
CHAPTER FIVE

Encryption Schemes

Up to the 1970s, Cryptography was understood as the art of building encryption
schemes, that is, the art of constructing schemes allowing secret data exchange over
insecure channels. Since the 1970s, other tasks (e.g., signature schemes) have been
recognized as falling within the domain of Cryptography (and even being at least as
central to Cryptography). Yet the construction of encryption schemes remains, and is
likely to remain, a central enterprise of Cryptography.

In this chapter we review the well-known notions of private-key and public-key
encryption schemes. More importantly, we define what is meant by saying that such
schemes are secure. This definitional treatment is a cornerstone of the entire area,
and much of this chapter is devoted to various aspects of it. We also present several
constructions of secure (private-key and public-key) encryption schemes. It turns out
that using randomness during the encryption process (i.e., not only at the key-generation
phase) is essential to security.

Organization. Our main treatment (i.e., Sections 5.1–5.3) refers to security under
“passive” (eavesdropping) attacks. In contrast, in Section 5.4, we discuss notions of se-
curity under active attacks, culminating in robustness against chosen ciphertext attacks.
Additional issues are discussed in Section 5.5.

TeachingTip. We suggest to focus on the basic definitional treatment (i.e., Sections 5.1
and 5.2.1–5.2.4) and on the the feasibility of satisfying these definitions (as demon-
started by the simplest constructions provided in Sections 5.3.3 and 5.3.4.1). The
overview to security under active attacks (i.e., Section 5.4.1) is also recommended.
We assume that the reader is familiar with the material in previous chapters (and
specifically with Sections 2.2, 2.4, 2.5, 3.2–3.4, and 3.6). This familiarity is important
not only because we use some of the notions and results presented in these sections but
also because we use similar proof techniques (and do so while assuming that this is not
the reader’s first encounter with these techniques).
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ENCRYPTION SCHEMES

5.1. The Basic Setting

Loosely speaking, encryption schemes are supposed to enable private exchange of
information between parties that communicate over an insecure channel. Thus, the basic
setting consists of a sender, a receiver, and an insecure channel that may be tapped by
an adversary. The goal is to allow the sender to transfer information to the receiver,
over the insecure channel, without letting the adversary figure out this information.
Thus, we distinguish between the actual (secret) information that the receiver wishes to
transmit and the message(s) sent over the insecure communication channel. The former
is called the plaintext, whereas the latter is called the ciphertext. Clearly, the ciphertext
must differ from the plaintext or else the adversary can easily obtain the plaintext by
tapping the channel. Thus, the sender must transform the plaintext into a corresponding
ciphertext such that the receiver can retrieve the plaintext from the ciphertext, but the
adversary cannot do so. Clearly, something must distinguish the receiver (who is able
to retrieve the plaintext from the corresponding ciphertext) from the adversary (who
cannot do so). Specifically, the receiver knows something that the adversary does not
know. This thing is called a key.

An encryption scheme consists of a method of transforming plaintexts into cipher-
texts and vice versa, using adequate keys. These keys are essential to the ability to effect
these transformations. Formally, these transformations are performed by corresponding
algorithms: an encryption algorithm that transforms a given plaintext and an adequate
(encryption) key into a corresponding ciphertext, and a decryption algorithm that given
the ciphertext and an adequate (decryption) key recovers the original plaintext. Actu-
ally, we need to consider a third algorithm, namely, a probabilistic algorithm used to
generate keys (i.e., a key-generation algorithm). This algorithm must be probabilistic
(or else, by invoking it, the adversary obtains the very same key used by the receiver).
We stress that the encryption scheme itself (i.e., the aforementioned three algorithms)
may be known to the adversary, and the scheme’s security relies on the hypothesis that
the adversary does not know the actual keys in use.1

In accordance with these principles, an encryption scheme consists of three
algorithms. These algorithms are public (i.e., known to all parties). The two obvious
algorithms are the encryption algorithm, which transforms plaintexts into ciphertexts,
and the decryption algorithm, which transforms ciphertexts into plaintexts. By these
principles, it is clear that the decryption algorithm must employ a key that is known
to the receiver but is not known to the adversary. This key is generated using a third
algorithm, called the key-generator. Furthermore, it is not hard to see that the encryp-
tion process must also depend on the key (or else messages sent to one party can be
read by a different party who is also a potential receiver). Thus, the key-generation
algorithm is used to produce a pair of (related) keys, one for encryption and one for de-
cryption. The encryption algorithm, given an encryption-key and a plaintext, produces
a ciphertext that when fed to the decryption algorithm, together with the corresponding

