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Rate equations

Modeling lasers may be realized with different levels of sophistication. Rigorously

it requires a full quantum treatment but many laser dynamical properties may be

captured by semiclassical or even purely classical approaches. In this book we

deliberately chose the simplest point of view, i.e. purely classical equations, and

try to extract analytically as much information as possible. The basic framework

of our approach is provided by the rate equations.

In their simplest version, they apply to an idealized active system consisting of

only two energy levels coupled to a reservoir. They were introduced as soon as

the laser was discovered to explain (regular or irregular, damped or undamped)

intensity spikes commonly seen with solid state lasers (for a historical review,

see the introduction in [18]). These rate equations are discussed and sometimes

derived from a semiclassical theory in textbooks on lasers [19–22]. They capture

the essential features of the response of a single-mode laser and they may be modi-

fied to account for specific effects such as the modulation of a parameter or optical

feedback.

The most basic processes involved in laser operation are schematically repre-

sented in Figure 1.1. N1 and N2 denote the number of atoms in the ground and

excited levels, respectively. The process of light–matter interaction is restricted to

stimulated emission and absorption. This leads to the following rate equations for

the number of laser photons n and the populations N1 and N2:

dn

dT
= G(N2 − N1)n −

n

Tc

, (1.1)

d N2

dT
= Rp −

N2

T1
− G(N2 − N1)n, (1.2)

d N1

dT
= −

N1

T1

+ G(N2 − N1)n. (1.3)
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4 Rate equations

N 2

T1
–1

T1
–1

G(N2 – N1)n

Rp

N1

Fig. 1.1 Two-level system. Rp denotes the pumping rate, T −1
1 is the decay rate of

the populations, and G(N2 − N1) is the gain for stimulated emission.

In these equations, G is the gain coefficient for stimulated emission, T −1
c is the

decay rate due to the loss of photons by mirror transmission, scattering, etc., T −1
1

is the decay rate for each population, and Rp is the pumping rate. Introducing

the population difference or population inversion N ≡ N2 − N1, Eqs. (1.1)–(1.3)

reduce to the following two equations for n and N :

dn

dT
= G Nn −

n

Tc

, (1.4)

d N

dT
= −

1

T1
(N − N0) − 2G Nn, (1.5)

where N0 ≡ RpT1 is the population difference in the absence of laser light. The

decay rates T −1
c and T −1

1 are identical to the parameters 2κ and γ‖, respectively,

in the “class B” laser equations [23, 6].

In practice, lasing action is realized with three or four energy level systems

and the rate equations are more complicated (see Chapter 2). But for many

lasers such as Nd3+:YAG, CO2, and semiconductor lasers, Eqs. (1.4) and (1.5)

provide a good description of simple dynamical phenomena such as the laser relax-

ation oscillations or the build-up of laser radiation following either pump or loss

switch. Supplemented by additional terms, these equations are also valid for the

description of specific laser instabilities as we shall illustrate in the forthcoming

chapters.

1.1 Dimensionless equations

Equations (1.4) and (1.5) depend on four physical parameters, namely, G, Tc, T1,

and N0. In order to reduce the number of independent parameters, it is worthwhile
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1.1 Dimensionless equations 5

Table 1.1 Characteristic times for common lasers.

Laser Tc(s) T1(s) γ

CO2 10−8 4 × 10−6 2.5 × 10−3

solid state (Nd3+:YAG) 10−6 2.5 × 10−4 4 × 10−3

semiconductor (AsGa) 10−12 10−9 10−3

to rewrite these equations in dimensionless form (for a dimensionless formulation,

see, for example, [24]). Introducing new variables I , D, and t defined as

I ≡ 2GT1n, D ≡ GTc N , and t ≡ T /Tc (1.6)

into Eqs. (1.4) and (1.5), we obtain the following equations for I and D (Exercises

1.8.1 and 1.8.4)

dI

dt
= I (D − 1), (1.7)

dD

dt
= γ (A − D(1 + I )) (1.8)

where A and γ are defined by

A ≡ GTc N0 and γ ≡ Tc/T1. (1.9)

Compared to the original equations (1.4) and (1.5), Eqs. (1.7) and (1.8) offer

two clear advantages. First, we only have two independent parameters instead

of the original four parameters. This means that Eqs. (1.7) and (1.8) are sim-

pler to analyze or require fewer numerical simulations. Second, we may estimate

these two parameters for different lasers, discover common ranges of values,

and possibly propose approximations of the solution based on their respective

values.

