Contents

Notation page ix
Foreword by Walter Hayman xiii
Preface xvii

Introduction 1

1 Rearrangements 16
1.1 The Distribution Function 16
1.2 The Decreasing Rearrangement 20
1.3 Induced Measures 25
1.4 Measure Preserving Transformations 31
1.5 Nonatomic Measure Spaces 32
1.6 Symmetric Decreasing Rearrangement on \(\mathbb{R}^n \) 39
1.7 Polarization on \(\mathbb{R}^n \) 42
1.8 Convergence Theorems for Rearrangements 48
1.9 Notes and Comments 53

2 Main Inequalities on \(\mathbb{R}^n \) 54
2.1 Convex and AL Functions 55
2.2 Main Inequalities for Two-Point Symmetrization 57
2.3 Main Inequalities for Polarization 59
2.4 Symmetrization Decreases the Modulus of Continuity 64
2.5 Symmetrization Increases Certain Integrals in \(\mathbb{R}^n \) 68
2.6 Proofs of the Uniqueness Statements 73
2.7 Direct Consequences of the Main Inequalities 77
2.8 Decomposition of Monotone and AL\(_0 \) Functions 82
2.9 Proof of Theorem 2.15 for Discontinuous \(\Psi \) 88
2.10 Notes and Comments 90
Table of Contents

Dirichlet Integral Inequalities

3.1 Lipschitz Functions
3.2 Symmetrization Decreases the p-Dirichlet Integral of Lipschitz Functions
3.3 Symmetrization Decreases the Φ-Dirichlet Integral of Lipschitz Functions
3.4 Sobolev Spaces $W^{1,p}(\mathbb{R}^n)$
3.5 Weak Compactness
3.6 Symmetrization Decreases the p-Dirichlet Integral in $W^{1,p}(\mathbb{R}^n)$
3.7 Continuity and Discontinuity of the Symmetric Decreasing Rearrangement Operator
3.8 Notes and Comments

Geometric Isoperimetric and Sharp Sobolev Inequalities

4.1 Hausdorff Measures, Area Formula, and the Gauss–Green Theorem
4.2 Functions of Bounded Variation in \mathbb{R}^n
4.3 Isoperimetric Inequalities for Perimeter and Hausdorff Measure
4.4 Isoperimetric Inequalities for Minkowski Content
4.5 Coarea Formula
4.6 Sharp Sobolev Embedding Constant for $p = 1$
4.7 Sharp Sobolev Embedding Constants for $1 < p < n$
4.8 More about Sobolev Spaces
4.9 Notes and Comments

Isoperimetric Inequalities for Physical Quantities

5.1 Weak Solutions of $\Delta u = -f$
5.2 Eigenvalues of the Laplacian
5.3 Symmetrization Decreases the Principal Eigenvalue
5.4 Domain Approximation Lemmas
5.5 Symmetrization Decreases Newtonian Capacity
5.6 Other Types of Capacity
5.7 Symmetrization Increases Torsional Rigidity and Mean Lifetime
5.8 Notes and Comments

Steiner Symmetrization

6.1 Definition of Steiner Symmetrization
6.2 Steiner Counterparts for Results in Chapter 1
Table of Contents

6.3 Steiner Analogues for Two Simple Polarization Results 189
6.4 Certain Integral Functionals Increase or Decrease under Steiner Symmetrization 190
6.5 Steiner Symmetrization Decreases the Modulus of Continuity 192
6.6 Steiner Symmetrization Decreases Dirichlet Integrals 195
6.7 Proof of Lemma 6.18 204
6.8 Steiner Symmetrization Decreases p-Dirichlet Integrals in $W^{1,p}(\mathbb{R}^n)$ 205
6.9 Steiner Symmetrization Decreases Surface Area 210
6.10 Steiner Symmetrization Increases or Decreases Physical Quantities 213
6.11 Notes and Comments 214

7 Symmetrization on Spheres, and Hyperbolic and Gauss Spaces 216
7.1 The Sphere S^n 216
7.2 Spherical Coordinates on S^n 219
7.3 Inequalities for Spherical Symmetrization, Part 1 223
7.4 Inequalities for Spherical Symmetrization, Part 2 229
7.5 Cap Symmetrizations 234
7.6 Hyperbolic Symmetrization 240
7.7 Gauss Space Symmetrization 245
7.8 Hölder Continuity of Quasiconformal Mappings 247
7.9 Notes and Comments 253

8 Convolution and Beyond 254
8.1 A Riesz-Type Convolution Inequality on S^1 255
8.2 Riesz’s Convolution Inequality on \mathbb{R} 260
8.3 The Riesz–Sobolev Inequality 261
8.4 The Brunn–Minkowski Inequality 264
8.5 The Brascamp–Lieb–Luttinger Inequality 267
8.6 Symmetrization Increases the Trace of the Heat Kernel 270
8.7 The Sharp Hardy–Littlewood–Sobolev Inequality 277
8.8 Logarithmic Sobolev Inequalities 286
8.9 Hypercontractivity 291
8.10 Sharp Inequalities for Exponential Integrals 294
8.11 Notes and Comments 297

9 The \ast-Function 299
9.1 The \ast-Function on General Measure Spaces 299
9.2 Preliminaries, and What Happens Next 300
Contents

9.3 A Measurability Lemma
9.4 Formulas for the Laplacian
9.5 Pre-Subharmonicity on Shells
9.6 The \(\star \)-Function on Shells
9.7 The \(\star \)-Function on the Sphere
9.8 The \(\star \)-Function for Cap Symmetrization on Ring-Type Domains
9.9 Pre-Subharmonicity Theorem for s.d.r. on Euclidean Domains
9.10 The \(\star \)-Function for s.d.r. on Euclidean Domains
9.11 The \(\star \)-Function for Steiner Symmetrization on Euclidean Domains
9.12 Notes and Comments

10 Comparison Principles for Semilinear Poisson PDEs
10.1 Majorization
10.2 Weakly Convex and Weakly Subharmonic Functions
10.3 Comparison Principles for s.d.r. on Euclidean Domains
10.4 Comparison Principle for Steiner Symmetrization on Euclidean Domains
10.5 Comparison Principle on the Sphere
10.6 Comparison Principles on Shells
10.7 Notes and Comments

11 The \(\star \)-Function in Complex Analysis
11.1 Introduction and Background
11.2 The Nevanlinna Characteristic \(T \) and Its Extension \(T^* \)
11.3 Pólya Peaks and the Local Indicator of \(T^* \)
11.4 Applications of \(T^* \) to Nevanlinna Theory
11.5 Interlude: Subordination and Lehto’s Theorem
11.6 The \(\star \)-Function and Univalent Functions
11.7 Complements to the Univalent Integral Means Theorem
11.8 Conjugate Functions
11.9 Symmetrization and the Hyperbolic Metric
11.10 Notes and Comments

References
Index