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Introduction

1.1 A view on the evaluation of risk

1.1.1 The role of mathematics

How is evaluation of risk influenced by modern computing? Consider the way we
use mathematics, first as a vendor of models of complicated risk processes. These
models are usually stochastic. They are in general insurance probability distribu-
tions of claim numbers and losses and in life insurance and finance, stochastic pro-
cesses describing lifecycles and investment returns. Mathematics is from this point
of view a language, a way risk is expressed, and it is a language we must master.
Otherwise statements of risk cannot be related to reality, it would be impossible to
say what conclusions mean in any precise manner and nor could analyses be pre-
sented effectively to clients. Actuarial science is in this sense almost untouched by
modern computational facilities. The basic concepts and models remain what they
were, notwithstanding, of course, the strong growth of risk products throughout the
last decades. This development may have had something to do with computers, but
not much with computing per se.

However, mathematics is also deductions with precise conclusions derived from
precise assumptions through the rules of logic. That is the way mathematics is
taught at school and university. It is here that computing enters applied mathemati-
cal disciplines like actuarial science. More and more of these deductions are imple-
mented in computers and carried out there. This has been going on for decades. It
leans on an endless growth in computing power, a true technological revolution
opening up simpler and more general computational methods which require less of
users.

1.1.2 Risk methodology

An example of such an all-purpose computational technique is stochastic simula-
tion. Simplified versions of processes taking place in real life are then reproduced
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2 Introduction

The world In the computer Sources for M̂:
of risk Historical experience
M → X M̂ → X∗ The implied market view

↑ Deductions from no-arbitrage
Assumed mechanism Judgement, physical modelling

Figure 1.1 The working process: Main steps in risk evaluation.

in the computer. Risk in finance and insurance is future uncertain gains and losses,
designated in this book by letters such as X and Y . Typical examples are compen-
sations for claims in general insurance, pension schemes interrupted upon death
in life insurance and future values of shares and bonds in finance. There are also
secondary (or derived) products where values and payoffs are channelled through
contract clauses set up in advance. Such agreements are known as derivatives in
finance and reinsurance in insurance.

The mathematical approach, unanimously accepted today, is through probabilities
with risks X and Y seen as random variables. We shall know their values eventually
(after the event), but for planning and control and to price risk-taking activities
we need them in advance and must fall back on their probabilities. This leads to a
working process such as the one depicted in Figure 1.1. The real world on the left is
an enormously complicated mechanism (denoted M) that yields a future X.

We shall never know M, though our paradigm is that it does exist as a well-
defined stochastic mechanism. Since it is beyond reach, a simplified version M̂ is
constructed in its place and used to study X. Its expected value is used for valuation
and the percentiles for control, and unlike in engineering we are rarely concerned
with predicting a specific value. Note that everything falls apart if M̂ deviates too
strongly from the true mechanism M. This issue of error is a serious one indeed.
Chapter 7 is an introduction.

What there is to go on when M̂ is constructed is listed on the right in Figure 1.1.
Learning from the past is an obvious source (but not all of it is relevant). In finance,
current asset prices bring market opinion about the future. This so-called implied
view is introduced briefly in Section 1.4, and there will be more in Part III. Then
there is the theory of arbitrage, where riskless financial income is assumed impos-
sible. The innocent-looking no-arbitrage condition has wide implications, which
are discussed in Chapter 14. In practice, some personal judgement behind M̂ is
often present, but this is not for general argument, and nor shall we go into the
physical modelling used in large-claims insurance where hurricanes, earthquakes
or floods are imitated in the computer. This book is about how M̂ is constructed
from the first three sources (historical data above all), how it is implemented in
the computer and how the computer model is used to determine the probability
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1.1 A view on the evaluation of risk 3

distribution of X. Note that M̂ is inevitably linked to the past even though perceived
trends and changes may have been built into it, and there is no way of knowing how
well it captures a future which sometimes extends over decades. While this doesn’t
make the mathematical approach powerless, it does suggest simple and transparent
models and a humble attitude towards it all.

