Birth, Distress and Disease

This volume examines the role of steroids and peptides in the regulation of pregnancy and pregnancy outcome, and their long-term effects including possible influences on adult-onset diseases. During pregnancy the placenta acts as a central regulator and coordinator of maternal and fetal physiology, and of the onset of labor, through its production and regulation of steroids and peptides. Perturbations to this regulatory system can result in poor pregnancy outcome, such as preterm birth and low birth weight. These in turn are linked to diseases in later life. Intriguingly, many of these regulatory actions of steroids and peptides also occur in the brain. The induction and suppression of peptides by steroids appear to be the key to regulatory function in both brain and placenta. These various interweaving strands, linking basic sciences with obstetrics, are all reviewed in depth here producing a fascinating account of an important area of materno-fetal medicine.
Birth, Distress and Disease
Placental–Brain Interactions

Edited by
Michael L. Power
Smithsonian National Zoological Park
Washington DC, USA
American College of Obstetricians and Gynecologists
Washington DC, USA

and

Jay Schulkin
American College of Obstetricians and Gynecologists
Washington DC, USA
Georgetown University School of Medicine
Washington DC, USA
National Institute of Mental Health
Bethesda MD, USA
This volume is dedicated to the students and young (and not so young) scientists we confidently predict will extend and improve on the research presented here.

We would also like to acknowledge and thank certain individuals for the personal contributions they have made to one of us (JS): E. E. Krieckhaus; Ellen Oliver; and Stanley Schulkin.

Michael L. Power, Ph.D.
Jay Schulkin, Ph.D.
November 17, 2004
Contents

List of contributors page ix
Preface xi

Introduction: brain and placenta, birth and behavior, health and disease 1
Michael L. Power and Jay Schulkin

1 Placental expression of neurohormones and other neuroactive molecules in human pregnancy 16
Felice Petraglia, Pasquale Florio and Wylie W. Vale

2 The regulation of human parturition 74
Roger Smith, Sam Mesiano, Richard Nicholson, Vicki Clifton, Tarnas Zakar, Eng-Cheng Chan, Andrew Bisits and Warwick Giles

3 Maternal nutrition and metabolic control of pregnancy 88
Michael L. Power and Suzette D. Tardif

4 Fetal HPA activation, preterm birth and postnatal programming 114
Deborah M. Sloboda, Timothy J. M. Moss, John P. Newnham and John R. G. Challis

5 Prenatal glucocorticoids and the programming of adult disease 142
Jonathan R. Seckl, Amanda J. Drake and Megan C. Holmes

6 Prenatal stress and stress physiology influences human fetal and infant development 183
Elysia Poggi Davis, Calvin J. Hobel, Curt A. Sandman, Laura Glynn, Pathik D. Wadhwa

7 Glucocorticoids and the ups and downs of neuropeptide gene expression 202
Alan G. Watts
8 Glucocorticoid facilitation of corticotropin-releasing hormone in the placenta and the brain: functional impact on birth and behavior 235
Jay Schulkin, Louis Schmidt and Kristine Erickson

Index 269
List of contributors

Andrew Bisits
Mothers and Babies Research Centre, John Hunter Hospital, Newcastle, NSW, Australia

John R. G. Challis
Departments of Physiology, and Obstetrics and Gynaecology, University of Toronto, CIHR Group in Fetal and Neonatal Health and Development, CIHR Institute of Human Development, Child and Youth Health, Canada

Eng-Cheng Chan
Mothers and Babies Research Centre, John Hunter Hospital, Newcastle, NSW, Australia

Vicki Clifton
Mothers and Babies Research Centre, John Hunter Hospital, Newcastle, NSW, Australia

Elysia Poggi Davis
Department of Psychiatry and Human Behavior, University of California, Irvine, California, CA, USA

Amanda J. Drake
Endocrinology Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK

Kristine Erickson
Molecular Neuroimaging Branch, National Institute of Mental Health, Bethesda, MD, USA

Pasquale Florio
Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Siena School of Medicine, Siena, Italy

Warwick Giles
Mothers and Babies Research Centre, John Hunter Hospital, Newcastle, NSW, Australia

Laura Glynn
Department of Psychiatry and Human Behavior, University of California, Irvine, California, CA, USA

Calvin J. Hobel
Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California, CA, USA

Megan C. Holmes
Endocrinology Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK

Sam Mesiano
Mothers and Babies Research Centre, John Hunter Hospital, Newcastle, NSW, Australia

Timothy J. M. Moss
School of Women’s and Infants’ Health and the Women and Infants Research Foundation, University of Western Australia, Western Australia
List of contributors