Table 1.1 gives the order of magnitude of Tc and T1 for three common lasers.

Although their ranges of values are quite different, we note that the ratio γ ≡
Tc/T1 is typically a 10−3 small quantity. For microchip solid state lasers, γ may

even reach 10−6 small values. A small γ is a key property of these lasers and, as we

shall demonstrate, is responsible for their weak stability properties. On the other

hand, A scales the pump in units of the pump at threshold and is typically in the

range 1−10. It barely exceeds 10 in most common lasers although it may reach

very high values in specific situations such as the “thresholdless laser” [25]. In
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6 Rate equations

addition to solid state lasers, earlier laser studies used He-Ne and Ar gas lasers. For

the He-Ne and Ar gas lasers the value of γ is much larger than 1. Consequently,

the evolution of the population inversion is very fast until the right hand side of

Eq. (1.8) is zero. D then adiabatically follows the intensity as

D =
A

1 + I
(1.10)

and Eq. (1.7) reduces to

dI

dt
=

(

A

1 + I
− 1

)

I . (1.11)

Eq. (1.11) is a first order nonlinear equation. Lasers described by the single

equation (1.11) are called “class A” lasers [23, 6]. Moreover, assuming I < 1, we

may further simplify Eq. (1.11) by expanding 1/(1 + I ) and obtain

dI

dt
= (A − 1 − AI )I , (1.12)

which exhibits a single quadratic nonlinearity.

There are other ways to non-dimensionalize the rate equations. Here time is

measured in units of the photon damping time Tc but T1 could equally be used to

rescale time. It is also possible to introduce 2GTcn and/or GT1 N as the dimen-

sionless photon and population inversion variables. But the equations resulting

from these normalizations are less appropriate for analysis than Eqs. (1.7) and

(1.8). As previously emphasized, γ is small and it is mathematically convenient

that it appears as a single parameter multiplying the right hand side of one of

the two equations. Similar procedures have been applied for classical problems

such as the van der Pol equation or the Michaelis–Menten equations in enzyme

kinetics [8].

1.2 Steady states and linear stability

The analysis of our model equations starts with the determination of the steady

states and their linear stability properties. The results allow us to predict bifurca-

tions, anticipate interesting transient regimes, and possibly propose simplifications

of the laser equations. The linear stability analysis is well documented for one- or

two-variable systems of ordinary differential equations [26–28]. For higher order

systems, we benefit from the Routh–Hurwitz conditions for the stability of the

steady states ([26] p. 270, [29] p. 304).
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1.2 Steady states and linear stability 7

1.2.1 Steady states

The steady state solutions of Eqs. (1.7) and (1.8) satisfy the conditions dI/dt =
dD/dt = 0 or, equivalently, the following two equations for I and D

I (D − 1) = 0, (1.13)

A − D(1 + I ) = 0. (1.14)

The possible solutions are (1) the zero intensity solution

I = 0 and D = A, (1.15)

and (2) the non-zero intensity solution

I = A − 1 ≥ 0 and D = 1. (1.16)

The inequality in (1.16) is needed because I is an intensity. We conclude that the

desired lasing action is possible only if A > 1. The critical point

(I , D, A) = (0, 1, 1) (1.17)

is called the laser first threshold and is a bifurcation point because it connects

our two steady state solutions. These solutions are represented as a function of

the pump parameter A in Figure 1.2. The diagram is called a bifurcation diagram

because it represents the amplitude of the possible solutions in terms of a control

A

D

I

0

on

off

1

1

Fig. 1.2 Steady state solutions. Full and broken lines correspond to stable and
unstable solutions, respectively. The arrow indicates the bifurcation point at
A = 1.
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8 Rate equations

or bifurcation parameter. In the zero intensity solution (laser OFF), the laser does

not emit any radiation and the population difference sets to the value given by

the pump (D = A). As the pump exceeds its threshold value A = 1, a non-zero

intensity solution is possible (laser ON) and the laser emits radiation. The amount

of emitted energy is proportional to the pump in excess of threshold, i.e. I = A−1.

