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1

Probability Primer

Yes or no: Was there once life on Mars? We can’t say. What about intel-

ligent life? That seems most unlikely, but again, we can’t really say. The

simple yes-or-no framework has no place for shadings of doubt, no room

to say that we see intelligent life on Mars as far less probable than life of

a possibly very simple sort. Nor does it let us express exact probability

judgments, if we have them. We can do better.

1.1 Bets and Probabilities

What if you were able to say exactly what odds you would give on there

having been life, or intelligent life, on Mars? That would be a more nu-

anced form of judgment, and perhaps a more useful one. Suppose your

odds were 1:9 for life, and 1:999 for intelligent life, corresponding to prob-

abilities of 1/10 and 1/1000, respectively. (The colon is commonly used

as a notation for “/”, division, in giving odds—in which case it is read as

“to”.)

Odds m:n correspond to probability m
m+n

That means you would see no special advantage for either player in risking

one dollar to gain nine in case there was once life on Mars; and it means

you would see an advantage on one side or the other if those odds were

shortened or lengthened. And similarly for intelligent life on Mars when

the risk is a thousandth of the same ten dollars (1 cent) and the gain is

999 thousandths ($9.99).

Here is another way of saying the same thing: You would think a

price of one dollar just right for a ticket worth ten if there was life

on Mars and nothing if there was not, but you would think a price of

only one cent right if there would have had to have been intelligent life

1
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on Mars for the ticket to be worth ten dollars. These are the two tickets:

Worth $10 if there was life
on Mars.

Price:          $1
Probability: 0.1

Worth $10 if there was
intelligent life on Mars.

Price:         1 cent
Probability: 0.001

So if you have an exact judgmental probability for truth of a hypothesis,

it corresponds to your idea of the dollar value of a ticket that is worth

1 unit or nothing, depending on whether the hypothesis is true or false.

(For the hypothesis of mere life on Mars the unit was $10; the price was

a tenth of that.)

Of course you need not have an exact judgmental probability for life

on Mars, or for intelligent life there. Still, we know that any probabilities

anyone might think acceptable for those two hypotheses ought to satisfy

certain rules, e.g., that the first cannot be less than the second. That

is because the second hypothesis implies the first. (See the implication

rule at the end of sec. 1.3 below.) In sec. 1.2 we turn to the question of

what the laws of judgmental probability are, and why. Meanwhile, take

some time with the following questions, as a way of getting in touch

with some of your own ideas about probability. Afterward, read the

discussion that follows.

Questions

1. A vigorously flipped thumbtack will land on the sidewalk. Is it

reasonable for you to have a probability for the hypothesis that

it will land point up?

2. An ordinary coin is to be tossed twice in the usual way. What is

your probability for the head turning up both times?

(a) 1/3, because 2 heads is one of three possibilities: 2, 1, 0

heads?

(b) 1/4, because 2 heads is one of four possibilities: HH, HT,

TH, TT?

3. There are three coins in a bag: ordinary, two-headed, and two-

tailed. One is shaken out onto the table and lies head up. What

should be your probability that it’s the two-headed one?

(a) 1/2, since it can only be two-headed or normal?
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(b) 2/3, because the other side could be the tail of the normal

coin, or either side of the two-headed one? (Suppose the

sides have microscopic labels.)

4. It’s a goy!1

(a) As you know, about 49% of recorded human births have

been girls. What is your judgmental probability that the

first child born after time t (say, t = the beginning of the

22nd century, GMT) will be a girl?

(b) A goy is defined as a girl born before t or a boy born there-

after. As you know, about 49% of recorded human births

have been goys. What is your judgmental probability that

the first child born in the 22nd century will be a goy?

Discussion

1. Surely it is reasonable to suspect that the geometry of the tack

gives one of the outcomes a better chance of happening than

the other; but if you have no clue about which of the two has

the better chance, it may well be reasonable for each to have

judgmental probability 1/2. Evidence about the chances might

be given by statistics on tosses of similar tacks, e.g., if you learned

that in 20 tosses there were 6 up’s you might take the chance of

up to be in the neighborhood of 30%; and whether or not you do

that, you might well adopt 30% as your judgmental probability

for up on the next toss.