1 In fact, in many cases, the legitimate interest may be served best by publicizing the scheme itself, because this
allows an (independent) expert evaluation of the security of the scheme to be obtained.
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The key K is known to both receiver and sender, but is unknown to
the adversary. For example, the receiver may generate K at random
and pass it to the sender via a perfectly-private secondary channel (not
shown here).

Figure 5.1: Private-key encryption schemes: an illustration.

decryption-key, yields the original plaintext.We stress that knowledgeof the decryption-
key is essential for the latter transformation.

5.1.1. Private-Key Versus Public-Key Schemes

A fundamental distinction between encryption schemes refers to the relation between
the aforementioned pair of keys (i.e., the encryption-key and the decryption-key). The
simpler (and older) notion assumes that the encryption-key equals the decryption-key.
Such schemes are called private-key (or symmetric).

Private-Key Encryption Schemes. To use a private-key scheme, the legitimate parties
must first agree on the secret key. This can be done by having one party generate the
key at random and send it to the other party using a (secondary) channel that (unlike
the main channel) is assumed to be secure (i.e., it cannot be tapped by the adversary). A
crucial point is that the key is generated independently of the plaintext, and so it can be
generated and exchanged prior to the plaintext even being determined. Assuming that
the legitimate parties have agreed on a (secret) key, they can secretly communicate
by using this key (see illustration in Figure 5.1): The sender encrypts the desired
plaintext using this key, and the receiver recovers the plaintext from the corresponding
ciphertext (by using the same key). Thus, private-key encryption is a way of extending
a private channel over time: If the parties can use a private channel today (e.g., they
are currently in the same physical location) but not tomorrow, then they can use the
private channel today to exchange a secret key that they may use tomorrow for secret
communication.

A simple example of a private-key encryption scheme is the one-time pad. The
secret key is merely a uniformly chosen sequence of n bits, and an n-bit long ci-
phertext is produced by XORing the plaintext, bit-by-bit, with the key. The plaintext
is recovered from the ciphertext in the same way. Clearly, the one-time pad provides
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The key-pair (e, d) is generated by the receiver, who posts the
encryption-key e on a public media, while keeping the decryption-key
d secret.

Figure 5.2: Public-key encryption schemes: an illustration.

absolute security. However, its usage of the key is inefficient; or, put in other words,
it requires keys of length comparable to the total length (or information contents) of
the data being communicated. By contrast, the rest of this chapter will focus on en-
cryption schemes in which n-bit long keys allow for the secure communication of
data having an a priori unbounded (albeit polynomial in n) length. In particular, n-bit
long keys allow for significantly more than n bits of information to be communicated
securely.

Public-Key Encryption Schemes. A new type of encryption schemes emerged in
the 1970s. In these so-called public-key (or asymmetric) encryption schemes, the
decryption-key differs from the encryption-key. Furthermore, it is infeasible to find the
decryption-key, given the encryption-key. These schemes enable secure communication
without the use of a secure channel. Instead, each party applies the key-generation
algorithm to produce a pair of keys. The party (denoted P) keeps the decryption-key,
denoted dP , secret and publishes the encryption-key, denoted eP . Now, any party can
send P private messages by encrypting them using the encryption-key eP . Party P can
decrypt these messages by using the decryption-key dP , but nobody else can do so.
(See illustration in Figure 5.2.)

5.1.2. The Syntax of Encryption Schemes

We start by defining the basic mechanism of encryption schemes. This definition says
nothing about the security of the scheme (which is the subject of the next section).

Definition 5.1.1 (encryption scheme): An encryption scheme is a triple, (G, E , D),
of probabilistic polynomial-time algorithms satisfying the following two conditions:

1. On input 1n, algorithm G (called the key-generator) outputs a pair of bit strings.
2. For every pair (e, d) in the range of G(1n), and for every α ∈ {0, 1}∗, algorithms E
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5.1 THE BASIC SETTING

(encryption) and D (decryption) satisfy

Pr[D(d, E(e, α))=α] = 1

where the probability is taken over the internal coin tosses of algorithms E and D.

