Forest, Water and People in the Humid Tropics
Past, Present and Future Hydrological Research for Integrated Land and Water Management

Forests, Water and People in the Humid Tropics is the most comprehensive review available of the hydrological and physiological functioning of tropical rainforests, the environmental impacts of their disturbance and conversion to other land uses, and optimum strategies for managing them.

The authors review existing guidelines for timber harvesting, land clearing and post-forest agriculture, and seek ways to enhance their application. The book also examines the possibilities of restoring the hydrological functioning of degraded areas. New techniques that may help researchers and managers to understand better the hydrological consequences of land management decisions are discussed. The editors have supplemented the individual contributions with invaluable overviews of the main sections and provide key pointers for future research.

This book brings together leading specialists in such diverse fields as tropical anthropology and human geography, environmental economics, climatology and meteorology, hydrology, geomorphology, plant and aquatic ecology, forestry and conservation agronomy. Specialists will find authenticated detail in chapters written by experts on a whole range of people–water–land use issues, and managers and practitioners will learn more about the implications of ongoing and planned forest conversion, while scientists and students will appreciate a unique review of the literature.

Mike Bonell is Chief of the Hydrological Processes and Climate Section at the UNESCO Division of Water Sciences. He is the managing series editor of the International Hydrology Series, and is leading editor of Hydrology and Water Management in the Humid Tropics (1993; Cambridge University Press).

L. A. (Sampurno) Bruijnzeel is Senior Lecturer/Associate Professor of Eco-Hydrology at the Department of Hydrology and Geo-Environmental Sciences, Vrije Universiteit, Amsterdam. He is on the editorial board of the Journal of Tropical Ecology, Hydrological Processes, the Encyclopedia of Forest Sciences (Forest Hydrology Section), and the Journal of Land Use and Water Resources Research.
The International Hydrological Programme (IHP) was established by the United Nations Educational, Scientific and Cultural Organization (UNESCO) in 1975 as the successor to the International Hydrological Decade. The long-term goal of the IHP is to advance our understanding of processes occurring in the water cycle and to integrate this knowledge into water resources management. The IHP is the only UN science and educational programme in the field of water resources, and one of its outputs has been a steady stream of technical and information documents aimed at water specialists and decision-makers.

The International Hydrology Series has been developed by the IHP in collaboration with Cambridge University Press as a major collection of research monographs, synthesis volumes and graduate texts on the subject of water. Authoritative and international in scope, the various books within the series all contribute to the aims of the IHP in improving scientific and technical knowledge of fresh-water processes, in providing research know-how and in stimulating the responsible management of water resources.

Members of the Advisory Board
Professor B. P. F. Braga Jr Centre Tecnologica de Hidraulica, Sao Paulo, Brazil
Professor G. Dagan Faculty of Engineering, Tel Aviv University, Israel
Dr J. Khouri Water Resources Division, Arab Centre for Studies of Arid Zones and Dry Lands, Damascus, Syria
Dr G. Leavesley US Geological Survey, Water Resources Division, Denver Federal Center, Colorado, USA
Dr E. Morris Scott Polar Research Institute, Cambridge, UK
Professor L. Oyebande Department of Geography and Planning, University of Lagos, Nigeria
Professor S. Sorooshian Department of Civil and Environmental Engineering, University of California, Irvine, California, USA
Professor K. Takeuchi Department of Civil and Environmental Engineering, Yamanashi University, Japan
Professor I. White Centre for Resource and Environmental Studies, Australian National University, Canberra, Australia