2,3. These questions are meant to undermine the impression that

judgmental probabilities can be based on analysis into cases in

a way that does not already involve probabilistic judgment (e.g.,

the judgment that the cases are equiprobable). In either problem

you can arrive at a judgmental probability by trying the experi-

ment (or a similar one) often enough, and seeing the statistics set-

tle down close enough to 1/2 or to 1/3 to persuade you that more

trials will not reverse the indications. In each of these problems

it is the finer of the two suggested analyses that happens to make

more sense; but any analysis can be refined in significantly differ-

ent ways, and there is no point at which the process of refinement

has to stop. (Head or tail can be refined to head–facing–north

or head–not–facing–north or tail.) Indeed some of these analyses

1 This is a fanciful adaptation of Nelson Goodman’s (1983, 73–74) “grue”
paradox.
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seem more natural or relevant than others, but that reflects the

probability judgments we bring with us to the analyses.

4. Goys and birls. This question is meant to undermine the impres-

sion that judgmental probabilities can be based on frequencies

in a way that does not already involve judgmental probabilities.

Since all girls born so far have been goys, the current statistics

for girls apply to goys as well: these days, about 49% of human

births are goys. Then if you read probabilities off statistics in

a straightforward way your probability will be 49% for each of

these hypotheses:

(1) The first child born after t will be a girl.

(2) The first child born after t will be a goy.

Girl Boy

51%49%Born < 2101

Born thereafter

Shaded: Goy. Blank: Birl.

Thus pr(1) + pr(2) = 98%. But it is clear that those probabilities

should sum to 100%, since (2) is logically equivalent to

(3) The first child born after t will be a boy,

and pr(1) + pr(3) = 100%. To avoid this contradiction you must

decide which statistics are relevant to pr(1): the 49% of girls

born before 2001, or the 51% of boys. And that is not a matter

of statistics but of judgment—no less so because we would all

make the same judgment: the 51% of boys.

1.2 Why Probabilities Are Additive

Authentic tickets of the Mars sort are hard to come by. Is the first of

them really worth $10 to me if there was life on Mars? Probably not. If

the truth is not known in my lifetime, I cannot cash the ticket even if it

is really a winner. But some probabilities are plausibly represented by

prices, e.g., probabilities of the hypotheses about athletic contests and

lotteries that people commonly bet on. And it is plausible to think that

the general laws of probability ought to be the same for all hypotheses—

about planets no less than about ball games. If that is so, we can

justify laws of probability if we can prove all betting policies that violate
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them to be inconsistent. Such justifications are called “Dutch book

arguments”.2 We shall give a Dutch book argument for the requirement

that probabilities be additive in this sense:

Finite Additivity. The probability of a hypothesis that

can be true in a finite number of incompatible ways is the

sum of the probabilities of those ways.

Example 1, Finite additivity. The probability p of the hypothesis

A sage will be elected(H)

is q + r + s if exactly three of the candidates are sages and their probabil-

ities of winning are q, r, and s. In the following diagram, A,B,C,D, . . .

are the hypotheses that the various different candidates win—the first

three being the sages. The logical situation is diagrammed as follows,

where the points in the big rectangle represent all the ways the election

might come out, specified in minute detail, and the small rectangles rep-

resent the ways in which the winner might prove to be A, or B, or C,

or D, etc.

DA B C

H true

Probabilities of cases A, B, C, D,…
are q, r, s, t,…, respectively.

H false

.  .  .

1.2.1 Dutch Book Argument for Finite Additivity

For definiteness we suppose that the hypothesis in question is true in

three cases, as in example 1; the argument differs inessentially for other

examples, with other finite numbers of cases. Now consider the following

four tickets.

2 In British racing jargon a book is the set of bets a bookmaker has accepted,
and a book against someone—a “Dutch” book—is one the bookmaker will
suffer a net loss on no matter how the race turns out. I follow Brian Skyrms
in seeing F. P. Ramsey as holding Dutch book arguments to demonstrate ac-
tual inconsistency. See Ramsey’s “Truth and Probability” in his Philosophical
Papers, D. H. Mellor (ed.), Cambridge University Press, 1990.
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Worth $1 if H is true.

Worth $1 if A is true.

Worth $1 if B is true.

Worth $1 if C is true.

