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Introduction

Many problems of practical interest involve non-linear behavior of solids
and structures. In the present context a solid means a body with a firm
shape, as opposed to a fluid, while a structure refers to a solid composed
of slender elements such as beams, plates and shells. Typical problems
are the motion of robots, collapse scenarios of structures, metal forming
processes in industrial production, and material deformation and failure in
geotechnical engineering. These problems typically involve a considerable
change of shape, often accompanied by non-linear material behavior.

The finite element method is an important tool for the analysis of non-
linear problems, such as geometrical and material non-linear behavior of
solids and structures. The solution of non-linear problems by the finite
element method involves modeling, leading to the formulation of an appro-
priate set of non-linear equations describing the problem, followed by an
appropriate strategy for the numerical solution of these equations. In con-
trast to linear problems, where the solution strategy reduces to the solution
of a system of linear equations, the solution phase in a non-linear problem
typically involves an iterative procedure.

Non-linear modeling and analysis is a very active research area with many
engineering applications. The many different aspects involved are not cov-
ered in any single text. However, some central references to general texts
should be given here. A brief introduction to some of the basic problems
of non-linear finite element analysis of solids and structures is included in
the book by Cook et al. (1989). A general state-of-the-art presentation of
the finite element method, including the non-linear aspects of solids, struc-
tures and fluids, has been given in Zienkiewicz and Taylor (2000). A pre-
sentation with main emphasis on incremental formulation of geometrically
non-linear problems, including details of implementation, has been given by
Bathe (1996). The books by Crisfield (1991, 1997) and Belytschko et al.
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2 Introduction

(2000) are entirely devoted to non-linear analysis of solids and structures,
combining illustrative examples with specific finite element procedures.

The present text is an introduction to some of the central ideas of non-
linear modeling and finite element analysis. It covers theoretical aspects of
geometric and material non-linearity and associated numerical techniques.
The text proceeds from the elementary level to a fairly rigorous presenta-
tion of ideas used in current research. Only the main ideas can be covered,
and the references should be consulted according to need. This first chap-
ter gives an illustration of geometric non-linear behavior with reference to
a simple two-element truss model. The example serves as a vehicle for an
informal introduction to a non-linear load–displacement relation, the tan-
gent stiffness, and the relation between the equilibrium and the virtual work
approach to the problem. The example also provides a simple realistic non-
linear equation on which to try different variants of the Newton–Raphson
solution technique.

1.1 A simple non-linear problem

The simple two-element truss model shown in Fig. 1.1 has often been used
to illustrate some basic features of geometric non-linear behavior, see e.g.
Bathe (1996, p. 494) and Crisfield (1991, pp. 2–13). The structure consists
of two identical truss elements, loaded with a vertical force f at the center
and simply supported at the other ends. The vertical displacement at the
center is called u. In the initial configuration the length of the bars is l0.

Fig. 1.1. Two-element truss model.

Application of the load leads to a deformed state with vertical displace-
ment u of the central node, Fig. 1.2. The structure is assumed to be shallow,
i.e. a � b. This permits series expansion of the square roots defining the
original bar length l0 and the bar length l corresponding to the current
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1.1 A simple non-linear problem 3

deformed state:
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, (1.1)
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)2]
. (1.2)

Fig. 1.2. Initial length l0 and current length l.

The deformation of the bars is described by their elongation. A non-
dimensional measure of deformation is the engineering strain, defined as the
elongation relative to the original length,

ε =
l − l0

l0
� a

l0

u

l0
+

1
2

( u

l0

)2
. (1.3)

The first term is the linear part of the strain, while the second term is non-
linear. A true measure of deformation must not be influenced by any rigid
body motion of the bar, and thus a true deformation measure must be a non-
linear function of the displacement component(s). If the displacement u is
small relative to all characteristic lengths of the geometry – l0 and a – the
linear term will constitute a fair approximation, but if this approximation is
used, some of the characteristic non-linear features of the problem are lost.

