General Relativity: An Introduction for Physicists provides a clear mathematical introduction to Einstein's theory of general relativity. A wide range of applications of the theory are included, with a concentration on its physical consequences.

After reviewing the basic concepts, the authors present a clear and intuitive discussion of the mathematical background, including the necessary tools of tensor calculus and differential geometry. These tools are used to develop the topic of special relativity and to discuss electromagnetism in Minkowski spacetime. Gravitation as spacetime curvature is then introduced and the field equations of general relativity are derived. A wide range of applications to physical situations follows, and the conclusion gives a brief discussion of classical field theory and the derivation of general relativity from a variational principle.

Written for advanced undergraduate and graduate students, this approachable textbook contains over 300 exercises to illuminate and extend the discussion in the text.

Michael Hobson specialised in theoretical physics as an undergraduate at the University of Cambridge and remained at the Cavendish Laboratory to complete a Ph.D. in the physics of star-formation and radiative transfer. As a Research Fellow at Trinity Hall, Cambridge, and later as an Advanced Fellow of the Particle Physics and Astronomy Research Council, he developed an interest in cosmology, in particular in the study of fluctuations in the cosmic microwave background (CMB) radiation. He is currently a Reader in Astrophysics and Cosmology at the Cavendish Laboratory, where he is the principal investigator for the Very Small Array CMB interferometer. He is also joint project scientist for the Arcminute Microkelvin Imager project and an associate of the European Space Agency Planck Surveyor CMB satellite mission. In addition to observational and theoretical cosmology, his research interests also include Bayesian analysis methods and theoretical optics and he has published over 100 research papers in a wide range of areas. He is a Staff Fellow and Director of Studies in Natural Sciences at Trinity Hall and enjoys an active role in the teaching of undergraduate physics and mathematics. He is a co-author with Ken Riley and Stephen Bence of the well-known undergraduate textbook Mathematical Methods for Physics and Engineering (Cambridge, 1998; second edition, 2002; third edition to be published in 2006) and with Ken Riley of the Student's Solutions Manual accompanying the third edition.

George Efstathiou is Professor of Astrophysics and Director of the Institute of Astronomy at the University of Cambridge. After studying physics as an undergraduate at Keble College, Oxford, he gained his Ph.D. in astronomy from Durham University. Following some post-doctoral research at the University of

> California at Berkeley he returned to work in the UK at the Institute of Astronomy, Cambridge, where he was appointed Assistant Director of Research in 1987. He returned to the Department of Physics at Oxford as Savilian Professor of Astronomy and Head of Astrophysics, before taking on his current posts at the Institute of Astronomy in 1997 and 2004 respectively. He is a Fellow of the Royal Society and the recipient of several awards, including the Maxwell Medal and Prize of the Institute of Physics in 1990 and the Heineman Prize for Astronomy of the American Astronomical Society in 2005.

> Anthony Lasenby is Professor of Astrophysics and Cosmology at the University of Cambridge and is currently Head of the Astrophysics Group and the Mullard Radio Astronomy Observatory in the Cavendish Laboratory, as well as being a Deputy Head of the Laboratory. He began his astronomical career with a Ph.D. at Jodrell Bank, specializing in the cosmic microwave background, which has remained a major subject of his research. After a brief period at the National Radio Astronomy Observatory in America, he moved from Manchester to Cambridge in 1984 and has been at the Cavendish since then. He is the author or co-author of over 200 papers spanning a wide range of fields and is the co-author of *Geometric Algebra for Physicists* (Cambridge, 2003) with Chris Doran.