1.1.3 The computer model

The real risk variable X will materialize only once. The economic result of a finan-
cial investment in a particular year is a unique event, as is the aggregated claim
against an insurance portfolio during a certain period of time. With the computer
model, that is different. Once it has been set up it can be played as many times as
we please. Let X∗1, . . . , X

∗
m be realizations of X revealing which values are likely

and which are not, and how bad things might be if we are unlucky. The ∗ will be
used to distinguish computer simulations from real variables and m will always
denote the number of simulations.

The method portrayed on the left of Figure 1.1 is known as the Monte Carlo
method or stochastic simulation. It belongs to the realm of numerical integration;
see Evans and Schwarz (2000) for a summary of this important branch of numerical
mathematics. Monte Carlo integration dates back a long way. It is computationally
slow, but other numerical methods (that might do the job faster) often require more
expertise and get bogged down for high-dimensional integrals, which are precisely
what we often need in practice. The Monte Carlo method is unique in handling
many variables well.

What is the significance of numerical speed anyway? Does it really matter that
some specialized technique (demanding more time and know-how to implement)
is (say) one hundred times faster when the one we use only takes a second? If
the procedure for some reason is to be repeated in a loop thousands of times, it
would matter. Often, however, slow Monte Carlo is quite enough, and, indeed, the
practical limit to its use is moving steadily as computers become more and more
powerful. How far have we got? The author’s portable computer from 2006 (with
T60p processor) took three seconds to produce ten million Pareto draws through
Algorithm 2.13 implemented in Fortran. This is an insurance portfolio of 1000
claims simulated 10 000 times! Generating the normal is even faster, and if speed
is a priority, try the table methods in Section 4.2.

One of the aims of this book is to demonstrate how these opportunities are uti-
lized. Principal issues are how simulations programs are designed, how they are
modified to deal with related (but different) problems and how different programs
are merged to handle situations of increasing complexity with several risk factors
contributing jointly. The versatility and usefulness of Monte Carlo is indicated in
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4 Introduction

Section 1.5 (and in Chapter 3 too). By mastering it you are well equipped to deal
with much that comes your way and avoid getting stuck when pre-programmed
software doesn’t have what you need. What platform should you go for? Algo-
rithms in this book are written in a pseudo-code that goes with everything. Excel
and Visual Basic are standard in the industry and may be used even for simulation.
Much higher speed is obtained with C, Pascal or Fortran, and in the opinion of this
author people are well advised to learn software like those. There are other possi-
bilities as well, and the open-source R-package is used with the exercises. Much
can be achieved with a platform you know!

1.2 Insurance risk: Basic concepts

1.2.1 Introduction

Property or general insurance is economic responsibility for incidents such as
fires or accidents passed on (entirely or in part) to an insurer against a fee. The
contract, known as a policy, releases indemnities (claims) when such events occur.
A central quantity is the total claim X amassed during a certain period of time
(typically a year). Often X = 0 (no events), but on rare occasions X is huge. An
insurance company copes whatever happens, if properly run. It has a portfolio of
many such risks and only a few of them materialize. But this raises the issue of
controlling the total uncertainty, which is a major theme in general insurance.

Life insurance is also built up from random payments X. Term insurance,
where beneficiaries receive compensation upon the death of the policy holder, is
similar to property insurance in that unexpected events lead to payoffs. Pension
schemes are the opposite. Now the payments go on as long as the insured is alive,
and they are likely, not rare. Yet the basic approach remains the same, with random
variables X expressing the uncertainty involved.

