ )). By using these kinds of diffeomorphisms as foliation

charts, one obtains a foliation atlas of the foliation.

Ad (iv): For any subbundle E of T (M ), define the (graded) ideal

J =
⊕n

k=1 J
k in Ω(M ) as follows: for ω * Ωk(M ),

ω * J k if and only if
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