TITLES IN PRINT IN THE SERIES

Z. W. Kundzewicz New Uncertainty Concepts in Hydrology
R. A. Feddes Space and Time Scale Variability and Interdependencies in the Various Hydrological Processes
J. Gibert, J. Mathieu and F. Fournier Groundwater and Surface Water Ecosystems: Biological and Hydrological Interactions and Management Options
G. Dagan and S. Neuman Subsurface Flow and Transport: A Stochastic Approach
D. P. Lonchak and J. S. Gladwell Sustainability Criteria for Water Resource Systems
J. C. van Dam Impacts of Climate Change and Climate Variability on Hydrological Regimes
J. J. Bogardi and Z. W. Kundzewicz Risk, Reliability, Uncertainty and Robustness of Water Resources Systems
G. Kasar and H. Omanson Tropical Glaciers
I. A. Shiklomanov and John C. Rodda World Water Resources at the Beginning of the Twenty-First Century
A. S. Isar Climate Changes during the Holocene and their Impact on Hydrological Systems
INTERNATIONAL HYDROLOGY SERIES

Forests, Water and People in the Humid Tropics
Past, Present and Future Hydrological Research for Integrated Land and Water Management

Edited by
M. Bonell
UNESCO, Paris

L. A. Bruijnzeel
Vrije Universiteit, Amsterdam
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of contributors</td>
<td>viii</td>
</tr>
<tr>
<td>Foreword</td>
<td>xi</td>
</tr>
<tr>
<td>Sir Charles Pereira</td>
<td>xiii</td>
</tr>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xvi</td>
</tr>
<tr>
<td>Symposium and Workshop</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
</tbody>
</table>

Part I Current trends and perspectives on people–land use–water issues

1. Trends and patterns of tropical land use change
 R. Drigo
 9
2. The myth of efficiency through market economics: a biophysical analysis of tropical economies, especially with respect to energy, forests and water
 C. A. S. Hall and J.-Y. Ko
 40
3. Impacts of land cover change in the Brazilian Amazon: a resource manager’s perspective
 E. A. Serrão and I. S. Thompson
 59
4. Forest people and changing tropical forestland use in tropical Asia
 J. Schweithelm
 66
5. People in tropical forests: problem or solution?
 A. L. Hall
 75
6. Useful myths and intractable truths: the politics of the link between forests and water in Central America
 D. Kaimowitz
 86
7. Land use, hydrological function and economic valuation
 B. Aylward
 99
8. Water resources management policy responses to land cover change in South East Asian river basins
 D. Murdiyarso
 121
9. Community-based hydrological and water quality assessments in Mindanao, Philippines
 134
vi CONTENTS

Part II Hydrological processes in undisturbed forests

10 An overview of the meteorology and climatology of the humid tropics
 J. Callaghan and M. Bonell

11 Synoptic and mesoscale rain producing systems in the humid tropics
 M. Bonell, J. Callaghan and G. Connor

12 Climatic variability in the tropics
 A. Mahé, E. Servat and J. Maley

13 Controls on evaporation in lowland tropical rainforest

14 Runoff generation in tropical forests
 M. Bonell

15 Erosion and sediment yield in the humid tropics
 J. Douglas and J.-L. Guyot

16 Rainforest mineral nutrition: the ‘black box’ and a glimpse inside it
 J. Proctor

17 Hydrology of tropical wetland forests: recent research results from Sarawak peatswamps
 A. Hooijer

18 Tropical montane cloud forest: a unique hydrological case
 L. A. Brautjnzeel

Part III Forest disturbance, conversion and recovery

19 Natural disturbances and the hydrology of humid tropical forests
 F. N. Scatena, E. O. Planes-Guitierrez and J. Schellekens

20 Spatially significant effects of selective tropical forestry on water, nutrient and sediment flows:
 a modelling-supported review
 N. A. Chappell, W. Fyih, Z. Xiong, N. A. Rahim, and B. Kauun

21 Effects of shifting cultivation and forest fire
 A. Mulhner, M. van Noordwijk and L. A. Brautjnzeel

22 Soil and water impacts during forest conversion and stabilisation to new land use
 H. Grisp, J.-M. Fritsch and L. A. Brautjnzeel

