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1. Introduction

The study of volumes and areas on normed and Finsler spaces is a relatively
new field that comprises and unifies large domains of convexity, geometric to-
mography, and integral geometry. It opens many classical unsolved problems in
these fields to powerful techniques in global differential geometry, and suggests
new challenging problems that are delightfully geometric and simple to state.

Keywords: Minkowski geometry, Hausdorff measure, Holmes–Thompson volume, Finsler man-
ifold, isoperimetric inequality.
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2 J. C. ÁLVAREZ PAIVA AND A. C. THOMPSON

The theory starts with a simple question: How does one measure volume
on a finite-dimensional normed space? At first sight, this question may seem
either unmotivated or trivial: normed spaces are metric spaces and we can mea-
sure volume using the Hausdorff measure, period. However, if one starts asking
simple, naive questions one discovers the depth of the problem. Even if one is
unwilling to consider that definitions of volume other than the Hausdorff mea-
sure are not only possible but may even be better, one is faced with questions
such as these: What is the (n−1)-dimensional Hausdorff measure of the unit
sphere of an n-dimensional normed space? Do flat regions minimize area? For
what normed spaces are metric balls also the solutions of the isoperimetric prob-
lem? These questions, first posed in convex-geometric language by Busemann
and Petty [1956], are still open, at least in their full generality. However, one
should not assume too quickly that the subject is impossible. Some beautiful
results and striking connections have been found. For example, the fact that the
(n−1)-Hausdorff measure in a normed space determines the norm is equivalent
to the fact that the areas of the central sections determine a convex body that
is symmetric with respect to the origin. This, in turn, follows from the study of
the spherical Radon transform. The fact that regions in hyperplanes are area-
minimizing is equivalent to the fact that the intersection body of a convex body
that is symmetric with respect to the origin is also convex.

But the true interest of the theory can only be appreciated if one is willing
to challenge Busemann’s dictum that the natural volume in a normed or Finsler
space is the Hausdorff measure. Indeed, thinking of a normed or Finsler space as
an anisotropic medium where the speed of a light ray depends on its direction,
we are led to consider a completely different notion of volume, which has become
known as the Holmes–Thompson volume. This notion of volume, introduced in
[Holmes and Thompson 1979], uncovers striking connections between integral
geometry, convexity, and Hamiltonian systems. For example, in a recent series
of papers, [Schneider and Wieacker 1997], [Alvarez and Fernandes 1998], [Alvarez
and Fernandes 1999], [Schneider 2001], and [Schneider 2002], it was shown that
the classical integral geometric formulas in Euclidean spaces can be extended to
normed and even to projective Finsler spaces (the solutions of Hilbert’s fourth
problem) if the areas of submanifolds are measured with the Holmes–Thompson
definition. That extensions of this kind are not possible with the Busemann
definition was shown by Schneider [Schneider 2001].

Using Finsler techniques, Burago and Ivanov [2001] have proved that a flat
two-dimensional disc in a finite-dimensional normed space minimizes area among
all other immersed discs with the same boundary. Ivanov [2001] has shown,
among other things, that Pu’s isosystolic inequality for Riemannian metrics in
the projective plane extends to Finsler metrics, and the Finslerian extension
of Berger’s infinitesimal isosystolic inequality for Riemannian metrics on real
projective spaces of arbitrary dimension has been proved by Álvarez [2002].
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VOLUMES ON NORMED AND FINSLER SPACES 3

Despite these and other recent interdisciplinary results, we believe that the
most surprising feature of the Holmes–Thompson definition is the way in which
it organizes a large portion of convexity into a coherent theory. For example,
the sharp upper bound for the volume of the unit ball of a normed space is
given by the Blaschke–Santaló inequality; the conjectured sharp lower bound is
Mahler’s conjecture; and the reconstruction of the norm from the area functional
is equivalent to the famous Minkowski’s problem of reconstructing a convex body
from the knowledge of its curvature as a function of its unit normals.

In this paper, we have attempted to provide students and researchers in Finsler
and global differential geometry with a clear and concise introduction to the
theory of volumes on normed and Finsler spaces. To do this, we have avoided
the temptation to use auxiliary Euclidean structures to describe the various
concepts and constructions. While these auxiliary structures may render some
of the proofs simpler, they hinder the understanding of the subject and make the
application of the ideas and techniques to Finsler spaces much more cumbersome.
We also believe that by presenting the results and techniques in intrinsic terms we
can make some of the beautiful results of convexity more accessible and enticing
to differential geometers.