Which of the two solutions will be effectively observed depends on their stability.

1.2.2 Linear stability

In order to analyze the stability of the steady states, we introduce the small

deviations u and v defined by

u ≡ I − Is and v ≡ D − Ds , (1.18)

where (I , D)= (Is , Ds) denotes either OFF (1.15) or ON (1.16) solutions. We

insert I = Is + u and D = Ds + v into Eqs. (1.7) and (1.8), simplify by using

the steady state equations (1.13) and (1.14), and neglect the quadratic terms in u

and v. We then obtain the following linearized equations for u and v

du

dt
= u(Ds − 1) + Isv, (1.19)

dv

dt
= γ (−Dsu − (1 + Is)v). (1.20)

It is useful to rewrite these equations in matrix form as

d

dt

(

u

v

)

= J

(

u

v

)

, (1.21)

where the 2 × 2 matrix J is called the Jacobian matrix and is defined here as

J ≡
(

Ds − 1 Is

−Dsγ −(1 + Is)γ

)

. (1.22)

The general solution of Eqs. (1.19) and (1.20) or Eq. (1.21) is a linear combination

of two exponential solutions. Introducing u = c1 exp(σ t) and v = c2 exp(σ t) into

Eqs. (1.19) and (1.20) leads to a homogeneous system of two equations for c1

and c2. A nontrivial solution is possible only if the growth rate σ satisfies the

characteristic equation given by

det J − σ I = σ 2 + σ
[

γ (1 + Is) − Ds + 1
]

+ γ (1 + Is − Ds) = 0. (1.23)
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1.2 Steady states and linear stability 9

Stability means that Re(σ j )< 0 ( j = 1, 2). Then the small deviations u and v will

decay to zero. On the other hand, if Re(σ j ) > 0 for either j = 1 or j = 2, u and

v will grow exponentially and the steady state is unstable. The stability results are

given as follows:

(1) For the zero intensity steady state (1.15), Eq. (1.23) admits the simple solutions

σ1 = A − 1 and σ2 = −γ . (1.24)

From (1.24), we conclude that the zero intensity steady state is stable if A < 1 and

unstable if A > 1.

(2) For the non-zero intensity steady state (1.16), Eq. (1.23) reduces to the following

quadratic equation

σ 2 + γ Aσ + γ (A − 1) = 0. (1.25)

To determine the sign of Re(σ ), we don’t need to solve Eq. (1.25). Indeed, we note that

the product of the roots is always positive (σ1σ2 = γ (A − 1) > 0) and that the sum

of the roots is always negative (σ1 + σ2 = −γ A < 0). Together, the two inequalities

imply that Re(σ j ) < 0 ( j = 1, 2). Thus, the non-zero intensity solution is always stable.

At the bifurcation point (1.17), we note an exchange of stabilities between the

zero intensity and non-zero intensity steady state solutions. This is a simple exam-

ple of a bifurcation with exchange of stability. Some dynamical properties linked

to the existence of this bifurcation will be examined in Section 1.5.

1.2.3 Damped relaxation oscillations

The linear stability analysis allows us to describe slowly decaying intensity oscil-

lations that are observed in lasers after a sudden excitation such as a loss or gain

pulse. Specifically, we solve the quadratic equation (1.25) and obtain

σ1,2 = −γ
A

2
±i

√

γ (A − 1) − γ 2 A2/4 (1.26)

provided γ (A − 1) − γ 2 A2/4 ≥ 0. Expanding the two roots for small γ (A fixed)

simplifies (1.26) as

σ1,2 = ±i
√

γ (A − 1) − γ
A

2
+ O(γ 3/2), (1.27)

where the notation O(γ 3/2) means that the correction term is proportional to γ 3/2