23 Large-scale hydrological impacts of tropical forest conversion
 M. H. Costa

24 Forest recovery in the humid tropics: changes in vegetation structure, nutrient pools and the hydrological cycle
 D. Hölzcher, J. Mackensen and J.-M. Roberts

25 The hydrological and soil impacts of forestation in the tropics
 D. F. Scott, L. A. Brautjnzeel and J. Mackensen

26 The potential of agroforestry for sustainable land and water management
 J. S. Wallace, A. Young and C. K. Ong
Part IV New methods for evaluating effects of land-use change

27 Remote sensing tools in tropical forest hydrology: new sensors
A. A. Held and E. Rodriguez

28 Detecting change in river flow series
Z. W. Kundzewicz and A. J. Robson

29 How to choose an appropriate catchment model
C. Barnes and M. Bonell

30 The disaggregation of monthly streamflow for ungaged sub-catchments of a gauged irrigated catchment in northern Thailand
S. Y. Schroeder and A. J. Jakeman

31 Parsimonious spatial representation of tropical soils within dynamic rainfall–runoff models
N. A. Chappell, K. Bidin, M. D. Sherlock and J. W. Lancaster

32 Isotope tracers in catchment hydrology in the humid tropics
J. M. Battle and J. J. McDonnell

33 Process-based erosion modelling: promises and progress
B. Yu

34 Impacts of forest conversion on the ecology of streams in the humid tropics
N. M. Connolly and R. G. Pearson

Part V Critical appraisals of best management practices

35 Guidelines for controlling vegetation, soil and water impacts of timber harvesting in the humid tropics
D. S. Cassells and L. A. Bruijnzeel

36 Minimising the hydrological impact of forest harvesting in Malaysia’s rainforests
H. C. Thang and N. A. Chappell

37 Red flags of warning in land clearing
L. S. Hamilton

38 From nature to nurture: soil and water management for rainfed steeplands in the humid tropics
W. W. S. Crichley

Conclusion: Forests, water and people in the humid tropics: an emerging view
L. A. Bruijnzeel, M. Bonell, D. A. Gilmour and D. Lamb

Plate section between pages 484 and 485
Contributors

Aylward, B.
Deschutes Resources Conservancy, P.O. Box 1560, Bend, OR 97709, USA

Bagu-Labis, J. P.
Heifer Project International/Philippines, Unit 907, South Center Tower, Madrigal Business Park, Alabang, Muntinlupa City 1771, Philippines

Barnes, C.
Climate and Agricultural Risk Unit, Agriculture and Food Sciences Program, Bureau of Rural Sciences, P.O. Box E11, Kingston ACT 2604 Canberra, Australia

Bidin, K.
School of Science and Technology, Universiti Malaysia Sabah, 88999, Kota Kinabalu, Malaysia

Bonell, M.
Hydrological Processes and Climate Section, Division of Water Sciences, UNESCO, 1 rue Miollis, 75732 Paris Cedex 15, France

Bruijnzeel, L. A.
Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, De Boecklaan 1085, 1081 HV Amsterdam, The Netherlands

Busby, A. L.
International Center for Aquaculture and Aquatic Environments, Department of Fisheries, Auburn University, Auburn, AL 36849, USA

Buttle, J. M.
Department of Geography, Trent University, Peterborough, Ontario K9J 7B8, Canada

Callaghan, J.
Severe Weather Section, Bureau of Meteorology, G.P.O. Box 413, Brisbane, QLD 4000, Australia

Cassells, D. S.
The World Bank, Environment Department, 1818 H Street NW, Washington, DC 20433, USA

Cequina, E. Y.
Central Mindanao University, Musuan, Bukidnon, Mindanao, Philippines

Chappell, N. A.
Centre for Research on Environmental Systems and Statistics, IENS, Lancaster University, Lancaster, LA1 4YQ, UK