In the course of our writing we had to make some tough choices as to what
material should be left out as either too advanced or too specialized. At the
end we decided that we would concentrate on the basic questions and techniques
of the theory, while doing our best to exhibit the general abstract framework
that makes the theory of volumes on normed spaces into a sort of Grand Unified
Theory for many problems in convexity and Finsler geometry. As a result there
is little Finsler geometry per se in the pages that follow. However, just as
tensors, forms, spinors, and Clifford algebras developed in invariant form have
immediate use in Riemannian geometry, the more geometric constructions with
norms, convex bodies, and k-volume densities that make up the heart of this
paper have immediate applications to Finsler geometry.

2. A Short Review of the Geometry of Normed Spaces

This section is a quick review of the geometry of finite-dimensional normed
spaces adapted to the needs and language of Finsler geometry. Unless stated
otherwise, all vector spaces in this article are real and finite-dimensional. We
suggest that the reader merely browse through this section and come back to it
if and when it becomes necessary.

Definition 2.1. A norm on a vector space X is a function

‖ · ‖ : X → [0,∞)

satisfying the following properties of positivity, homogeneity, and convexity:

(1) If ‖x‖ = 0, then x = 0;
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4 J. C. ÁLVAREZ PAIVA AND A. C. THOMPSON

(2) If t is a real number, then ‖tx‖ = |t|‖x‖;
(3) For any two vectors x and y in X, ‖x + y‖ ≤ ‖x‖ + ‖y‖.
If (X, ‖ · ‖) is a finite-dimensional normed space, the set

BX := {x ∈ X : ‖x‖ ≤ 1}
is the unit ball of X and the boundary of BX , SX , is its unit sphere. Notice that
BX is a compact, convex set with nonempty interior. In short, it is a convex
body in X. Moreover, it is symmetric with respect to the origin. Conversely, if
B ⊂ X is a centered convex body (i.e., a convex body symmetric with respect to
the origin), it is the unit ball of the norm

‖x‖ := inf {t ≥ 0 : ty = x for some y ∈ B}.
We shall now describe various classes of normed spaces that will appear re-

peatedly throughout the paper.

Euclidean spaces. A Euclidean structure on a finite-dimensional vector space X

is a choice of a symmetric, positive-definite quadratic form Q : X → R. The
normed space (X,Q1/2) will be called a Euclidean space. Note that a normed
space is Euclidean if and only if its unit sphere is an ellipsoid, which is if and
only if the norm satisfies the parallelogram identity:

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2.

Exercise 2.2. Let B ⊂ R
n be a convex body symmetric with respect to the

origin. Show that if the intersection of B with every 2-dimensional plane passing
through the origin is an ellipse, then B is an ellipsoid.

The �p spaces. If p ≥ 1 is a real number, the function

‖x‖p :=
(|x1|p + · · · + |xn|p

)1/p

is a norm on R
n. When p tends to infinity, ‖x‖p converges to

‖x‖∞ := max{|x1|, . . . , |xn|}.
The normed space (Rn, ‖ · ‖p), 1 ≤ p ≤ ∞, is denoted by �n

p .
The unit ball of �n

∞ is the n-dimensional cube of side length two, while the
unit ball of �n

1 is the n-dimensional cross-polytope. In general, norms whose unit
balls are polytopes are called crystalline norms.

Subspaces of L1([0, 1], dx). The space of measurable functions f : [0, 1] → R

satisfying

‖f‖ :=
∫ 1

0

|f(x)| dx < ∞
is a normed space denoted by L1([0, 1], dx). The geometry of finite-dimensional
subspaces of L1([0, 1], dx) is closely related to problems of volume, area, and
integral geometry on normed and Finsler spaces. In the next few paragraphs,

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521831814 - A Sampler of Riemann-Finsler Geometry
Edited by David Bao, Robert L. Bryant, Shiing-Shen Chern and Zhongmin Shen
Excerpt
More information

http://www.cambridge.org/0521831814
http://www.cambridge.org
http://www.cambridge.org


VOLUMES ON NORMED AND FINSLER SPACES 5

we will summarize the properties of these subspaces that will be used in the
rest of the paper. For proofs, references, and to learn more about hypermetric
spaces, we recommend the landmark paper [Bolker 1969], as well as the surveys
[Schneider and Weil 1983] and [Goodey and Weil 1993].

First we begin with a beautiful metric characterization of the subspaces of
L1([0, 1], dx).

Definition 2.3. A metric space (M,d) is said to be hypermetric if it satisfies the
following stronger version of the triangle inequality: If m1, . . . ,mk are elements
of M and b1, . . . , bk are integers with

∑
i bi = 1, then

k∑
i,j=1

d(mi,mj)bibj ≤ 0.