1.2.2 Pricing insurance risk

Transfers of risk through X do not take place for free. The fee (or premium),
charged in advance, depends on the market conditions, but the expectation is a
guideline. Introduce

πpu = E(X), (1.1)

which is known as the pure premium and defines a break-even situation. A com-
pany receiving πpu for its services will, in the absence of all overhead cost and all
financial income, neither earn nor lose in the long run. This is a consequence of the
law of large numbers in probability theory; see Appendix A.2.
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1.2 Insurance risk: Basic concepts 5

Such a pricing strategy is (of course) out of the question, and companies add
loadings γ on top of πpu. The premium charged is then

π = (1 + γ)πpu, (1.2)

and we may regard γπpu as the cost of risk. It is influenced thoroughly by the
market situation, and in many branches of insurance is known to exhibit strong
fluctuations; see Section 11.5 for a simple model. There have been attempts to
determine γ from theoretical arguments, see Young (2004) for a review, but these
efforts are not used much in practice and will not be considered.

The loading concept separates the market side from the insurance process itself,
but another issue is whether the pure premium is known. Stochastic models for X
always depend on unknown quantities such as parameters or probability distribu-
tions. They are determined from experience or even assessed informally if histor-
ical data are lacking, and there is a crucial distinction between the true πpu with
perfect knowledge of the underlying situation and the π̂pu used for analysis and
decisions. The discrepancy between what we seek and what we get is a fundamen-
tal issue of error that is present everywhere (see Figure 1.1), and there is special
notation for it. A parameter or quantity with aˆsuch as ψ̂ means an estimate or an
assessment of an underlying, unknown ψ. Chapter 7 offers a general discussion of
errors and how they are confronted.

1.2.3 Portfolios and solvency

A second major theme in insurance is control. Companies are obliged to set aside
funds to cover future obligations, and this is even a major theme in the legal defini-
tion of insurance. A company carries responsibility for many policies. It will lose
on some and gain on others. In property insurance policies without accidents are
profitable, those with large claims are not. Long lives in pension schemes lead to
losses, short ones to gains. At the portfolio level, gains and losses average out. This
is the beauty of a large agent handling many risks simultaneously.

Suppose a portfolio consists of J policies with claims X1, . . . , XJ . The total claim
is then

X = X1 + · · · + XJ , (1.3)

where calligraphic letters like X will be used for quantities at the portfolio level.
We are certainly interested in E(X), but equally important is its distribution. Regu-
lators demand sufficient funds to cover X with high probability. The mathematical
formulation is in terms of a percentile qε , which is the solution of the equation

Pr(X > qε) = ε (1.4)
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6 Introduction

where ε is a small number (for example 1%). The amount qε is known as the
solvency capital or reserve. Percentiles are used in finance too and are then often
called value at risk (or VaR for short). As elsewhere, the true qε we seek is not the
same as the estimated q̂ε we get.

1.2.4 Risk ceding and reinsurance

Risk is ceded from ordinary policy holders to companies, but companies do the
same thing between themselves. This is known as reinsurance, and the ceding
company is known as the cedent. The rationale could be the same; i.e., that a
financially weaker agent is passing risk to a stronger one. In reality even the largest
companies do this to diversify risk, and financially the cedent may be as strong
as the reinsurer. There is now a chain of responsibilities that can be depicted as
follows:

original clients −→ cedent −→ reinsurer
X (primary) Xce = X − Xre Xre (derived)

The original risk X is split between cedent and reinsurer through two separate
relationships, where the cedent part Xce is net and the difference between two cash
flows. Of courseXre ≤ X; i.e., the responsibility of the reinsurer is always less than
the original claim. Note the calligraphic style that applies to portfolios. There may
in practice be several rounds of such cedings in complicated networks extending
around the globe. One reinsurer may go to a second reinsurer, and so on. Modern
methods provide the means to analyse risk taken by an agent who is far away from
the primary source. Ceding and reinsurance are tools used by managers to tune
portfolios to a desired risk profile.

1.3 Financial risk: Basic concepts

1.3.1 Introduction

Gone are the days when insurance liabilities were insulated from assets and insur-
ance companies carried all the financial risk themselves. One trend is ceding to
customers. In countries like the USA and Britain, insurance products with financial
risk integrated have been sold for decades under names such as unit link or univer-
sal life. The rationale is that clients receive higher expected financial income in
exchange for carrying more risk. Pension plans today are increasingly contributed
benefits (CB), where financial risk rests with individuals. There is also much inter-
est in investment strategies tailored to given liabilities and how they distribute over
time. This is known as asset liability management (ALM) and is discussed in
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1.3 Financial risk: Basic concepts 7

Chapter 15. The present section and the next one review the main concepts of
finance.