The integer n serves as the security parameter of the scheme. Each (e, d) in the range
of G(1n) constitutes a pair of corresponding encryption/decryption keys. The string
E(e, α) is the encryption of the plaintextα ∈ {0, 1}∗ using the encryption-key e,whereas
D(d, β) is the decryption of the ciphertext β using the decryption-key d.

We stress that Definition 5.1.1 says nothing about security, and so trivial (insecure)
algorithms may satisfy it (e.g., E(e, α)

def= α and D(d, β)
def= β). Furthermore, Defini-

tion 5.1.1 does not distinguish private-key encryption schemes from public-key ones.
The difference between the two types is introduced in the security definitions: In a
public-key scheme the “breaking algorithm” gets the encryption-key (i.e., e) as an ad-
ditional input (and thus e �= d follows), while in private-key schemes e is not given to
the “breaking algorithm” (and thus, one may assume, without loss of generality, that
e = d).

We stress that this definition requires the scheme to operate for every plaintext,
and specifically for plaintext of length exceeding the length of the encryption-key.
(This rules out the information theoretic secure “one-time pad” scheme mentioned
earlier.)

Notation. In the rest of this text, we write Ee(α) instead of E(e, α) and Dd (β) instead
of D(d, β). Sometimes, when there is little risk of confusion, we drop these subscripts.
Also, we let G1(1n) (resp., G2(1n)) denote the first (resp., second) element in the
pair G(1n). That is, G(1n) = (G1(1n), G2(1n)). Without loss of generality, we may
assume that |G1(1n)| and |G2(1n)| are polynomially related to n, and that each of these
integers can be efficiently computed from the other. (In fact, we may even assume that
|G1(1n)| = |G2(1n)| = n; see Exercise 6.)

Comments. Definition 5.1.1maybe relaxed in severalwayswithout significantly harm-
ing its usefulness. For example, we may relax Condition (2) and allow a negligible de-
cryption error (e.g., Pr[Dd (Ee(α)) �=α] < 2−n). Alternatively, one may postulate that
Condition (2) holds for all but a negligible measure of the key-pairs generated byG(1n).
At least one of these relaxations is essential for some suggestions of (public-key) en-
cryption schemes.

Another relaxation consists of restricting the domain of possible plaintexts (and
ciphertexts). For example, one may restrict Condition (2) to α’s of length �(n), where
� : N→N is some fixed function. Given a scheme of the latter type (with plaintext
length �), we may construct a scheme as in Definition 5.1.1 by breaking plaintexts into
blocks of length �(n) and applying the restricted scheme separately to each block. (Note
that security of the resulting scheme requires that the security of the length-restricted
scheme be preserved under multiple encryptions with the same key.) For more details
see Sections 5.2.4 and 5.3.2.
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ENCRYPTION SCHEMES

5.2. Definitions of Security

In this section we present two fundamental definitions of security and prove their equiv-
alence. The first definition, called semantic security, is the most natural one. Semantic
security is a computational-complexity analogue of Shannon’s definition of perfect pri-
vacy (which requires that the ciphertext yield no information regarding the plaintext).
Loosely speaking, an encryption scheme is semantically secure if it is infeasible to
learn anything about the plaintext from the ciphertext (i.e., impossibility is replaced
by infeasibility). The second definition has a more technical flavor. It interprets se-
curity as the infeasibility of distinguishing between encryptions of a given pair of
messages. This definition is useful in demonstrating the security of a proposed encryp-
tion scheme and for the analysis of cryptographic protocols that utilize an encryption
scheme.