General Relativity

An Introduction for Physicists

M. P. HOBSON, G. P. EFSTATHIOU and A. N. LASENBY

© Cambridge University Press

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> > CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521829519

© M. P. Hobson, G. P. Efstathiou and A. N. Lasenby 2006

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2006

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-82951-9 hardback ISBN-10 0-521-82951-8 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To our families

Contents

Preface

page	XV
------	----

1	The s	spacetime of special relativity	1
	1.1	Inertial frames and the principle of relativity	1
	1.2	Newtonian geometry of space and time	3
	1.3	The spacetime geometry of special relativity	3
	1.4	Lorentz transformations as four-dimensional 'rotations'	5
	1.5	The interval and the lightcone	6
	1.6	Spacetime diagrams	8
	1.7	Length contraction and time dilation	10
	1.8	Invariant hyperbolae	11
	1.9	The Minkowski spacetime line element	12
	1.10	Particle worldlines and proper time	14
	1.11	The Doppler effect	16
	1.12	Addition of velocities in special relativity	18
	1.13	Acceleration in special relativity	19
	1.14	Event horizons in special relativity	21
	Appe	ndix 1A: Einstein's route to special relativity	22
	Exercises		
2	Manifolds and coordinates		26
	2.1	The concept of a manifold	26
	2.2	Coordinates	27
	2.3	Curves and surfaces	27
	2.4	Coordinate transformations	28
	2.5	Summation convention	30
	2.6	Geometry of manifolds	31
	2.7	Riemannian geometry	32
	2.8	Intrinsic and extrinsic geometry	33

vi	ii	Contents	
	2.9	Examples of non-Euclidean geometry	36
	2.10	Lengths, areas and volumes	38
	2.11	Local Cartesian coordinates	42
	2.12	Tangent spaces to manifolds	44
	2.13	Pseudo-Riemannian manifolds	45
	2.14	Integration over general submanifolds	47
	2.15	Topology of manifolds	49
	Exerc	cises	50
3	Vecto	or calculus on manifolds	53
	3.1	Scalar fields on manifolds	53
	3.2	Vector fields on manifolds	54
	3.3	Tangent vector to a curve	55
	3.4	Basis vectors	56
	3.5	Raising and lowering vector indices	59
	3.6	Basis vectors and coordinate transformations	60
	3.7	Coordinate-independent properties of vectors	61
	3.8	Derivatives of basis vectors and the affine connection	62
	3.9	Transformation properties of the affine connection	64
	3.10	Relationship of the connection and the metric	65
	3.11	Local geodesic and Cartesian coordinates	67
	3.12	Covariant derivative of a vector	68
	3.13	Vector operators in component form	70
	3.14	Intrinsic derivative of a vector along a curve	71
	3.15	Parallel transport	73
	3.16	Null curves, non-null curves and affine parameters	75
	3.17	Geodesics	76
	3.18	Stationary property of non-null geodesics	77
	3.19	Lagrangian procedure for geodesics	78
	3.20	Alternative form of the geodesic equations	81
	Appe	ndix 3A: Vectors as directional derivatives	81
	Appe	ndix 3B: Polar coordinates in a plane	82
	Appe	ndix 3C: Calculus of variations	8/
	Exerc	cises	88
4	Tens	or calculus on manifolds	92
	4.1	Tensor fields on manifolds	92
	4.2	Components of tensors	93
	4.3	Symmetries of tensors	94
	4.4	The metric tensor	96
	4.5	Raising and lowering tensor indices	97