1.3.2 Rates of interest

An ordinary bank deposit v0 grows to (1 + r)v0 at the end of one period and to
(1 + r)Kv0 after K of them. Here r, the rate of interest, depends on the length of
the period. Suppose interest is compounded over K segments, each of length 1/K,
so that the total time is one. If interest per segment is r/K, the value of the account
becomes (

1 +
r
K

)K
v0 → erv0, as K → ∞,

after one of the most famous limits of mathematics. Interest earnings may therefore
be cited as

rv0 or (er − 1)v0,

depending on whether we include ‘interest on interest’. The second form implies
continuous compounding of interest and higher earnings (er − 1 > r if r > 0), and
now (er)k = erk takes over from (1 + r)k. It doesn’t really matter which form we
choose, since they can be made equivalent by adjusting r.

1.3.3 Financial returns

Let V0 be the value of a financial asset at the start of a period and V1 the value at
the end of it. The relative gain

R =
V1 − V0

V0
(1.5)

is known as the return on the asset. Solving for V1 yields

V1 = (1 + R)V0, (1.6)

with RV0, the financial income. Clearly R acts like interest, but there is more to it
than that. Interest is a fixed benefit offered by a bank (or an issuer of a very secure
bond) in return for making a deposit and is risk free. Shares of company stock, in
contrast, are fraught with risk. They may go up (R positive) or down (R negative).
When dealing with such assets, V1 (and hence R) is determined by the market,
whereas with ordinary interest r is given and V1 follows.

The return R is the more general concept and is a random variable with a prob-
ability distribution. Take the randomness away, and we are back to a fixed rate of
interest r. As r depends on the time between V0 and V1, so does the distribution of
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8 Introduction

R; as will appear many times in this book. Whether the rate of interest r really is
risk free is not as obvious as it seems. True, you do get a fixed share of your deposit
as a reward, but that does not tell its worth in real terms when price increases are
taken into account. Indeed, over longer time horizons risk due to inflation may be
huge and even reduce the real value of cash deposits and bonds. Saving money with
a bank at a fixed rate of interest may also bring opportunity cost if the market rate
after a while exceeds what you get. These issues are discussed and integrated with
other sources of risk in Part III.

1.3.4 Log-returns

Economics and finance have often constructed stochastic models for R directly. An
alternative is the log-return

X = log(1 + R), (1.7)

which by (1.5) can be written X = log(V1) − log(V0); i.e., as a difference of log-
arithms. The modern theory of financial derivatives (Section 3.5 and Chapter 14)
is based on X. Actually, X and R do not necessarily deviate that strongly since the
Taylor series of log(1 + R) is

X = R − R2

2
+

R3

3
+ · · · ,

where R (a fairly small number) dominates so that X � R, at least over short
periods. It follows that the distributions of R and X must be rather similar (see
Section 2.4), but this is not to say that the discrepancy is unimportant. It depends
on the amount of random variation present, and the longer the time horizon the
more X deviates from R; see Section 5.4 for an illustration.

1.3.5 Financial portfolios

Investments are often spread over many assets as baskets or financial portfolios.
By intuition this must reduce risk; see Section 5.3, where the issue is discussed.
A central quantity is the portfolio return, denoted R (in calligraphic style). Its rela-
tionship to the individual returns R j of the assets is as follows. Let V10, . . . ,VJ0 be
investments in J assets. The portfolio value is then

V0 =

J∑
j=1

V j0 growing at the end of the period to V1 =

J∑
j=1

(1 + R j)V j0.
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1.4 Risk over time 9

SubtractV0 fromV1 and divide byV0, and you get the portfolio return

R =
J∑

j=1

w jR j where w j =
V0 j

V0
. (1.8)

Here w j is the weight on asset j and

w1 + · · · + wJ = 1. (1.9)

Financial weights define the distribution on individual assets and will, in this book,
usually be normalized so that they sum to 1.