Theorem 2.4. A finite-dimensional normed space is hypermetric if and only if
it is isometric to a subspace of L1([0, 1], dx).

An important analytic characterization of a hypermetric normed space can be
given through the Fourier transform of its norm:

Theorem 2.5. A norm on R
n is hypermetric if and only if its distributional

Fourier transform is a nonnegative measure.

The characterizations above, important as they are, are hard to grasp at first
sight. A much more visual approach will be given after we review the duality of
normed spaces.

Minkowski spaces. Minkowski spaces are normed spaces with strict smoothness
and convexity properties. In precise terms, a norm ‖ · ‖ on a vector space X is
said to be a Minkowski norm if it is smooth outside the origin and the Hessian
of the function ‖ · ‖2 at every nonzero point is a positive-definite quadratic form.

The unit sphere of a Minkowski space X is a smooth convex hypersurface SX

such that for any Euclidean structure on X the principal curvatures of SX are
positive.

2.1. Maps between normed spaces. An important feature of the geometry
of normed spaces is that the space of linear maps between two normed spaces
carries a natural norm.

Definition 2.6. If T : X → Y is a linear map between normed spaces
(X, ‖ · ‖X) and (Y, ‖ · ‖Y ), we define the norm of T as the supremum of ‖Tx‖Y

taken over all vectors x ∈ X with ‖x‖X ≤ 1.

A linear map T : X → Y is said to be short if its norm is less than or equal to one.
In other words, a short linear map does not increase distances. Two important
types of short linear maps between normed spaces are isometric embeddings and
isometric submersions:
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6 J. C. ÁLVAREZ PAIVA AND A. C. THOMPSON

Definition 2.7. An injective linear map T : X → Y between normed spaces
(X, ‖ · ‖X) and (Y, ‖ · ‖Y ) is said to be an isometric embedding if ‖Tx‖Y = ‖x‖X

for all vectors x ∈ X.

Definition 2.8. A surjective linear map T : X → Y between normed spaces
(X, ‖ · ‖X) and (Y, ‖ · ‖Y ) is said to be an isometric submersion if

‖Tx‖Y = inf {‖v‖X : v ∈ X and Tv = Tx}
for all vectors x ∈ X.

In terms of the unit balls, T : X → Y is an isometric embedding if and only if
T (BX) = T (X) ∩BY , and T is an isometric submersion if and only if T (BX) =
BY .

2.2. Dual spaces and polar bodies. From the previous paragraph, we see
that if (X, ‖ · ‖) is a normed space, then the set of all linear maps onto the one-
dimensional normed space (R, | · |) carries a natural norm. The resulting normed
space is called the dual of (X, ‖ · ‖) and is denoted by (X∗, ‖ · ‖∗). It is easy
to see that the double dual (i.e., the dual of the dual) of a finite-dimensional
normed space can be naturally identified with the space itself. The unit ball of
(X∗, ‖ · ‖∗) is said to be the polar of the unit ball of (X, ‖ · ‖).
Example. Hölder’s inequality implies that if p > 1, the dual of �n

p is �n
q , where

1/p + 1/q = 1. Likewise, it is easy to see that the dual of �n
1 is �n

∞.
If T : X 
→ Y is a linear map then the dual map T ∗ : Y ∗ 
→ X∗ is defined by

(T ∗ξ)(x) = ξ(Tx).

Note that ‖T ∗‖ = ‖T‖.
Exercise 2.9. Show that if T : X → Y is an isometric embedding between
normed spaces X and Y , the dual map T ∗ : Y ∗ → X∗ is an isometric submersion.

Many of the geometric constructions in convex geometry and the geometry of
normed spaces are functorial. More precisely, if we denote by N the category
whose objects are finite-dimensional normed spaces and whose morphisms are
short linear maps, many classical constructions define functors from N to itself.

Exercise 2.10. Show that the assignment (X, ‖ · ‖) 
→ (X∗, ‖ · ‖∗) is a con-
travariant functor from N to N.

Duals of hypermetric normed spaces. As advertised earlier in this section, the no-
tion of duality allows us to give a more geometric characterization of hypermetric
spaces.

Definition 2.11. A polytope in a vector space X is said to be a zonotope if all
of its faces are symmetric. A convex body is said to be a zonoid if it is the limit
(in the Hausdorff topology) of zonotopes.
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VOLUMES ON NORMED AND FINSLER SPACES 7

Notice that an n-dimensional cube, as well as all its linear projections, are zono-
topes. In fact, it can be shown that any zonotope is the linear projection of a
cube (see, for example, Theorem 3.3 in [Bolker 1969]).