		Contents	ix
	4.6	Mapping tensors into tensors	97
	4.7	Elementary operations with tensors	98
	4.8	Tensors as geometrical objects	100
	4.9	Tensors and coordinate transformations	101
	4.10	Tensor equations	102
	4.11	The quotient theorem	103
	4.12	Covariant derivative of a tensor	104
	4.13	Intrinsic derivative of a tensor along a curve	107
	Exerc	vises	108
5	Speci	al relativity revisited	111
	5.1	Minkowski spacetime in Cartesian coordinates	111
	5.2	Lorentz transformations	112
	5.3	Cartesian basis vectors	113
	5.4	Four-vectors and the lightcone	115
	5.5	Four-vectors and Lorentz transformations	116
	5.6	Four-velocity	116
	5.7	Four-momentum of a massive particle	118
	5.8	Four-momentum of a photon	119
	5.9	The Doppler effect and relativistic aberration	120
	5.10	Relativistic mechanics	122
	5.11	Free particles	123
	5.12	Relativistic collisions and Compton scattering	123
	5.13	Accelerating observers	125
	5.14	Minkowski spacetime in arbitrary coordinates	128
	Exercises		131
6	Elect	romagnetism	135
	6.1	The electromagnetic force on a moving charge	135
	6.2	The 4-current density	136
	6.3	The electromagnetic field equations	138
	6.4	Electromagnetism in the Lorenz gauge	139
	6.5	Electric and magnetic fields in inertial frames	141
	6.6	Electromagnetism in arbitrary coordinates	142
	6.7	Equation of motion for a charged particle	144
	Exerc	cises	145
7	The	147	
	7.1	Newtonian gravity	147
	7.2	The equivalence principle	148
	7.3	Gravity as spacetime curvature	149
	7.4	Local inertial coordinates	151

Cambridge University Press
0521829518 - General Relativity: An Introduction for Physicists
M. P. Hobson, G. P. Efstathiou and A. N. Lasenby
Frontmatter
Moreinformation

х		Contents	
	7.5	Observers in a curved spacetime	152
	7.6	Weak gravitational fields and the Newtonian limit	153
	7.7	Electromagnetism in a curved spacetime	155
	7.8	Intrinsic curvature of a manifold	157
	7.9	The curvature tensor	158
	7.10	Properties of the curvature tensor	159
	7.11	The Ricci tensor and curvature scalar	161
	7.12	Curvature and parallel transport	163
	7.13	Curvature and geodesic deviation	165
	7.14 Tidal forces in a curved spacetime		167
	Appe	ndix 7A: The surface of a sphere	170
	Exerc	ises	172
8	The g	gravitational field equations	176
	8.1	The energy-momentum tensor	176
	8.2	The energy-momentum tensor of a perfect fluid	178
	8.3	Conservation of energy and momentum for a perfect fluid	179
	8.4	The Einstein equations	181
	8.5	The Einstein equations in empty space	183
	8.6	The weak-field limit of the Einstein equations	184
	8.7	The cosmological-constant term	185
	8.8	Geodesic motion from the Einstein equations	188
	8.9	Concluding remarks	190
	Appe	ndix 8A: Alternative relativistic theories of gravity	191
	Appe	ndix 8B: Sign conventions	193
	Exerc	ises	193
9	The S	Schwarzschild geometry	196
	9.1	The general static isotropic metric	196
	9.2	Solution of the empty-space field equations	198
	9.3	Birkhoff's theorem	202
	9.4	Gravitational redshift for a fixed emitter and receiver	202
	9.5	Geodesics in the Schwarzschild geometry	205
	9.6	Trajectories of massive particles	207
	9.7	Radial motion of massive particles	209
	9.8	Circular motion of massive particles	212
	9.9	Stability of massive particle orbits	213
	9.10	Trajectories of photons	217
	9.11	Radial motion of photons	218
	9.12	Circular motion of photons	219
	9.13	Stability of photon orbits	220