The mathematics allow negative w j. With bank deposits this corresponds to bor-
rowing. It is also possible with shares, known as short selling. A loss due to a
negative development is then carried by somebody else. The mechanism is as fol-
lows. A short contract with a buyer is to sell shares at the end of the period at an
agreed price. At that point we shall have to buy at market price, gaining if it is lower
than our agreement, losing if not. Short contracts may be an instrument to lower
risk (see Section 5.3) and require liquidity; i.e., assets that are traded regularly.

1.4 Risk over time

1.4.1 Introduction

A huge number of problems in finance and insurance have time as one of the central
ingredients, and this requires additional quantities and concepts. Many of these are
introduced below. The emphasis is on finance, where the number of such quantities
is both more plentiful and more complex than in insurance. Time itself is worth a
comment. In this book it will be run on equidistant sequences, either

Tk = kT or tk = kh
time scale for evaluation time scale for modelling

(1.10)

for k = 0, 1, . . . On the left, T is an accounting period (e.g., year, quarter, month) or
the time to expiry of a bond or an option. Financial returns Rk, portfolio valuesVk

and insurance liabilities Xk are followed over Tk. The present is always at T0 = 0,
whereas k > 0 is the future which requires stochastic models to portray what is
likely and what is not. Negative time will sometimes be used for past values.

The time scale h is used for modelling. It may coincide with T , but it may well
be smaller so that T = Kh for K > 1. How models on different time scales are
related is important; see Section 5.7, where this issue is discussed. There is also
much scope for very short time increments where h → 0 (so that K = T/h → ∞).
This is known as continuous-time modelling and is above all a trick to find simple
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10 Introduction

mathematical solutions. Parameters or variables are then often cited as intensities,
which are quantities per time unit. An example is interest rates, which will on
several occasions be designated rh with r an intensity and not a rate as in Section
1.3. Claim frequencies in property insurance (Chapter 8) and mortalities in life
insurance (Chapter 12) are other examples of using intensities for modelling. This
section is concerned with the macro time scale T only.

1.4.2 Accumulation of values

If v0 is the original value of a financial asset, by TK = KT it is worth

VK = (1 + R1)(1 + R2) · · · (1 + RK)V0 = (1 + R0:K)v0,

where R1, . . . ,RK are the returns. This defines R0:K on the right as the K-step return

R0:K = (1 + R1) · · · (1 + RK) − 1 and also X0:K = X1 + · · · + XK ,

ordinary returns log-returns
(1.11)

where Xk = log(1 + Rk) and X0:K = log(1 + R0:K). The log-returns on the right
are accumulated by adding them. Interest is a special case (an important one!) and
grows from T0 = 0 to TK according to

r0:K = (1 + r1)(1 + r2) · · · (1 + rK) − 1, (1.12)

where r1, . . . , rK are the future rates. This reduces to r0:K = (1+r)K −1 if all rk = r,
but in practice rk will float in a way that is unknown at T0 = 0.

Often VK aggregates economic and financial activity beyond the initial invest-
ment v0. Let Bk be income or expenses that surface at time Tk, and suppose the
financial income or loss coming from the sequence B1, . . . , BK is the same as for
the original asset. The total value at TK is then the sum

VK = (1 + R0:K)v0 +

K∑
k=1

(1 + Rk:K)Bk, (1.13)

where Rk:K = (1 + Rk+1) · · · (1 + RK) − 1 with RK:K = 0. Later in this section
B1, . . . , BK will be a fixed cash flow, but further on (for example in Section 3.6)
there will be huge uncertainty as to what their values are going to be, with addi-
tional random variation on top of the financial uncertainty.

1.4.3 Forward rates of interest

Future interest rates like rk or r0:K are hopeless to predict from mathematical mod-
els (you will see why in Section 6.4), but there is also a market view that conveys
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