Connolly, N. M.
Australian Centre for Tropical Freshwater Research, Rainforest Cooperative Research Centre, James Cook University, Townsville, QLD 4814, Australia

Connor, G.
Bureau of Meteorology, RAAF Base Garbutt, Townsville, QLD 4814, Australia

Costa, M. H.
Federal University of Vajosa, Brazil

Critchley, W. R. S.
CIS-Centre for International Cooperation/Faculty of Earth and Life Sciences, Vrije Universiteit, De Boecklaan 1105, 1081 HV Amsterdam, The Netherlands

Deutsch, W. G.
International Center for Aquaculture and Aquatic Environments, Department of Fisheries, Auburn University, Auburn, AL 36849, USA

Douglas, I.
School of Geography, University of Manchester, UK

Drigo, R.
Località Collina 5, l-53036 Poggibonsi, Siena, Italy

Fritsch, J. -M.
L’Institut de Recherche pour le Développement-LMTG, 38 rue des 36 Points, F-31400 Toulouse, France

Gash, J. H. C.
Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
Grip, H.
Department of Forest Ecology, SLU, S-901 83 Umeå, Sweden

Guyot, J.-L.
L’Institut de Recherche pour le Développement-LMTG, 38 rue des 36 Points, F-31400 Toulouse, France

Hall, A. L.
LCSES, msnI-6-600 The World Bank, 1818 N Street, New Washington DC, 20433, USA

Hall, C. A. S.
College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA

Hamilton, L. S.
East-West Center, 342 Bittersweet Lane, Charlotte, VT 05445, USA

Held, A. A.
CSIRO, Canberra, ACT Australia

Hj Nik, A. R.
Forestry Research Institute of Malaysia, Kepong, 52109 Kuala Lumpur, Malaysia

Holcher, D.
Institute of Silviculture, University of Göttingen, Büsgenweg 1, D-37077 Göttingen, Germany

Hooijer, A.
Department for River Basin Management, Delft Hydraulics, P.O. Box 177, 2600 MH Delft, The Netherlands

Jakeman, A. J.
Centre for Resource and Environmental Studies (CRES), The Australian National University, Canberra, ACT 0200, Australia

Kaimowitz, D.
Center for International Forest Research (CIFOR), PO Box 6596 JKFWB, Jakarta 10606, Indonesia

Kasran, B.
Forestry Research Institute of Malaysia, Kepong, 52109 Kuala Lumpur, Malaysia

Ko, J.-Y.
Coastal Ecology Institute, Louisiana State University, Baton Rouge, LA 70803, USA

Kundzewicz, Z. W.
Research Centre of Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60-809 Poznań, Poland.also Potsdam Institute for Climate Impact Research Potsdam, Germany

Lancaster, J. W.
Arop Water, 78 East Street, Leeds, LS9 8EE, UK

Mackensen, J.
Division of Policy Development and Law, United Nations Environmental Programme (UNEP), P.O. Box 30552, Nairobi, Kenya

Mahi, G.
L’Institut de Recherche pour le Développement – IRD-ex ORSTOM, 01 BP 182, Ouagadougou 01, Burkina Faso

Maley, J.
L’Institut de Recherche pour le Développement, BP 5045, F-34032 Montpellier Cedex 1, France

Malmer, A.
Department of Forest Ecology, Swedish University of Agricultural Science, SE-901 83 Umeå, Sweden

McDonnell, J. J.
Department of Forest Engineering, Oregon State University, Corvallis, OR, USA

Mundiyarso, D.
Center for International Forestry Research (CIFOR), Bogor, Indonesia

Ong, C. K.
Regional Land Management Unit, RELMA, International Centre for Research in Agroforestry, Nairobi, Kenya

Oppeniec, I. L.
Heifer Project International/Philippines, Unit 907, South Center Tower, Madrigal Business Park, Alabang, Muntinlupa City 1771, Philippines

Pearson, R. G.
School of Tropical Biology, James Cook University, Townsville, QLD 4811, Australia