		Contents	xi
	Apper Exerci	ndix 9A: General approach to gravitational redshifts ises	221 224
10	Exper	imental tests of general relativity	230
	10.1	Precession of planetary orbits	230
	10.2	The bending of light	233
	10.3	Radar echoes	236
	10.4	Accretion discs around compact objects	240
	10.5	The geodesic precession of gyroscopes	244
	Exerci	ises	246
11	Schwa	arzschild black holes	248
	11.1	The characterisation of coordinates	248
	11.2	Singularities in the Schwarzschild metric	249
	11.3	Radial photon worldlines in Schwarzschild coordinates	251
	11.4	Radial particle worldlines in Schwarzschild coordinates	252
	11.5	Eddington-Finkelstein coordinates	254
	11.6	Gravitational collapse and black-hole formation	259
	11.7	Spherically symmetric collapse of dust	260
	11.8	Tidal forces near a black hole	264
	11.9	Kruskal coordinates	266
	11.10	Wormholes and the Einstein-Rosen bridge	271
	11.11	The Hawking effect	274
	Apper	ndix 11A: Compact binary systems	277
	Apper	ndix 11B: Supermassive black holes	279
	Apper	ndix 11C: Conformal flatness of two-dimensional Riemannian	
	mar	nifolds	282
	Exerci	ises	283
12	Furth	er spherically symmetric geometries	288
	12.1	The form of the metric for a stellar interior	288
	12.2	The relativistic equations of stellar structure	292
	12.3	The Schwarzschild constant-density interior solution	294
	12.4	Buchdahl's theorem	296
	12.5	The metric outside a spherically symmetric	
		charged mass	296
	12.6	The Reissner–Nordström geometry: charged	
		black holes	300
	12.7	Radial photon trajectories in the RN geometry	302
	12.8	Radial massive particle trajectories	
	_	in the RN geometry	304
	Exerci	ises	305

xii		Contents	
13	The K	err geometry	310
	13.1	The general stationary axisymmetric metric	310
	13.2	The dragging of inertial frames	312
	13.3	Stationary limit surfaces	314
	13.4	Event horizons	315
	13.5	The Kerr metric	317
	13.6	Limits of the Kerr metric	319
	13.7	The Kerr-Schild form of the metric	321
	13.8	The structure of a Kerr black hole	322
	13.9	The Penrose process	327
	13.10	Geodesics in the equatorial plane	330
	13.11	Equatorial trajectories of massive particles	332
	13.12	Equatorial motion of massive particles with	
		zero angular momentum	333
	13.13	Equatorial circular motion of massive particles	335
	13.14	Stability of equatorial massive particle circular orbits	337
	13.15	Equatorial trajectories of photons	338
	13.16	Equatorial principal photon geodesics	339
	13.17	Equatorial circular motion of photons	341
	13.18	Stability of equatorial photon orbits	342
	13.19	Eddington-Finkelstein coordinates	344
	13.20	The slow-rotation limit and gyroscope precession	347
	Exerci	ses	350
14	The F	riedmann–Robertson–Walker geometry	355
	14.1	The cosmological principle	355
	14.2	Slicing and threading spacetime	356
	14.3	Synchronous coordinates	357
	14.4	Homogeneity and isotropy of the universe	358
	14.5	The maximally symmetric 3-space	359
	14.6	The Friedmann–Robertson–Walker metric	362
	14.7	Geometric properties of the FRW metric	362
	14.8	Geodesics in the FRW metric	365
	14.9	The cosmological redshift	367
	14.10	The Hubble and deceleration parameters	368
	14.11	Distances in the FRW geometry	371
	14.12	Volumes and number densities in the FRW geometry	374
	14.13	The cosmological field equations	376
	14.14	Equation of motion for the cosmological fluid	379
	14.15	Multiple-component cosmological fluid	381
	Exerci	ses	381