We stress that the definitions presented in Section 5.2.1 go far beyond saying that it
is infeasible to recover the plaintext from the ciphertext. The latter statement is indeed a
minimal requirement for a secure encryption scheme, but we claim that it is far tooweak
a requirement. For example, one should certainly not use an encryption scheme that
leaks the first part of the plaintext (even if it is infeasible to recover the entire plaintext
from the ciphertext). In general, an encryption scheme is typically used in applications
where even obtaining partial information on the plaintext may endanger the security
of the application. The question of which partial information endangers the security
of a specific application is typically hard (if not impossible) to answer. Furthermore,
we wish to design application-independent encryption schemes, and when doing so
it is the case that each piece of partial information may endanger some application.
Thus, we require that it be infeasible to obtain any information about the plaintext
from the ciphertext. Moreover, in most applications the plaintext may not be uniformly
distributed, and some a priori information regarding itmay be available to the adversary.
We thus require that the secrecy of all partial information be preserved also in such a
case. That is, given any a priori information on the plaintext, it is infeasible to obtain
any (new) information about the plaintext from the ciphertext (beyond what is feasible
to obtain from the a priori information on the plaintext). The definition of semantic
security postulates all of this.

Security of Multiple Plaintexts. Continuing the preceding discussion, the definitions
are presented first in terms of the security of a single encrypted plaintext. However,
in many cases, it is desirable to encrypt many plaintexts using the same encryption-
key, and security needs to be preserved in these cases, too. Adequate definitions and
discussions are deferred to Section 5.2.4.

ATechnical Comment: Non-UniformComplexity Formulation. To simplify the ex-
position, we define security in terms of non-uniform complexity (see Section 1.3.3 of
Volume 1). Namely, in the security definitions we expand the domain of efficient adver-
saries (and algorithms) to include (explicitly or implicitly) non-uniformpolynomial-size
circuits, rather than only probabilistic polynomial-time machines. Likewise, we make
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5.2 DEFINITIONS OF SECURITY

no computational restriction regarding the probability distribution fromwhichmessages
are taken, nor regarding the a priori information available on these messages. We note
that employing such a non-uniform complexity formulation (rather than a uniform one)
may only strengthen the definitions, yet it does weaken the implications proven between
the definitions because these (simpler) proofs make free usage of non-uniformity. A
uniform-complexity treatment is provided in Section 5.2.5.

5.2.1. Semantic Security

A good disguise should not reveal the person’s height.
Shafi Goldwasser and Silvio Micali, 1982

Loosely speaking, semantic security means that nothing can be gained by looking
at a ciphertext. Following the simulation paradigm, this means that whatever can be
efficiently learned from the ciphertext can also be efficiently learned from scratch (or
from nothing).

5.2.1.1. The Actual Definitions

To be somewhatmore accurate, semantic securitymeans that whatever can be efficiently
computed from the ciphertext can be efficiently computed when given only the length
of the plaintext. Note that this formulation does not rule out the possibility that the
length of the plaintext can be inferred from the ciphertext. Indeed, some information
about the length of the plaintext must be revealed by the ciphertext (see Exercise 4).
We stress that other than information about the length of the plaintext, the ciphertext is
required to yield nothing about the plaintext.

In the actual definitions, we consider only information regarding the plaintext (rather
than information regarding the ciphertext and/or the encryption-key) that can be ob-
tained from the ciphertext. Furthermore, we restrict our attention to functions (rather
than randomized processes) applied to the plaintext. We do so because of the intuitive
appeal of this special case, and are comfortable doing so because this special case im-
plies the general one (see Exercise 13). We augment this formulation by requiring that
the infeasibility of obtaining information about the plaintext remain valid even in the
presence of other auxiliary partial information about the same plaintext. Namely, what-
ever can be efficiently computed from the ciphertext and additional partial information
about the plaintext can be efficiently computed given only the length of the plaintext and
the same partial information. In the definition that follows, the information regarding the
plaintext that the adversary tries to obtain is represented by the function f, whereas the
a priori partial information about the plaintext is represented by the function h. The in-
feasibility of obtaining information about the plaintext is required to hold for any
distribution of plaintexts, represented by the probability ensemble {Xn}n∈N.

Security holds only for plaintexts of length polynomial in the security parameter. This
is captured in the following definitions by the restriction |Xn| ≤ poly(n), where “poly”
represents an arbitrary (unspecified) polynomial. Note that we cannot hope to provide
computational security for plaintexts of unbounded length or for plaintexts of length
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ENCRYPTION SCHEMES

that is exponential in the security parameter (see Exercise 3). Likewise, we restrict the
functions f and h to be polynomially-bounded, that is, | f (z)|, |h(z)| ≤ poly(|z|).