(in Section 1.5.2, we examine the limit A − 1 small (γ fixed)). The meaning of

the two first terms in (1.27) is best understood if we write the general solution for

www.cambridge.org/9780521830409
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-83040-9 — Laser Dynamics
Thomas Erneux, Pierre Glorieux
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 Rate equations

u = I − (A −1) = c exp(σ1t)+c exp(σ2t), where c means the complex conjugate

of c. Using (1.27), u can be rewritten as

u � C exp

(

−γ
A

2
t

)

sin
(

√

γ (A − 1)t + φ

)

, (1.28)

where C and φ are arbitrary constants determined by the initial conditions. The

expression (1.28) implies that the intensity I = A − 1 + u oscillates with a fre-

quency proportional to
√

γ and slowly decays with a rate proportional to γ . The

frequency appearing in (1.28), defined by

ωR ≡
√

γ (A − 1), (1.29)

is called the laser relaxation oscillation (RO) frequency and is a reference fre-

quency for all lasers experiencing intensity oscillations (see Problem 1.8.8 for the

RO frequency close to threshold). The quantity

� ≡ γ
A

2
(1.30)

is called the damping rate of the laser relaxation oscillations. Note that the expres-

sion (1.28) is the product of two functions that exhibit different time scales,

namely1

t1 =
√

γ t and t2 = γ t . (1.31)

In summary, the linearized theory reveals that the non-zero intensity steady state

is weakly stable for all lasers exhibiting a small γ and that slowly decaying oscil-

lations (RO oscillations) of the laser intensity are possible. Our results are strictly

valid for small perturbations of the steady state. But in Section 5.2.1, we show that

our conclusions remain valid if we consider arbitrary intensities.

1.3 Turn-on transients

In 1965, Pariser and Marshall [30] investigated the time evolution of the laser

intensity using a He-Ne laser pumped by a flash lamp. The laser intensity was

assumed to be initially close to zero and the time evolution was fitted using

dE

dt
= aE − bE3, E(0) = E0, (1.32)

1 In physical units, these two time scales are
√

T1TcT and T1T respectively. The latter has a simple meaning
since it coincides with the lifetime of the population inversion. The former is less obvious since it is the
geometrical mean of two lifetimes. It appears because there exists a coupling between the variables I and D.
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1.3 Turn-on transients 11
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20
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100 200 300 400

Fig. 1.3 He-Ne gas laser output as a function of time. From the lower to the upper
time traces, the pump parameter above threshold is gradually increased. Reprinted
Figure 2 with permission from Pariser and Marshall [30]. Copyright 1965 by the
American Institute of Physics.

where E represents the electrical field and a and b are positive. This equation is the

“class A” laser equation (1.12) with I = E2, a = (A−1)/2, and b = A/2. Equation

(1.32) is a Bernoulli equation that can be solved exactly, leading to the following

expression for the intensity I

I =
a

b

1

1 − (1 − a
bI0

) exp(−2at)
, (1.33)

where I0 = E2
0 . The different lines in Figure 1.3 correspond to (1.33) with different

values of a and b. Note that a is proportional to the pump parameter above its

threshold value. The expression (1.33) tells us that

τ = (2a)−1 (1.34)

is the time scale of the laser emission. It decreases as a increases (i.e. as the pump

increases). Careful statistical studies of the laser build-up using a He-Ne laser

[31] and a dye laser [32] complete the earlier investigations [30]. In both cases,

Eq. (1.32) was used as the deterministic reference equation.

1.3.1 Typical turn-on experiment

For most common lasers used today in laboratories and in applications (solid state,

CO2, and semiconductor lasers), we switch the pump from a below- to an above-

threshold value and observe the time evolution of the intensity. Figure 1.4 shows

an example for a Nd3+:YAG laser. We note three distinct regimes:

(1) A long time interval where the laser output power remains very low. In the conditions

of Figure 1.4, this extends from the time origin given by the on-switching of pump

www.cambridge.org/9780521830409
www.cambridge.org