		Contents	xiii
15	Cosmo	ological models	386
	15.1	Components of the cosmological fluid	386
	15.2	Cosmological parameters	390
	15.3	The cosmological field equations	392
	15.4	General dynamical behaviour of the universe	393
	15.5	Evolution of the scale factor	397
	15.6	Analytical cosmological models	400
	15.7	Look-back time and the age of the universe	408
	15.8	The distance-redshift relation	411
	15.9	The volume-redshift relation	413
	15.10	Evolution of the density parameters	415
	15.11	Evolution of the spatial curvature	417
	15.12	The particle horizon, event horizon and Hubble distance	418
	Exerci	ses	421
16	Inflati	onary cosmology	428
	16.1	Definition of inflation	428
	16.2	Scalar fields and phase transitions in the very early universe	430
	16.3	A scalar field as a cosmological fluid	431
	16.4	An inflationary epoch	433
	16.5	The slow-roll approximation	434
	16.6	Ending inflation	435
	16.7	The amount of inflation	435
	16.8	Starting inflation	437
	16.9	'New' inflation	438
	16.10	Chaotic inflation	440
	16.11	Stochastic inflation	441
	16.12	Perturbations from inflation	442
	16.13	Classical evolution of scalar-field perturbations	442
	16.14	Gauge invariance and curvature perturbations	446
	16.15	Classical evolution of curvature perturbations	449
	16.16	Initial conditions and normalisation of curvature perturbations	452
	16.17	Power spectrum of curvature perturbations	456
	16.18	Power spectrum of matter-density perturbations	458
	16.19	Comparison of theory and observation	459
	Exerci	ses	462
17	Linear	rised general relativity	467
	17.1	The weak-field metric	467
	17.2	The linearised gravitational field equations	470
	17.2	Linearised gravity in the Lorenz gauge	172

xiv		Contents	
	17.4	General properties of the linearised field equations	473
	17.5	Solution of the linearised field equations in vacuo	474
	17.6	General solution of the linearised field equations	475
	17.7	Multipole expansion of the general solution	480
	17.8	The compact-source approximation	481
	17.9	Stationary sources	483
	17.10	Static sources and the Newtonian limit	485
	17.11	The energy-momentum of the gravitational field	486
	Appen	dix 17A: The Einstein–Maxwell formulation of linearised gravity	490
	Exercis	ses	493
18	Gravit	ational waves	498
	18.1	Plane gravitational waves and polarisation states	498
	18.2	Analogy between gravitational and electromagnetic waves	501
	18.3	Transforming to the transverse-traceless gauge	502
	18.4	The effect of a gravitational wave on free particles	504
	18.5	The generation of gravitational waves	507
	18.6	Energy flow in gravitational waves	511
	18.7	Energy loss due to gravitational-wave emission	513
	18.8	Spin-up of binary systems: the binary pulsar PSR $B1913 + 16$	516
	18.9	The detection of gravitational waves	517
	Exercis	ses	520
19	A vari	ational approach to general relativity	524
	19.1	Hamilton's principle in Newtonian mechanics	524
	19.2	Classical field theory and the action	527
	19.3	Euler–Lagrange equations	529
	19.4	Alternative form of the Euler-Lagrange equations	531
	19.5	Equivalent actions	533
	19.6	Field theory of a real scalar field	534
	19.7	Electromagnetism from a variational principle	536
	19.8	The Einstein–Hilbert action and general relativity in vacuo	539
	19.9	An equivalent action for general relativity in vacuo	542
	19.10	The Palatini approach for general relativity in vacuo	543
	19.11	General relativity in the presence of matter	545
	19.12	The dynamical energy-momentum tensor	546
	Exercis	Ses	549
Bibi	liograph	У	555
Inde	ex		556

Preface

General relativity is one of the cornerstones of classical physics, providing a synthesis of special relativity and gravitation, and is central to our understanding of many areas of astrophysics and cosmology. This book is intended to give an introduction to this important subject, suitable for a one-term course for advanced undergraduate or beginning graduate students in physics or in related disciplines such as astrophysics and applied mathematics. Some of the later chapters should also provide a useful reference for professionals in the fields of astrophysics and cosmology.

It is assumed that the reader has already been exposed to special relativity and Newtonian gravitation at a level typical of early-stage university physics courses. Nevertheless, a summary of special relativity from first principles is given in Chapter 1, and a brief discussion of Newtonian gravity is presented in Chapter 7. No previous experience of 4-vector methods is assumed. Some background in electromagnetism will prove useful, as will some experience of standard vector calculus methods in three-dimensional Euclidean space. The overall level of mathematical expertise assumed is that of a typical university mathematical methods course.