Planas-Gutierrez, E. O.
Instituto de Meteorologia, Havana, Cuba

Proctor, J.
Department of Biological Sciences, University of Stirling, Stirling FK9 4LA, UK

Roberts, J. M
Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK

Robson, A. J.
Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK

Rodríguez, E.
Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA, USA
Scatena, F. N.
Department of Earth and Environmental Science, 240 South 33rd Street, University of Pennsylvania, Philadelphia, PA 19104, USA

Schellekens, J.
Faculty of Earth and Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

Schreider, S. Yu.
School of Mathematical and Geospatial Sciences, Royal University of Technology, Melbourne, Australia

Schweithelm, J.
Forest Mountain Consulting, Burlington, VT, USA

Scott, D. F.
FRBC Research Chair of Watershed Management, Okanagan University College, Kelowna, B.C., V1V 1V7, Canada

Serrão, E. A.
Embrapa Amazônia Oriental, Belém, Brazil

Servat, E.
L’Institut de Recherche pour le Développement, UMR Hydrosciences, BP 5045, F-34032 Montpellier Cedex 1, France

Sherlock, M. D.
Department of Geography, National University of Singapore, Singapore 117576, Malaysia

Tani, M.
Graduate School of Agriculture, Kyoto University, Kyoto, Japan

Thang Hooi Chiew
Forestry Department Peninsular Malaysia, Jalan Sultan Salahuddin, 50660 Kuala Lumpur, Malaysia

Thompson, I. S.
Department for International Development, Belém, Brazil

Tych, W.
Centre for Research on Environmental Systems and Statistics, IENS, Lancaster University, Lancaster, LA1 4YQ, UK

Van Noordwijk, M.
International Centre for Research in Agroforestry, PO Box 161, Bogor, Indonesia

Wallace, J. S.
CSIRO Land and Water, Townsville, QLD 4811, Australia

Young, A.
School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK

Yu, B.
Faculty of Environmental Sciences, Griffith University, Nathan, QLD 4111, Australia

Yusop, Z.
Institute of Environmental and Water Resource Management, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 80990 Johor Bahru, Malaysia
Foreword

Management problems of water-source areas in developing countries show, within my experience, a characteristic pattern. For familiar ecological reasons, streamflow from forested hills supports the economic development of populations of the valleys and plains below. The protection of water source areas is therefore accepted, in principle, as necessary to national development. Such protection of remote areas is difficult to fund and to staff. The rapid growth of tropical populations has, however, resulted in large-scale invasion and destruction of upper-watershed forests by subsistence cultivators and graziers. Deterioration of streamflow regulation has become an all-too-familiar result, with regular flow replaced by flood flows and dwindling dry-season supply.

Authority resides in cities, but administration strong enough to protect these watershed forests must be resident in the hills. For the administrator, a posting to the remote hills is effectively a banishment to a life far from schools and other amenities as well as from opportunities for recognition and promotion. Thus although Forest Departments maintain their protective patrols by devoted staff, they are, in many countries, inadequately supported by the administration of the law.

Technical reports by hydrologists and land-use specialists, after making systematic surveys paid for by governments, have spelled out the critical importance of watershed protection, but the necessary following action has been neglected in at least a score of countries that I have been privileged to study. An important result of the compelling evidence described in this book will, I hope, be not only higher priority for funding the protection of watershed forests, but stronger interest in the more effective use of the funds provided.