Price $p

Price $q

Price $r

Price $s

Suppose I am willing to buy or sell any or all of these tickets at the

stated prices. Why should p be the sum q + r + s? Because no matter

what it is worth—$1 or $0—the ticket on H is worth exactly as much

as the tickets on A, B, C together. (If H loses it is because A, B, C all

lose; if H wins it is because exactly one of A, B, C wins.) Then if the

price of the H ticket is different from the sum of the prices of the other

three, I am inconsistently placing different values on one and the same

contract, depending on how it is presented.

If I am inconsistent in that way, I can be fleeced by anyone who will

ask me to buy the H ticket and sell or buy the other three depending

on whether p is more or less than q + r + s. Thus, no matter whether

the equation p = q + r + s fails because the left—hand side is more or

less than the right, a book can be made against me. That is the Dutch

book argument for additivity when the number of ultimate cases under

consideration is finite. The talk about being fleeced is just a way of

dramatizing the inconsistency of any policy in which the dollar value of

the ticket on H is anything but the sum of the values of the other three

tickets: To place a different value on the three tickets on A, B, C from the

value you place on the H ticket is to place different values on the same

commodity bundle under two demonstrably equivalent descriptions.

When the number of cases is infinite, a Dutch book argument for

additivity can still be given—provided the infinite number is not too

big! It turns out that not all infinite sets are the same size.

Example 2, Cantor’s diagonal argument. The positive integers

(I+’s) can be counted off, just by naming them successively: 1, 2, 3, . . .

On the other hand, the sets of positive integers (such as {1, 2, 3, 5, 7} or

the set of all even numbers, or the set of multiples of 17, or {1, 11, 101,

1001, 10001} cannot be counted off as first, second, . . . , with each such
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set appearing as n’th in the list for some finite positive integer n. This

was proved by Georg Cantor (1895) as follows. Any set of I+’s can be

represented by an endless string of plusses and minuses (“signs”), e.g., the

set of even I+’s by the string − + − + . . . in which plusses appear at the

even numbered positions and minuses at the odd, the set {2, 3, 5, 7, . . .}
of prime numbers by an endless string that begins − + + − + − +, the

set of all the I+’s by an endless string of plusses, and the set of no I+’s

by an endless string of minuses. Cantor proved that no list of endless

strings of signs can be complete. He used an amazingly simple method

(“diagonalization”) which, applied to any such list, yields an endless

string d̄ of signs which is not in that list. Here’s how. For definiteness,

suppose the first four strings in the list are the examples already given,

so that the list has the general shape

s1 : − + − + . . .

s2 : − + + − . . .

s3 : + + + + . . .

s4 : −−−− . . .

etc.

Define the diagonal of that list as the string d consisting of the first

sign in s1, the second sign in s2, and, in general, the n’th sign in sn:

− + + − . . .

And Define the antidiagonal d̄ of that list as the result d̄ of reversing all

the signs in the diagonal,

d̄ : + −− + . . .

In general, for any list s1, s2, s3, s4, . . . , d̄ cannot be any member sn of

the list, for, by definition, the n’th sign in d̄ is different from the n’th

sign of sn, whereas if d̄ were some sn, those two strings would have to

agree, sign by sign. Then the set of I+’s defined by the antidiagonal of

a list cannot be in that list, and therefore no list of sets of I+’s can be

complete.

Countability. A countable set is defined as one whose

members (if any) can be arranged in a single list, in which

each member appears as the n’th item for some finite n.

Of course any finite set is countable in this sense, and some infinite

sets are countable. An obvious example of a countably infinite set is
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the set I+ = {1, 2, 3, . . .} of all positive whole numbers. A less obvious

example is the set I of all the whole numbers, positive, negative, or zero:

{. . . ,−2,−1, 0, 1, 2, . . .}. The members of this set can be rearranged in

a single list of the sort required in the definition of countability:

0, 1,−1, 2,−2, 3,−3, . . .

So the set of all the whole numbers is countable. Order does not matter,

as long as every member of I shows up somewhere in the list.

Example 3, Countable additivity. In example 1, suppose there

were an endless list of candidates, including no end of sages. If H says

that a sage wins, andA1, A2, . . . identify the winner as the first, sec-

ond, . . . sage, then an extension of the law of finite additivity to countably

infinite sets would be this:

Countable Additivity. The probability of a hypothesis

H that can be true in a countable number of incompatible

waysA1, A2, . . . is the sum pr(H) = pr(A1) + pr(A2) + . . .

of the probabilities of those ways.