The book begins with a review of the basic concepts underlying special relativity in Chapter 1. The subject is introduced in a way that encourages from the outset a geometrical and transparently four-dimensional viewpoint, which lays the conceptual foundations for discussion of the more complicated spacetime geometries encountered later in general relativity. In Chapters 2–4 we then present a mini-course in basic differential geometry, beginning with the introduction of manifolds, coordinates and non-Euclidean geometry in Chapter 2. The topic of vector calculus on manifolds is developed in Chapter 3, and these ideas are extended to general tensors in Chapter 4. These necessary mathematical preliminaries are presented in such a way as to make them accessible to physics students with a background in standard vector calculus. A reasonable level of mathematical CAMBRIDGE

xvi

Preface

rigour has been maintained throughout, albeit accompanied by the occasional appeal to geometric intuition. The mathematical tools thus developed are then illustrated in Chapter 5 by re-examining the familiar topic of special relativity in a more formal manner, through the use of tensor calculus in Minkowski spacetime. These methods are further illustrated in Chapter 6, in which electromagnetism is described as a field theory in Minkowski spacetime, serving in some respects as a 'prototype' for the later discussion of gravitation. In Chapter 7, the incompatibility of special relativity and Newtonian gravitation is presented and the equivalence principle is introduced. This leads naturally to a discussion of spacetime curvature and the associated mathematics. The field equations of general relativity are then derived in Chapter 8, and a discussion of their general properties is presented.

The physical consequences of general relativity in a wide variety of astrophysical and cosmological applications are discussed in Chapters 9-18. In particular, the Schwarzschild geometry is derived in Chapter 9 and used to discuss the physics outside a massive spherical body. Classic experimental tests of general relativity based on the exterior Schwarzschild geometry are presented in Chapter 10. The interior Schwarzschild geometry and non-rotating black holes are discussed in Chapter 11, together with a brief mention of Kruskal coordinates and wormholes. In Chapter 12 we introduce two non-vacuum spherically symmetric geometries with a discussion of relativistic stars and charged black holes. Rotating objects are discussed in Chapter 13, including an extensive discussion of the Kerr solution. In Chapters 14-16 we describe the application of general relativity to cosmology and present a discussion of the Friedmann-Robertson-Walker geometry, cosmological models and the theory of inflation, including the generation of perturbations in the early universe. In Chapter 17 we describe linearised gravitation and weak gravitational fields, in particular drawing analogies with the theory of electromagnetism. The equations of linearised gravitation are then applied to the generation, propagation and detection of weak gravitational waves in Chapter 18. The book concludes in Chapter 19 with a brief discussion of classical field theory and the derivation of the field equations of electromagnetism and general relativity from variational principles.

Each chapter concludes with a number of exercises that are intended to illuminate and extend the discussion in the main text. It is strongly recommended that the reader attempt as many of these exercises as time permits, as they should give ample opportunity to test his or her understanding. Occasionally chapters have appendices containing material that is not central to the development presented in the main text, but may nevertheless be of interest to the reader. Some appendices provide historical context, some discuss current astronomical observations and some give detailed mathematical derivations that might otherwise interrupt the flow of the main text.

Preface

With regard to the presentation of the mathematics, it has to be accepted that equations containing partial and covariant derivatives could be written more compactly by using the comma and semi-colon notation, e.g. $v^a{}_{,b}$ for the partial derivative of a vector and $v^a{}_{;b}$ for its covariant derivative. This would certainly save typographical space, but many students find the labour of mentally unpacking such equations is sufficiently great that it is not possible to think of an equation's physical interpretation at the same time. Consequently, we have decided to write out such expressions in their more obvious but longer form, using $\partial_b v^a$ for partial derivatives and $\nabla_b v^a$ for covariant derivatives.