Sir Charles Pereira
Although the areal extent of tropical rainforests has changed markedly through natural fluctuations in climate at a geologi-
cal time scale, the rate of tropical forest harvesting and clear-
ance during the second half of the twentieth century, has been
unprecedented. Fuelled by the surging demands for tropical hard-
woods by ‘northern’ economies, timber harvesting relies heavily
on the use of mechanised felling and extraction. This, in turn, has
greatly disturbed the remaining vegetation, the soils and therefore
the hydrological functioning of the forest. Further, the economic
necessity for an adequate return on the capital invested in equip-
ment, vehicles, roads and wood-processing mills makes it desire-
able to harvest all marketable logs during a single felling cycle,
often at the cost of future growth. At the same time, traditional
shifting cultivation practices of local communities have become
unsustainable in many places due to the increased pressure on the
land exerted by a growing population, resulting in gradual degra-
dation or even total disappearance of closed forest. In addition to
such ‘unplanned’ forest degradation and conversion there is
an increasing trend towards planned, government-led conversions
of tropical forest to apparently more profitable cattle ranching or
commercial plantations.

The extensive disappearance of tropical forests during the last
five decades has raised global alarm over the threats to climatic stability and the hydrological functioning of river basins posed by
continued forest conversion, next to the well-being of forest dwelling and the conservation of biodiversity. Although the wave
of publicity on rainforest conservation and related environmental issues has stimulated some changes, notably the development and testing of reduced-impact logging (RIL) techniques and timber certification schemes, their application is still the exception rather
than the norm.

To discuss these issues, a symposium and workshop was
organized jointly by the International Hydrological Programme
(IHP) of UNESCO and the International Union of Forestry
Research Organizations (IUFRO), which was hosted by Universiti
Kebangsaan Malaysia, Kuala Lumpur, Malaysia between 30 July
and 4 August 2000. The event, Forest–Water–People in the Humid
Tropics: Past, Present, and Future Hydrological Research for
Integrated Land and Water Management, provided a state-of-the-
art overview of current knowledge on tropical forest hydrological functioning, the environmental impacts of forest disturbance and
conversion, and the best ways to minimise these impacts. The
meeting brought together some 94 people from 27 countries, rep-
resenting a judicious mixture of senior professionals approaching the end of their research and management careers, and younger aspirants eager to follow in their footsteps. This book is based on
contributions made to the Kuala Lumpur meeting, although sev-
eral chapters dealing with specific topics not covered in detail by
the symposium were added at a later stage.

Like the humid tropical environment it seeks to understand, tropical forest hydrology is changing. The relatively straightforward study of how water moves through forested catchments is
rapidly giving way to a far wider approach embracing not just
the physical aspects of water movement, but also how forest
landscapes should be managed to optimise the environmental services and benefits they bring to all people living in, or downstream of forested catchments. Most importantly, the overriding need to alle-
viate poverty in many tropical countries requires the interface or even integration of the socio-economic, cultural and governance aspects when discussing forest–land–water management issues and seeking optimum solutions. The structure of the book reflects this importance.

The first global scientific programme devoted to hydrology and water resources, the UNESCO International Hydrology Decade (1965–74), provided an international impetus to the creation of long-term, hydrological data collection networks. In more recent times, however, there has been a progressive erosion of this long-
term vision. Despite the threat of climate change, the need for
long-term monitoring and research to address environmental and
water resources management issues is no longer routine policy of
most national governments, both within and outside of the humid
Tropics. Instead, there has been a drift towards funding short-term,
high-visibility projects. The new UNESCO-led HELP (Hydrology
for the Environment, Life and Policy) programme aims to promote
just the type of integrated, interdisciplinary approach called for in this book.
There are some who argue that we know enough already and that there is little need for much more additional ‘science’. Indeed, it is true that there is sufficient technical knowledge to minimise the adverse hydrological impacts associated with mechanised timber harvesting or land-clearing and subsequent agricultural cropping. Thus the application of ‘best management practices’ is largely a matter of socio-economic acceptance and political will. At the same time, however, there are several important unanswered questions that require additional research. Two such issues that are of vital importance to the sustained livelihoods of countless upland farming communities and, indirectly, a great many more people living downstream, are:

1. Will dry-season flows or even annual water yields decrease after clearing tropical montane headwater areas with cloud forest?
2. Can the much reduced dry-season flows in heavily degraded areas be boosted, and if so, how?