This equation would be satisfied if the probability of one or another

sage’s winning were pr(H) = 1/2, and the probabilities of the first,

second, third, etc. sage’s winning were 1/4, 1/8, 1/16, etc., decreasing

by half each time.

1.2.2 Dutch Book Argument for Countable Additivity

Consider the following infinite array of tickets, where the mutually incom-

patible A’s collectively exhaust the ways in which H can be true (as in

example 3).3

3 No matter that there is not enough paper in the universe for an infinity of
tickets. One small ticket can save the rain forest by doing the work of all the
A tickets together. This eco-ticket will say: ‘For each positive whole number
n, pay the bearer $1 if An is true.’
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Pay the bearer $1 if H is true.

Pay the bearer $1 if A2 is true.

Pay the bearer $1 if A1 is true.

Price $pr(H)

Price $pr(A1)

Price $pr(A2)

… …

Why should my price for the first ticket be the sum of my prices for

the others? Because no matter what it is worth—$1 or $0—the first

ticket is worth exactly as much as all the others together. (If H loses

it is because the others all lose; if H wins it is because exactly one of

the others wins.) Then if the first price is different from the sum of the

others, I am inconsistently placing different values on one and the same

contract, depending on how it is presented.

Failure of additivity in these cases implies inconsistency of valuations:

a judgment that certain transactions are at once (1) reasonable and (2)

sure to result in an overall loss. Consistency requires additivity to hold

for countable sets of alternatives, finite or infinite.

1.3 Probability Logic

The simplest laws of probability are the consequences of finite additivity

under this additional assumption:

Probabilities are real numbers in the range from 0 to 1,

with the endpoints reserved for certainty of falsehood and

of truth, respectively.

This makes it possible to read probability laws off diagrams, much as

we read ordinary logical laws off them. Let’s see how that works for

the ordinary ones, beginning with two surprising examples (where “iff”

means if and only if ):

De Morgan’s Laws

(1) ¬(G ∧H) = ¬G ∨ ¬H (“Not both true iff at least one false”)

(2) ¬(G ∨H) = ¬G ∧ ¬H (“Not even one true iff both false”)

Here the bar, the wedge and juxtaposition stand for not, or, and and.

Thus, if G and H are two hypotheses,
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G ∧H (or GH) says that they are both true: G and H

G ∨H says that at least one is true: G or H

¬G (or −G or Ḡ) says that G is false: not G

In the following diagrams for De Morgan’s laws the upper and lower rows

represent G and ¬G and the left- and right-hand columns represent H

and ¬H. Now if R and S are any regions, R ∧ S (or “RS”), is their

intersection, R ∨ S is their union, and ¬R is the whole big rectangle

except for R.

Diagrams for De Morgan’s laws (1) and (2):

H

H

¬H

¬G

G G ∧ H

G

¬H

(1) Shaded: ¬(G ∧ H) = ¬G ∨ ¬H

(2) Shaded: ¬(G ∨ H) = ¬G ∧ ¬H

¬G ∧ ¬H

G ∨ H

¬G

Adapting such geometrical representations to probabilistic reasoning

is just a matter of thinking of the probability of a hypothesis as its

region’s area, assuming that the whole rectangle, H ∨ ¬H (= G ∨ ¬G),

has area 1. Of course the empty region, H ∧ ¬H (= G ∧ ¬G), has area

0. It is useful to denote those two extreme regions in ways independent

of any particular hypotheses H,G. Let’s call them � and ⊥:

Logical Truth. � = H ∨ ¬H = G ∨ ¬G
Logical Falsehood. ⊥ = H ∧ ¬H = G ∧ ¬G

We can now verify some further probability laws informally, in terms

of areas of diagrams.

Not: pr(¬H) = 1 − pr(H)

Verification. The non-overlapping regions H and ¬H exhaust the whole

rectangle, which has area 1. Then pr(H) + pr(¬H) = 1, so pr(¬H) =

1 − pr(H).

Or: pr(G ∨H) = pr(G) + pr(H) − pr(G ∧H)
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Verification. The G ∨H area is the G area plus the H area, except that

when you simply add pr(G) + pr(H) you count the G ∧H part twice.

So subtract it on the right-hand side.