It is worth mentioning that this book is based, in large part, on lecture notes prepared separately by MPH and GPE for two different relativity courses in the Natural Science Tripos at the University of Cambridge. These courses were first presented in this form in the academic year 1999-2000 and are still ongoing. The course presented by MPH consisted of 16 lectures to fourth-year undergraduates in Part III Physics and Theoretical Physics and covered most of the material in Chapters 1-11 and 13-14, albeit somewhat rapidly on occasion. The course given by GPE consisted of 24 lectures to third-year undergraduates in Part II Astrophysics and covered parts of Chapters 1, 5–11, 14 and 18, with an emphasis on the less mathematical material. The process of combining the two sets of lecture notes into a homogeneous treatment of relativistic gravitation was aided somewhat by the fortuitous choice of a consistent sign convention in the two courses, and numerous sections have been rewritten in the hope that the reader will not encounter any jarring changes in presentational style. For many of the topics covered in the two courses mentioned above, the opportunity has been taken to include in this book a considerable amount of additional material beyond that presented in the lectures, especially in the discussion of black holes. Some of this material draws on lecture notes written by ANL for other courses in Part II and Part III Physics and Theoretical Physics. Some topics that were entirely absent from any of the above lecture courses have also been included in the book, such as relativistic stars, cosmology, inflation, linearised gravity and variational principles. While every care has been taken to describe these topics in a clear and illuminating fashion, the reader should bear in mind that these chapters have not been 'road-tested' to the same extent as the rest of the book.

It is with pleasure that we record here our gratitude to those authors from whose books we ourselves learnt general relativity and who have certainly influenced our own presentation of the subject. In particular, we acknowledge (in their current latest editions) S. Weinberg, *Gravitation and Cosmology*, Wiley, 1972; R. M. Wald, *General Relativity*, University of Chicago Press, 1984; B. Schutz, *A First Course in General Relativity*, Cambridge University Press, 1985; W. Rindler, *Relativity: Special, General and Cosmological*,

xviii

Preface

Oxford University Press, 2001; and J. Foster & J. D. Nightingale, A Short Course in General Relativity, Springer-Verlag, 1995.

During the writing of this book we have received much help and encouragement from many of our colleagues at the University of Cambridge, especially members of the Cavendish Astrophysics Group and the Institute of Astronomy. In particular, we thank Chris Doran, Anthony Challinor, Steve Gull and Paul Alexander for numerous useful discussions on all aspects of relativity theory, and Dave Green for a great deal of advice concerning typesetting in LaTeX. We are also especially grateful to Richard Sword for creating many of the diagrams and figures used in the book and to Michael Bridges for producing the plots of recent measurements of the cosmic microwave background and matter power spectra. We also extend our thanks to the Cavendish and Institute of Astronomy teaching staff, whose examination questions have provided the basis for some of the exercises included. Finally, we thank several years of undergraduate students for their careful reading of sections of the manuscript, for pointing out misprints and for numerous useful comments. Of course, any errors and ambiguities remaining are entirely the responsibility of the authors, and we would be most grateful to have them brought to our attention. At Cambridge University Press, we are very grateful to our editor Vince Higgs for his help and patience and to our copy-editor Susan Parkinson for many useful suggestions that have undoubtedly improved the style of the book.

Finally, on a personal note, MPH thanks his wife, Becky, for patiently enduring many evenings and weekends spent listening to the sound of fingers tapping on a keyboard, and for her unending encouragement. He also thanks his mother, Pat, for her tireless support at every turn. MPH dedicates his contribution to this book to the memory of his father, Ron, and to his daughter, Tabitha, whose early arrival succeeded in delaying completion of the book by at least three months, but equally made him realise how little that mattered. GPE thanks his wife, Yvonne, for her support. ANL thanks all the students who have sat through his various lectures on gravitation and cosmology and provided useful feedback. He would also like to thank his family, and particularly his parents, for the encouragement and support they have offered at all times.