The difference between private-key and public-key encryption schemes ismanifested
in the definition of security. In the latter case, the adversary (which is trying to obtain
information on the plaintext) is given the encryption-key, whereas in the former case
it is not. Thus, the difference between these schemes amounts to a difference in the
adversary model (considered in the definition of security). We start by presenting the
definition for private-key encryption schemes.

Definition 5.2.1 (semantic security – private-key): An encryption scheme, (G, E , D),
is semantically secure (in the private-key model) if for every probabilistic polynomial-
time algorithm A there exists a probabilistic polynomial-time algorithm A′ such that
for every probability ensemble {Xn}n∈N, with |Xn| ≤ poly(n), every pair of polynomi-
ally bounded functions f, h : {0, 1}∗ → {0, 1}∗, every positive polynomial p and all
sufficiently large n

Pr
[
A(1n , EG1(1n )(Xn), 1

|Xn |, h(1n , Xn))= f (1n , Xn)
]

< Pr
[
A′(1n , 1|Xn |, h(1n , Xn))= f (1n , Xn)

] + 1

p(n)

(The probability in these terms is taken over Xn as well as over the internal coin tosses
of either algorithms G, E, and A or algorithm A′.)

We stress that all the occurrences of Xn in each of the probabilistic expressions re-
fer to the same random variable (see the general convention stated in Section 1.2.1
in Volume 1). The security parameter 1n is given to both algorithms (as well as to the
functions h and f ) for technical reasons.2 The function h provides both algorithms with
partial information regarding the plaintext Xn . Furthermore, h also makes the defini-
tion implicitly non-uniform; see further discussion in Section 5.2.1.2. In addition, both
algorithms get the length of Xn . These algorithms then try to guess the value f (1n , Xn);
namely, they try to infer information about the plaintext Xn . Loosely speaking, in a se-
mantically secure encryption scheme the ciphertext does not help in this inference task.
That is, the success probability of any efficient algorithm (i.e., algorithm A) that is given
the ciphertext can be matched, up to a negligible fraction, by the success probability of
an efficient algorithm (i.e., algorithm A′) that is not given the ciphertext at all.

Definition 5.2.1 refers to private-key encryption schemes. To derive a definition of
security for public-key encryption schemes, the encryption-key (i.e., G1(1n)) should
be given to the adversary as an additional input.

2 The auxiliary input 1n is used for several purposes. First, it allows smooth transition to fully non-uniform
formulations (e.g., Definition 5.2.3) in which the (polynomial-size) adversary depends on n. Thus, it is good to
provide A (and thus also A′) with 1n . Once this is done, it is natural to allow also h and f to depend on n. In
fact, allowing h and f to explicitly depend on n facilitates the proof of Proposition 5.2.7. In light of the fact
that 1n is given to both algorithms, we may replace the input part 1|Xn | by |Xn |, because the former may be
recovered from the latter in poly(n)-time.
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5.2 DEFINITIONS OF SECURITY

Definition 5.2.2 (semantic security – public-key): An encryption scheme, (G, E , D),
is semantically secure (in the public-key model) if for every probabilistic polynomial-
time algorithm A, there exists a probabilistic polynomial-time algorithm A′ such that
for every {Xn}n∈N, f, h, p, and n as in Definition 5.2.1

Pr
[
A(1n , G1(1

n), EG1(1n )(Xn), 1
|Xn |, h(1n , Xn))= f (1n , Xn)

]

< Pr
[
A′(1n , 1|Xn |, h(1n , Xn))= f (1n , Xn)

] + 1

p(n)

Recall that (by our conventions) both occurrences of G1(1n), in the first probabilistic
expression, refer to the same random variable. We comment that it is pointless to give
the random encryption-key (i.e., G1(1n)) to algorithm A′ (because the task as well as
the main inputs of A′ are unrelated to the encryption-key, and anyhow A′ could generate
a random encryption-key by itself).

Terminology. For sake of simplicity, we refer to an encryption scheme that is seman-
tically secure in the private-key (resp., public-key) model as a semantically secure
private-key (resp., public-key) encryption scheme.