1.1.1 Equilibrium

The two bars are assumed to be linear elastic with axial stiffness EA, where
E is the elastic modulus and A is the cross-section area. Thus, the axial
force in each bar is expressed in terms of the strain as

N = EA ε � EA
[ a

l0

u

l0
+

1
2

( u

l0

)2]
. (1.4)

Equilibrium of the central node in the deformed state requires that the
external force f is equal to the internal force g(u) generated by deformation
of the structure. Projection of the normal force gives

g(u) = 2N
a + u

l
� 2EA

l30

(
au + 1

2u2)(a + u). (1.5)
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4 Introduction

In non-dimensional form this is

g(u) = 2EA
( a

l0

)3[ u
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+
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2
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a

)3]
, (1.6)

where the normalized displacement is u/a. The load–displacement relation
(1.6) is shown in Fig. 1.3 corresponding to a downward load.

Fig. 1.3. Load–displacement curve for two-element truss.

From the unloaded state A an increasing downward load leads to a local
maximum B. In this state the structure cannot support a further increase
of the load. Thus, further increase of the load from B would lead to snap-
through to F . The snap-through is an unstable dynamic process, and thus
the load–displacement curve in Fig. 1.3 is not fully representative. Alter-
natively the structure may be loaded in displacement control, in which the
central node is given a controlled downward displacement −u. This would
require an increasing load from A to B, and then a decreasing load from B

to C, where u = −a and the two bars form a straight line. An upward force
is now required to proceed to D and E, where the structure is stress-free,
forming an angle symmetric to the original configuration with respect to the
base line. Further downward load leads through F with increasing stiffness
of the structure.

For a structure with one degree of freedom, the stiffness is a measure of
the change in force for a given change in displacement. Thus, the tangent
stiffness K is defined as the stiffness corresponding to infinitesimal changes
in u and g:

K =
dg

du
. (1.7)

In the present case the tangent stiffness K follows from straightforward
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1.1 A simple non-linear problem 5

differentiation of (1.6):

K =
2EA
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Although this expression defines the tangent stiffness K, it does not convey
the physics of the problem very clearly. This is better accomplished by
differentiation of the equilibrium equation (1.5):

K =
d

du

(
2N

a + u

l0

)
= 2

EA

l0

(a + u

l0

)2
+ 2

N

l0
. (1.9)

Here a + u is the height of the structure in the current state, while N is
the current value of the axial force. The first term is due to changes in the
normal force N , while the second term is due to changes in the geometric
configuration with constant normal force N . Sometimes the first term is
separated into a constant corresponding to u = 0 and the rest, whereby
(1.9) takes the form

K = 2
EA

l0

(
a

l0

)2

+ 2
EA

l0

2au + u2

l20
+ 2

N

l0

= K0 + Ku + Kσ, (1.10)

where K0 is the linear stiffness, Ku is the initial displacement stiffness, and
Kσ is the initial stress stiffness. In an incremental procedure, where the
geometry is updated, the current value of u is absorbed in the updated
value of a, and in that case the initial displacement stiffness Ku vanishes.

Fig. 1.4. Load–displacement curve for two-element truss with spring.

A family of load–displacement curves with different degrees of non-linearity
can be obtained by introducing a vertical linear elastic spring with stiffness
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6 Introduction

k at the central node of the structure. The load–displacement relation (1.6)
is changed to

g(u) = 2EA
( a
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)3[ u
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)3 ]
+ ku (1.11)

and the tangent stiffness (1.8) to
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)2 ]
+ k. (1.12)

Figure 1.4 shows the load–displacement curve for different values of the
spring stiffness k. For k ≥ EAa2/l30 the variation of load with displacement
is monotonic, corresponding to K ≥ 0.

1.1.2 Virtual work and potential energy

The load–displacement relations (1.6) and (1.11) were obtained from equi-
librium of the center node. For structures with more degrees of freedom or
more complicated elements it is often convenient to make use of the principle
of virtual work. Essentially, the principle of virtual work is a restatement
of a set of equilibrium equations, where each equation is multiplied by a
corresponding infinitesimal virtual displacement component. With an ap-
propriate definition of the force and displacement components summation
of their products forms a scalar invariant, known as the virtual work.