The word “but”—a synonym for “and”—may be used when the con-

junction may be seen as a contrast, as in “it’s green but not healthy”,

G ∧ ¬H:

But Not: pr(G ∧ ¬H) = pr(G) − pr(G ∧H)

Verification. The G ∧ H̄ region is what remains of the G region after

the G ∧H part is deleted.

Dyadic Analysis: pr(G) = pr(G ∧H) + pr(G ∧ ¬H)

Verification. See the diagram for De Morgan (1). The G region is the union

of the nonoverlapping G ∧H and G ∧ ¬H regions.

In general, there is a rule of n-adic analysis for each n, e.g., for n=3:

Triadic Analysis: If H1, H2, H3 partition �,4 then

pr(G) = pr(G ∧H1) + pr(G ∧H2) + pr(G ∧H3).

H3

GH3

H2

GH2

H1

GH1G

G

The next rule follows immediately from the fact that logically equivalent

hypotheses are always represented by the same region of the diagram—

in view of which we use the sign “=” of identity to indicate logical

equivalence.

Equivalence: If H = G, then pr(H) = pr(G).

(Logically equivalent hypotheses are equiprobable.)

Finally: To be implied by G, the hypothesis H must be true in every

case in which G is true. Diagrammatically, this means that the G region is

entirely included in the H region. In the figure below, G is represented

by the small disk, and H by the large disk; H is sitting on the rim to

indicate that H comprises both the annulus and the little disk. Then if
4 This means that, as a matter of logic, the H’s are mutually exclusive (H1 ∧
H2 = H1 ∧H3 = H2 ∧H3 = ⊥) and collectively exhaustive (H1 ∨H2 ∨H3 =
�). The equation also holds if the H’s merely pr-partition � in the sense that
pr(Hi ∧Hj) = 0 whenever i �= j and pr(H1 ∧H2 ∧H3) = 1.
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G implies H, the G region can have no larger an area than the H region.

H

G

Implication: If G implies H, then pr(G) ≤ pr(H ).

1.4 Conditional Probability

We identified your ordinary (unconditional) probability for H as the

price representing your valuation of the following ticket:

Worth $1 if H is true. Price $pr(H)

Now we identify your conditional probability for H given D as the

price representing your valuation of this ticket:

Worth $1 if D∧H is true,
Worth $pr(H/D) if D is false. 

Price $pr(H |D)

The old ticket represented a simple bet on H; the new one represents a

conditional bet on H—a bet that is called off (the price of the ticket is

refunded) in case the condition D fails. If D and H are both true, the

bet is on and you win, the ticket is worth $1. If D is true but H is false,

the bet is on and you lose, the ticket is worthless. And if D is false, the

bet is off, you get your $pr(H|D) back as a refund.

With that understanding we can construct a Dutch book argument for

the following rule, which connects conditional and unconditional proba-

bilities:

Product Rule: pr(H ∧D) = pr(H|D)pr(D)
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Dutch Book Argument for the Product Rule.5 Imagine that you own

three tickets, which you can sell at prices representing your valuations.

The first is ticket (1) above. The second and third are the following

two, which represent unconditional bets of $1 on HD and of $pr(H|D)

against D,

(2)
Worth $1 if H∧D is true. Price $pr(H∧D)

(3)
Price $pr(H |D)pr(¬D)Worth pr(H/D) if D is false.

Bet (3) has a peculiar payoff: not a whole dollar, but only $pr(H|D).

That is why its price is not the full $pr(¬D) but only the fraction pr(¬D)

of the $pr(H|D) that you stand to win. This payoff was chosen to equal

the price of the first ticket, so that the three fit together into a neat

book.

Observe that in every possible case regarding truth and falsity of H

and D the tickets (2) and (3) together have the same dollar value as

ticket (1). (You can verify that claim with pencil and paper.) Then

there is nothing to choose between ticket (1) and tickets (2) and (3)

together, and therefore it would be inconsistent to place different values

on them. Thus, your price for (1) ought to equal the sum of your prices

for (2) and (3):

pr(H|D) = pr(H ∧D) + pr(¬D)pr(H|D)

Now set pr(¬D) = 1 − pr(D), multiply through, cancel pr(H|D) from

both sides and solve for pr(H ∧D). The result is the product rule.

To violate that rule is to place different values on the same commodity

bundle in different guises: (1), or the package (2, 3).