Theorem 2.12. Let X be a finite-dimensional normed space with unit ball BX .
The dual of X is hypermetric if and only if BX is a zonoid .

Notice that this immediately implies that the space �n
1 , n ≥ 1, is hypermetric.

Duality in Minkowski spaces. If (X, ‖ · ‖) is a Minkowski space, the differential
of the function L := ‖ · ‖2

/2,

dL(x)(y) :=
1
2

d

dt
‖x + ty‖2

t=0,

is a continuous linear map from X to X∗ that is smooth outside the origin and
homogeneous of degree one. This map is usually called the Legendre transform,
although that term is also used to describe some related concepts (see, for ex-
ample, § 2.2 in [Hörmander 1994]). The following exercise describes the most
important properties of the Legendre transform.

Exercise 2.13. Let (X, ‖ · ‖) be a Minkowski space and let

L : X \ 0 → X∗ \ 0

be its Legendre transform.

(1) Show that if x ∈ X is a unit vector, then L(x) is the unique covector ξ ∈ X ∗

such that the equation ξ ·y = 1 describes the tangent plane to the unit sphere
SX at the point x.

(2) Show that the Legendre transform defines a diffeomorphism between the
unit sphere and its polar.

(3) Show that the inverse of the Legendre transform from X \0 to X∗ \0 is just
the Legendre transform from X∗ \ 0 to X \ 0.

(4) Show that the Legendre transform is linear if and only if X is a Euclidean
space.

Exercise 2.14. Show that a normed space is a Minkowski space if its unit
sphere and the unit sphere of its dual are smooth.

2.3. Sociology of normed spaces. If ‖ · ‖1 and ‖ · ‖2 are two norms on a
finite-dimensional vector space X, it is easy to see that there are positive numbers
m and M such that

m‖ · ‖2 ≤ ‖ · ‖1 ≤ M‖ · ‖2.

If we take the numbers m and M such that the inequalities are sharp, then
log(M/m) is a good measure of how far away one norm is from the other.

For example, the following well-known result states that we can always ap-
proximate a norm by one whose unit sphere is a polytope or by one such that
its unit sphere and the unit sphere of its dual are smooth.
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8 J. C. ÁLVAREZ PAIVA AND A. C. THOMPSON

Proposition 2.15. Let ‖ · ‖ be a norm on the finite-dimensional vector space
X. Given ε > 0, there exist a crystalline norm ‖ · ‖1 and a Minkowski norm
‖ · ‖2 on X such that

‖ · ‖1 ≤ ‖ · ‖ ≤ (1 + ε)‖ · ‖1,

‖ · ‖2 ≤ ‖ · ‖ ≤ (1 + ε)‖ · ‖2.

For a short proof see Lemma 2.3.2 in [Hörmander 1994] .
In many circumstances, one wants to measure how far is one normed space

from being isometric to another. The straightforward adaptation of the previous
idea leads us to the following notion:

Definition 2.16. The Banach–Mazur distance between n-dimensional normed
spaces X and Y , is the infimum of the numbers log(‖T‖‖T−1‖), where T ranges
over all invertible linear maps from X to Y .

Notice that the Banach–Mazur distance is a distance on the set of isometry
classes of n-dimensional normed spaces: two such spaces are at distance zero if
and only if they are isometric.

An important question is to determine how far a general n-dimensional normed
space is from being Euclidean. The answer rests on two results of independent
interest:

Theorem 2.17 (Loewner). If B is a convex body in an n-dimensional vector
space X, there exists a unique n-dimensional ellipsoid E ⊂ B such that for any
Lebesgue measure on X, the ratio vol(B)/vol(E) is minimal .

Theorem 2.18 [John 1948]. Let X be an n-dimensional normed space with unit
ball B. If E ⊂ B is the Loewner ellipsoid of B, then

E ⊂ B ⊂ √
nE.

Exercise 2.19. Show that the Banach–Mazur distance from an n-dimensional
normed space to a Euclidean space is at most log(n)/2.

The structure of the set of isometry classes of n-dimensional normed spaces is
given by the following theorem (see [Thompson 1996, page 73] for references and
some of the history on the subject):

Theorem 2.20. The set of isometry classes of n-dimensional normed spaces,
Mn, provided with the Banach–Mazur distance is a compact , connected metric
space.

The Banach–Mazur compactum, Mn, enters naturally into Finsler geometry by
the following construction: Let π : ζ → M be a vector bundle with n-dimensional
fibers such that every fiber ζm = π−1(m) carries a norm that varies continuously
with the base point (a Finsler bundle). The (continuous) map

I : M −→ Mn
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VOLUMES ON NORMED AND FINSLER SPACES 9

that assigns to each point m ∈ M the isometry class of ζm measures how the
norms vary from point to point.