In the particular example of the two-element truss with an elastic spring
the equilibrium equation can be written as

2 N
a + u

l
+ ku − f = 0. (1.13)

Multiplication by a virtual displacement δu gives the virtual work equation

δV = 2 N
a + u

l
δu + (ku)δu − fδu = 0. (1.14)

The displacement factor in the first term is similar to the first variation of
the strain (1.3):

δε =
∂

∂u
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)2 ]
δu =

a + u

l0

δu

l0
. (1.15)

If, for the time being, the difference between l0 and l is neglected, the virtual
work equation (1.14) can now be written as

δV � 2
∫ l0

0
N δε ds + (ku) δu − f δu = 0. (1.16)

The integral is the internal virtual work of the bar elements, the second term
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1.2 Simple non-linear solution methods 7

is the virtual work of the elastic spring, while the last term is the external
virtual work.

Apart from the factor l0/l that is somehow missing, the use of virtual work
in the present case where δε is constant within the elements is almost trivial.
However, for more general problems with more degrees of freedom and non-
trivial displacement fields within the elements, the principle of virtual work
is an important tool for establishing the balance equations of the discretized
model. The question of the factor l0/l is discussed in Chapter 2, where the
theory of non-linear bar elements is discussed more rigorously. Here, the
relation between virtual work and potential energy is discussed briefly before
turning to elementary numerical solution methods for non-linear equilibrium
equations.

When the internal forces such as the axial force N and the spring force
ku are functions of the state of displacement given by u, and the external
load is also a function of u, the virtual work δV can be considered as the
differential of an energy function Φ(u) – the potential energy. In the present
case (1.16) is written as

δΦ(u) = 2
∫ l0

0
EA εδε ds + ku δu − f δu. (1.17)

This relation can be integrated with respect to the displacement u, giving
the following expression for the potential energy:

Φ(u) = 2
∫ l0

0

1
2EAε2 ds + 1

2k u2 − fu. (1.18)

The potential energy is the internal strain energy of the structure, including
the spring, minus the external work represented by fu. For linear elas-
tic structures it may be simpler to derive the equilibrium equations from
the potential energy by considering an incremental change δu of the dis-
placements. However, the principle of virtual work is valid irrespective of
the specific material behavior, and thus the principle of virtual work has
become the method of choice for setting up equilibrium equations.

1.2 Simple non-linear solution methods

For a system with only one degree of freedom non-linear behavior can often
be described explicitly as a function of the displacement u, and the problem
may then be considered as one of displacement control. However, in the case
of several degrees of freedom the use of displacement control is non-trivial,
and most problems are formulated in terms of a load history, for which
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8 Introduction

the corresponding displacement history is to be calculated. This requires
the solution of a system of non-linear equations. Here some of the simpler
methods for solving non-linear equations are briefly introduced, leaving more
specialized techniques to Chapter 8. The methods are illustrated for a single
degree of freedom and then generalized to matrix form.

1.2.1 Explicit incremental method

An explicit incremental method, often called the Euler explicit method, is
obtained by replacing the differentials in the definition (1.7) of the tangent
stiffness with finite increments ∆f and ∆u:

∆u = K−1 ∆f. (1.19)

The load–displacement history is described by a number of increments ∆fn,
∆un, n = 1, 2, . . . defining the states

fn = fn−1 + ∆fn, un = un−1 + ∆un, n = 1, 2, . . . (1.20)

In the explicit incremental method the tangent stiffness K corresponds to the
state at the beginning of the increment. Thus, the precise form of (1.19) is

∆un = K−1(un−1) ∆fn, n = 1, 2, . . . (1.21)

This procedure is illustrated in Fig. 1.5.

Fig. 1.5. Explicit incremental method.