John P. Newnham
School of Women’s and Infants’ Health and the Women and Infants Research Foundation, University of Western Australia, Western Australia

Richard Nicholson
Mothers and Babies Research Centre, John Hunter Hospital, Newcastle, NSW, Australia

Felice Petraglia
Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Siena School of Medicine, Siena, Italy

Michael L. Power
Department of Conservation Biology, Nutrition Laboratory, Smithsonian’s National Zoological Park, Washington DC, USA
Department of Research, American College of Obstetricians and Gynecologists, Washington DC, USA

Curt A. Sandman
Department of Psychiatry and Human Behavior, University of California, Irvine, California, CA, USA

Louis Schmidt
Department of Psychology, McMaster University, Canada

Jay Schulkin
Department of Physiology and Biophysics, Georgetown University School of Medicine; Clinical Neuroendocrinology Branch, National Institute of Mental Health; and Department of Research, American College of Obstetricians and Gynecologists, Washington DC, USA

Jonathan R. Seckl
Endocrinology Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK

Deborah M. Sloboda
School of Women’s and Infants’ Health and the Women and Infants Research Foundation, University of Western Australia, Western Australia

Roger Smith
Mothers and Babies Research Centre, John Hunter Hospital, Newcastle, NSW, Australia

Suzette D. Tardif
Southwest National Primate Research Center, San Antonio, TX, USA

Wylie W. Vale
Peptide Biology Laboratory, Salk Institute, La Jolla, California, CA, USA

Pathik D. Wadhwa
Departments of Psychiatry and Human Behavior, and Obstetrics and Gynecology, University of California, Irvine, California, CA, USA

Alan G. Watts
The NIBS-Neuroscience Program and Department of Biological Sciences, University of Southern California, Los Angeles, California, CA, USA

Tamas Zakar
Mothers and Babies Research Centre, John Hunter Hospital, Newcastle, NSW, Australia
In the summer of 2002, a small one-day conference was held at the offices of the American College of Obstetricians and Gynecologists in Washington DC. The purpose of the conference was to consider the implications of the intriguingly converging research areas of peptide regulation by steroids in both brain and placenta, and how these research findings might enhance our understanding of the physiological processes of human gestation and parturition. An important subtext of the discussion was how events and processes at the beginning of life can affect health and well-being decades later. Among the participants were both clinicians and basic scientists; the research presented concerned both human studies and comparative research on animal models; the perspectives examined ranged from clinical medicine to evolutionary biology.

Our understanding of the physiological and regulatory processes that underlie the timing and progression of labor and delivery remains incomplete. Perhaps the most graphic indication of our inadequate understanding of this fundamental biological process is the current lack of accurate and effective clinical tools to either predict or prevent preterm birth. In the USA, the rate of preterm birth continues to rise, and half of preterm births are classified as idiopathic.

Progress is being made, however. A key paradigm shift is replacing the idea of the placenta as a largely passive organ mainly responsible for delivering nutrients to the fetus with the concept of the placenta as a metabolically active, transitory endocrine organ that serves as an important central regulator of maternal and fetal physiology. The placenta is now known to produce a wider array of steroids, peptides, cytokines and other regulatory molecules than does any other organ in the body, except possibly the brain.

In the mid-1980s, independent groups, some working on the brain and others on the placenta, made important discoveries regarding the differential regulation of one such neuropeptide, corticotropin-releasing hormone (CRH), by cortisol. Previously, the received view was that CRH release and production was negatively restrained by cortisol; the paradigmatic example of this was the negative feedback
system of the hypothalamic–pituitary–adrenal axis. It turns out that in several areas of the brain (e.g. central nucleus of the amygdala, bed nucleus of the stria terminalis) and in the placenta, CRH release and production is induced by cortisol. Neural CRH is important in the induction of adaptive behaviors in response to conditions where high alertness and metabolic effort are appropriate (e.g. dangerous, fear-inducing situations). Placental CRH appears to play an important role in human gestation, fetal development and parturition, possibly either reflecting or serving as a gestational ‘clock’. Although initial enthusiasm for placental CRH as a predictor of preterm labor has been tempered, recent research has suggested that it, indeed, may have clinical value (Wadhwa et al., 2004).

This volume was inspired by the talks and discussions that occurred during the meeting in Washington DC in the summer of 2002. We strove to put together a book that reflects the diversity of research relevant to understanding neural and placental physiology, their intriguing similarities, and how these diverse lines of research can contribute to understanding human biology and improving health. We could not include all relevant areas in a single volume, and we apologize to our colleagues and other scientists whose work is not represented here.

REFERENCE