The reader may note that a semantically secure public-key encryption scheme cannot
employ a deterministic encryption algorithm; that is, Ee(x) must be a random variable
rather than a fixed string. This is more evident with respect to the equivalent Defini-
tion 5.2.4. See further discussion following Definition 5.2.4.

5.2.1.2. Further Discussion of Some Definitional Choices

We discuss several secondary issues regarding Definitions 5.2.1 and 5.2.2. The in-
terested reader is also referred to Exercises 16, 17, and 19, which present additional
variants of the definition of semantic security.

Implicit Non-Uniformity of the Definitions. The fact that h is not required to be
computable makes these definitions non-uniform. This is the case because both algo-
rithms are given h(1n , Xn) as auxiliary input, and the latter may account for arbitrary
(polynomially bounded) advice. For example, letting h(1n , ·) = an ∈ {0, 1}poly(n) means
that both algorithms are supplied with (non-uniform) advice (as in one of the com-
mon formulations of non-uniform polynomial-time; see Section 1.3.3). In general, the
function h can code both information regarding its main input and non-uniform ad-
vice depending on the security parameter (i.e., h(1n , x) = (h′(x), an)). We comment
that these definitions are equivalent to allowing A and A′ to be related families of non-
uniform circuits, where by related wemean that the circuits in the family A′ = {A′

n}n∈N

can be efficiently computed from the corresponding circuits in the family A = {An}n∈N.
For further discussion, see Exercise 9.

Lack of Computational Restrictions Regarding the Function f. We do not even
require that the function f be computable. This seems strange at first glance because
(unlike the situation with respect to the function h, which codes a priori information
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ENCRYPTION SCHEMES

given to the algorithms) the algorithms are asked to guess the value of f (at a plaintext
implicit in the ciphertext given only to A). However, as we shall see in the sequel (see
also Exercise 13), the actual technical content of semantic security is that the proba-
bility ensembles {(1n , E(Xn), 1|Xn |, h(1n , Xn))}n and {(1n , E(1|Xn |), 1|Xn |, h(1n , Xn))}n
are computationally indistinguishable (and so whatever A can compute can also be
computed by A′). Note that the latter statement does not refer to the function f , which
explains why we need not make any restriction regarding f.

Other Modifications of No Impact. Actually, inclusion of a priori information re-
garding the plaintext (represented by the function h) does not affect the definition of
semantic security: Definition 5.2.1 remains intact if we restrict h to only depend on
the security parameter (and so only provide plaintext-oblivious non-uniform advice).
(This can be shown in various ways; e.g., see Exercise 14.1.) Also, the function f can
be restricted to be a Boolean function having polynomial-size circuits, and the random
variable Xn may be restricted to be very “dull” (e.g., have only two strings in its sup-
port): See proof of Theorem 5.2.5. On the other hand, Definition 5.2.1 implies stronger
forms discussed in Exercises 13, 17 and 18.

5.2.2. Indistinguishability of Encryptions

A good disguise should not allow a mother to distinguish her own children.
Shafi Goldwasser and Silvio Micali, 1982

The following technical interpretation of security states that it is infeasible to distinguish
the encryptions of two plaintexts (of the same length). That is, such ciphertexts are
computationally indistinguishable as defined in Definition 3.2.7. Again, we start with
the private-key variant.

Definition 5.2.3 (indistinguishability of encryptions – private-key): An encryption
scheme, (G, E , D), has indistinguishable encryptions (in the private-key model) if
for every polynomial-size circuit family {Cn}, every positive polynomial p, all suffi-
ciently large n, and every x , y ∈ {0, 1}poly(n) (i.e., |x | = |y|),

| Pr
[
Cn(EG1(1n )(x))=1

] − Pr
[
Cn(EG1(1n )(y))=1

] | <
1

p(n)

The probability in these terms is taken over the internal coin tosses of algorithms G
and E.

Note that the potential plaintexts to be distinguished can be incorporated into the circuit
Cn . Thus, the circuit models both the adversary’s strategy and its a priori information:
See Exercise 11.

Again, the security definition for public-key encryption schemes is derived by adding
the encryption-key (i.e., G1(1n)) as an additional input to the potential distinguisher.
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