It is seen that the computed states deviate more and more from the ex-
act load–displacement curve. There are two reasons for this: the tangent
stiffness of each increment is taken at the left end-point and in this particu-
lar case overestimates the stiffness, and deviations from the exact curve are
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1.2 Simple non-linear solution methods 9

added to a cumulative error. While it is difficult to use an exact represen-
tation for the stiffness corresponding to the full increment, the problem of
increasing deviations can be countered by introducing equilibrium iterations
as discussed in the following.

The explicit incremental method is easily generalized to multi-degree of
freedom systems. Let the displacement vector be u and the corresponding
load vector f . The tangent stiffness matrix K is then defined by

df = K(u) du. (1.22)

The corresponding explicit incremental method is

∆un = K−1(un−1) ∆fn, n = 1, 2, . . . (1.23)

The use of the inverse matrix K−1 in (1.23) should not be taken literally.
In practice the matrix K is factored and the product K−1∆f found by back
substitution.

1.2.2 Newton–Raphson method

In order to avoid accumulating errors in each additional load step, equi-
librium iterations may be used to establish equilibrium to a desired degree
of accuracy at each load step. This procedure is a special instance of the
Newton–Raphson method, well known from numerical analysis. In princi-
ple, the method works by applying two steps intermittently: (i) check if
equilibrium is satisfied to within the desired accuracy; (ii) if not, make a
suitable adjustment of the state of deformation.

The first step consists in checking the equilibrium equation. This is done
by forming the difference between the external load f and internal force
g(u),

r(u, f) = f − g(u) = 0, (1.24)

where r(u, f) is called the residual force. In a state of equilibrium the inter-
nal force g(u) is equal to the external load f , and thus the residual vanishes.
In practice, lack of equilibrium will be produced at the beginning of each
load increment, where the load f is increased, while no new displacement
estimate u is yet available. Thus, the need arises for obtaining an improved
estimate of the state of displacement u.

In the absence of equilibrium an improved estimate of the displacement
u is obtained from a linearized form of the residual r(u + δu, f) around the
known residual r(u, f),

r(u + δu, f) = r(u, f) + δr(u, f) + · · · = 0. (1.25)
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10 Introduction

The dots indicate higher-order terms, because δr is only a linearized form of
the increment of the residual. In the classic form of equilibrium iterations
the load f is assumed fixed within the given load step, and thus the incre-
ment of the residual only depends on the internal force g(u). The linearized
increment is then given by the first derivative of the internal force as

δr = − dg(u)
du

δu = −K(u) δu. (1.26)

Here the tangent stiffness K, introduced in (1.7), has been introduced. The
displacement increment is now obtained from the linearized form of (1.25)
by substitution of the tangent stiffness relation (1.26). When rearranging
the terms in (1.25), the linearized equation becomes

K(u) δu = r. (1.27)

In this equation the residual r(u, f) is known, as it relates to the current
state of load f and displacement u. The tangent stiffness K(u) at the
current displacement state u can also be calculated. Thus, this equation
permits determination of the displacement increment δu,

δu = K−1(u) r. (1.28)

Once the displacement increment δu is determined, the current displacement
state is updated to

ui = ui−1 + δui. (1.29)

In this equation the superscript is used to indicate that the iteration i

changes the estimated displacement from ui−1 to ui. In a computer pro-
gram the iteration superscript i is not needed, as the register containing
ui−1 is simply overwritten by the new value ui according to the assignment
statement

u : = u + δu. (1.30)

Here, : = is the assignment operator, implying that the variable u is assigned
a new value. In this book many of the algorithms are presented in the form
of pseudocode – i.e. a code format that appears like high-level programs such
as Matlab. In the pseudocode presented here assignments are indicated by
the normal equality sign, as all equalities are assignment statements.

The Newton–Raphson equilibrium iteration procedure is illustrated in
Fig. 1.6. The figure shows load step n. This load step starts from a state of
equilibrium already established at the previous load fn−1 with displacement
un−1. The load step is initiated by increasing the load by ∆fn to fn. This
generates the first residual r1

n = ∆fn. This residual and the tangent stiffness
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