The product rule is more familiar in a form where it is solved for the

conditional probability pr(H|G):

Quotient Rule: pr(H|D) =
pr(H ∧D)

pr(D)
, provided pr(D) > 0.

Graphically, the quotient rule expresses pr(H|D) as the fraction of the

D region that lies inside the H region. It is as if calculating pr(H|D)

5 de Finetti (1937, 1980).
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were a matter of trimming the whole D ∨ ¬D rectangle down to the D

part, and using that as the new unit of area.

The quotient rule is often called the definition of conditional proba-

bility. It is not. If it were, we could never be in the position we are

often in, of making a conditional judgment—say, about how a coin that

may or may not be tossed will land—without attributing some partic-

ular positive value to the condition that pr(head|tossed) = 1/2 even

though

pr(head ∧ tossed)

pr(tossed)
=

undefined

undefined
.

Nor—perhaps, less importantly—would we be able to make judgments

like the following, about a point (of area 0!) on the Earth’s surface:

pr(in western hemisphere | on equator) = 1/2

even though

pr(in western hemisphere ∧ on equator)

pr(on equator)
=

0

0
.

The quotient rule merely restates the product rule; and the product rule

is no definition but an essential principle relating two distinct sorts of

probability.

By applying the product rule to the terms on the right-hand sides of

the analysis rules in sec. 1.3 we get the rule of6

Total Probability: If the D’s partition �
then pr(H) =

∑

i

pr(Di)pr(H|Di).
7

Example, A ball will be drawn blindly from urn 1 or urn 2, with

odds 2:1 of being drawn from urn 2. Is black or white the more probable

outcome?

Urn 1 Urn 2

Solution. By the rule of total probability with H = black and Di =

drawn from urn i, we have pr(H) = pr(H|D1)P (D1) + pr(H|D2)P (D2) =

( 3
3
· 1

3
) + ( 1

2
· 2

3
) = 1

4
· 1

3
= 7

12
> 1

2
: Black is the more probable outcome.

6 Here the sequence of D’s is finite or countably infinite.
7 = pr(D1)pr(H|D1) + pr(D2)pr(H|D2) + . . .
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1.5 Why “|” Cannot Be a Connective

The bar in “pr(H|D)” is not a connective that turns pairs H,D of propo-

sitions into new, conditional propositions, H if D. Rather, it is as if we

wrote the conditional probability of H given D as “pr(H,D)”: The bar

is a typographical variant of the comma. Thus we use “pr” for a func-

tion of one variable as in “pr(D)” and “pr(H ∧D)”, and also for the

corresponding function of two variables as in “pr(H|D)”. Of course the

two are connected—by the product rule.

Then in fact we do not treat the bar as a statement–forming connec-

tive, “if”; but why couldn’t we? What would go wrong if we did? This

question was answered by David Lewis in 1976, pretty much as follows.8

Consider the simplest special case of the rule of total probability:

pr(H) = pr(H|D)pr(D) + pr(H|¬D)pr(¬D)

Now if “|” is a connective and D and C are propositions, then D|C is a

proposition too, and we are entitled to set H = D|C in the rule. Result:

pr(D|C) = pr[(D|C)|D]pr(D) + pr[(D|C)|¬D]pr(¬D)(1)

So far, so good. But remember: “|” means if. Therefore, “(D|C)|X”

means If X, then if C then D. And as we ordinarily use the word “if”,

this comes to the same as If X and C, then D:

(D|C)|X = D|XC(2)

(Recall that the identity means the two sides represent the same re-

gion, i.e., the two sentences are logically equivalent.) Now by two appli-

cations of (2) to (1) we have

pr(D|C) = pr(D|D ∧ C)pr(D) + pr(D|¬D ∧ C)pr(¬D)(3)

But as D ∧ C and ¬(D ∧ C) respectively imply and contradict D,

we have pr(D|D ∧ C) = 1 and pr(D|¬D ∧ C) = 0. Therefore, (3) reduces

to

pr(D|C) = pr(D)(4)

8 For Lewis’s “trivialization” result (1976), see his (1986). For subsequent de-
velopments, see the papers Hájek, Probabilities and Conditionals, Ellery Eells
and Brian Skyrms (eds.), Cambridge University Press (1994), and Hall, Prob-
abilities and Conditionals, Ellery Eells and Brian Skyrms (eds.), Cambridge
University Press (1994); other papers in this book cover additional develop-
ments.