Moreover, are we now in a position to predict the hydrological consequences of various management practices and land-use changes, including deforestation? Can we make these predictions in sufficient detail to be used by land users, managers or policy-makers wishing to avoid adverse hydrological consequences? And is the new hydrological knowledge uncovered by researchers being passed on to these stakeholders in a form they can use?

We need to shift the emphasis back towards the longer-term vision necessary to solve the pressing environmental issues faced by tropical governments and their populations. This time, however, it is crucial that researchers involve local communities (who are often the de facto resource managers) and any non-governmental organisations representing them, as well as institution-based resource managers and policy-makers to help set the research agenda and translate the results of such research into concrete guidelines and tangible benefits.

We hope that this book will provide inspiration to all people involved in forest–land–water–people issues in the humid tropics and so contribute to a better management of precious natural resources to the benefit of people, animals, plants and their surroundings.
Acknowledgements

The production of a book of this scope and size involves the contributions and support from a great many people. In particular, it relies heavily on the goodwill of the peer community of the contributing authors, all of whom are experts in their field. All chapters of this book have been peer-reviewed internally and externally. Many have given their time to review and comment on the draft chapters and, on behalf of all contributors, we gratefully acknowledge their invaluable input. Known referees are:

Christian Brannstrom Mark Lander Fred Scatena
Nick Chappell Christoph Leuschner Jan Siebert
Will Critchley Ian Littlewood Manoj Joshi
Oscar van Dam Hua Lu Mark Smith
Albert van Dijk Ariel Lugo Pradeep Tharakan
Hans Polster Anders Malmberg Chris Thomas
John Gash Meine van Noordwijk Doro Walling
John Hayes Paul Quinn John Williams
Richard de Jeu John Rodda Maciej Zalewski
Tim Kroeger Calvin Rose

The editorial commitment to this venture has been substantial and was completed wholly within the editors’ own time over a period of nearly three years. This required considerable personal support and understanding from family and friends and we express our deepest thanks to them all. In particular, Mike Bonell would like to make special mention of Kristofer Koch, Marie-Camille Talayssat and Binnie Briffault of the UNESCO Division of Water Sciences and Daphne Mullett of the UNESCO Communication and Information Sector for their critical logistical support; and also to his family members, Catherine, Emma, Sarah and Bob for their sustained support and presence during this major editorial commitment. Sampurno Bruijnzeel extends particular thanks to Hester Dekker, Albert van Dijk, Linda and Larry Hamilton, Edi Purwanto, Ronald Venimeth, Dorith van der Waerden, Maarten Waterlooo and above all to Irene Sievendael for their invaluable support during times of illness. A similarly crucial role was played by our text editor, Celia Kirby, who kept everything together with her meticulous attention to detail, acting as liaison between editors and authors whenever required, and providing continuous support in all sorts of ways.

Our grateful thanks also go to all authors for their willingness to respond to comments and their patience in waiting for the book to appear. Such levels of co-operation from the authors have been remarkable and made the task of the editors in bringing this large project to a conclusion a lot easier. Part of the concluding stages of this editing was carried out whilst one of us (Bonell) had the privilege of residing within the monastery, L’Abbaye de St Pierre de Solesmes. Le Père Jobert is thanked for facilitating this most special experience.

In conclusion, we thank Dr Gerard Persoon for providing us with the beautiful cover photograph that captures the essence of this book in a nutshell and to Sir Charles Perrya, eminence grise of tropical hydrology, for his willingness to write the Foreword.