Currently, there are not many results that describe the map I under different
geometric and/or topological hypotheses on the bundle. However the following
exercise (and its extension in [Gromov 1967]) shows that such results are possible.

Exercise 2.21. Let π : ζ → S2 be a Finsler bundle whose fibers are 2-
dimensional. Show that if the bundle is nontrivial and the map I is constant,
then the image of S2 under I is the isometry class of 2-dimensional Euclidean
spaces.

A corollary of this exercise is that if X is a three-dimensional normed space
such that all its two-dimensional subspaces are isometric, then X is Euclidean.
Another interesting corollary is that a Berwald (Finsler) metric on S2 must be
Riemannian.

3. Volumes on Normed Spaces

In defining the notion of volume on normed spaces, it is best to adopt an
axiomatic approach. We shall impose some minimal set of conditions that are
reasonable and then try to find out to what extent they can be satisfied, and to
what point they determine our choices.

In a normed space, all translations are isometries. This suggests that we
require the volume of a set to be invariant under translations. Since any finite-
dimensional normed space is a locally compact, commutative group, we can apply
the following theorem of Haar:

Theorem 3.1. If µ is a translation-invariant measure on R
n for which all

compact sets have finite measure and all open sets have positive measure, then
µ is a constant multiple of the Lebesgue measure.

Proofs of this theorem can be found in many places. A full account is given in
[Cohn 1980] and an abbreviated version in [Thompson 1996].

In the light of Haar’s theorem, in order to give a definition of volume in
every normed space, we must assign to every normed space X a multiple of the
Lebesgue measure. Since the Lebesgue measure is not intrinsically defined (it
depends on a choice of basis for X), it is best to describe this assignment as
a choice of a norm µ in the 1-dimensional vector space ΛnX, where n is the
dimension of X; if x1, . . . ,xn ∈ X, we define µ(x1 ∧x2 ∧· · ·∧xn) as the volume
of the parallelotope formed by these vectors.

Another natural requirement is monotonicity: if X and Y are n-dimensional
normed spaces and T : X → Y is a short linear map (i.e., a linear map that does
not increase distances), we require that T does not increase volumes. Notice
that this implies that isometries between normed spaces are volume-preserving.
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10 J. C. ÁLVAREZ PAIVA AND A. C. THOMPSON

The monotonicity requirement makes a definition of volume on normed spaces
into a functor from N to itself that takes the n-dimensional normed space
(X, ‖ · ‖) to the 1-dimensional normed space (ΛnX,µ). While we shall often
abandon this viewpoint, it is a guiding principle throughout the paper with
which we would like to acquaint the reader early on.

Definition 3.2. A definition of volume on normed spaces assigns to every
n-dimensional, n ≥ 1, normed space X a normed space (ΛnX,µX) with the
following properties:

(1) If X and Y are n-dimensional normed spaces and T : X → Y is a short
linear map , then the induced linear map T∗ : ΛnX → ΛnY is also short.

(2) The map X 
→ (ΛnX,µX) is continuous with respect to the topology induced
by the Banach–Mazur distance.

(3) If X is Euclidean, then µX is the standard Euclidean volume on X.

Before presenting the principal definitions of volume in normed spaces, let us
make the first link between these concepts and the affine geometry of convex
bodies.

Exercise 3.3. Assume we have a definition of volume in normed spaces and
use it to assign a number to any centrally symmetric convex body B ⊂ R

n by
the following procedure: Consider R

n as the normed space X whose unit ball is
B and compute

V(B) := µX(B) =
∫

B

µX .

Show that if T : R
n → R

n is an invertible linear map, then V(B) = V(T (B)),
and write the monotonicity condition in terms of the affine invariant V.

Notice that we can turn the tables and start by considering a suitable affine
invariant V of centered convex bodies and give a definition of volume in normed
spaces by prescribing that the volume of the unit ball B of a normed space X

be given by V(B).

Exercise 3.4. Let µ be a definition of volume for 2-dimensional normed spaces.
Use John’s theorem to show that if B is the unit disc of a two-dimensional normed
space X, then π/2 ≤ µX(B) ≤ 2π.

3.1. Examples of definitions of volume in normed spaces. The study
of the four definitions of volume we shall describe below makes up the most
important part of the theory of volumes on normed and Finsler spaces.

The Busemann definition. The Busemann volume of an n-dimensional normed
space is that multiple of the Lebesgue measure for which the volume of the unit
ball equals the volume of the Euclidean unit ball in dimension n, εn, . In other
words, we have chosen as our affine invariant the constant εn, where n is the
dimension of the space.
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