Our grateful thanks are due to all those – authors, delegates and organizers – whose efforts made the Kuala Lumpur event so successful. In particular, we wish to acknowledge that the Symposium would not have happened at all without the valiant efforts of six persons. Aminata Diaby and Nayla Naourfal of the UNESCO Division of Water Sciences, Paris, who provided more than two years of support in the preparations of the Symposium and Workshop at the international level as well as supporting the Technical Organizing Committee. Special mention must be made of Dr Mushrifah Idris (on secondment to UNESCO in 1999–2000 from the Universiti Kebangsaan), who unexpectedly appeared in Senior Editor’s Office, just at the right time in May 1999, and offered the Universiti Kebangsaan as the suitable venue for the meeting, when previously all seemed lost. She quickly became the focal point of all local arrangements. The Vice-Chancellor of Universiti Kebangsaan Malaysia, Professor Anwar Ali, and the Deputy Vice-Chancellor, Professor Datuk Dr Zakil A. Hamid, kindly facilitated the symposium in support of Dr Mushrifah Idris. In addition, Mr Shamad Hussein, the Permanent Delegate from Malaysia to UNESCO in Paris until July 2000 also took a very close interest in the preparations of the symposium and on behalf of the government of Malaysia, provided the necessary support to the UNESCO IHP Secretariat and Mushrifah Idris.

The strategic directions taken by the Symposium were closely guided by the following members of the Technical Organizing Committee (TOC):

Dr Mike Bonell, UNESCO-Paris, Division of Water Sciences, France
Dr L. A. (Sampurno) Bruijnzeel, Faculty of Earth and Life Sciences, Vrije Universiteit, Netherlands

Dr Jean-Marie Fritsch, Institut de Recherches pour le Développement, Montpellier, France (recently on secondment to the World Meteorological Organization)
Dr John Gash, Centre for Ecology and Hydrology, Wallingford, UK
Dr Harald Grip, Swedish University of Agricultural Sciences, Umeå, Sweden (liaison with IUFRO)
Dr David Lamb, University of Queensland, Brisbane, Australia
Dr Jeffrey McDonnell, Oregon State University, Corvallis, USA
Dr Eduardo Platos Gutiérrez, Cuban Meteorological Institute, Havana, Cuba.

The members of the TOC provided ideas and contacts, stimulating discussions, and helped with arrangements of funds for the meeting. In addition, Harald Grip, Jean-Marie Fritsch and John Gash who respectively provided hospitality during memorable preparatory meetings for the Symposium in Umeå (June 1999) and Montpellier (July 1999), and the concluding editorial meeting in Wallingford (February 2000).

All local organization was efficiently managed by the following members of the Local Organization Committee:

Datuk Professor Anwar Ali, Vice-Chancellor of Universiti Kebangsaan Malaysia
Datuk Hj Keizurul Abdullah, Director General, Department of Irrigation and Drainage, Malaysia
Dr Hj Mohd Nor Hj Mohd Deza, Director, Humid Tropics Centre, Kuala Lumpur, Malaysia
Prof Abdul Latiff Mohamad, Deputy Dean, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
Dr Abdul Rahim Hj Nik, Division Director, Forest Research Institute Malaysia
Mr Mohan Nayer, Malaysian National Commission for UNESCO
Hj Baharuddin Kasran, Forest Research Institute, Malaysia
Mr Azman Hassan, Forest Research Institute, Malaysia
Mr W. Jayaweera, UNESCO, Kuala Lumpur office

Dr Mushrifah Idris, University Kebangsaan Malaysia (Symposium Collaborator).
In addition to the financial support from several sources in UNESCO (from the regular programme budget of the International Hydrological Programme of the Division of Water Sciences, Paris and the field offices – Montevideo, New Delhi, Nairobi and Jakarta; and separately a UNESCO Programme Participation Grant to Malaysia), we would like to express our grateful appreciation for additional sponsorship from several other sources:

The Australian Government’s overseas aid program – AusAID Center for International Forestry Research (CIFOR) Cooperative Research Centre for Catchment Hydrology, Canberra, Australia (CRCCH) Cooperative Research Centre for Tropical Rainforest Ecology and Management – Rainforest, Cairns, Australia (CRC)