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The spacetime of special relativity

We begin our discussion of the relativistic theory of gravity by reviewing some
basic notions underlying the Newtonian and special-relativistic viewpoints of
space and time. In order to specify an event uniquely, we must assign it three
spatial coordinates and one time coordinate, defined with respect to some frame
of reference. For the moment, let us define such a system S by using a set of three
mutually orthogonal Cartesian axes, which gives us spatial coordinates x, y and
z, and an associated system of synchronised clocks at rest in the system, which
gives us a time coordinate t. The four coordinates �t� x� y� z� thus label events in
space and time.

1.1 Inertial frames and the principle of relativity

Clearly, one is free to label events not only with respect to a frame S but also
with respect to any other frame S′, which may be oriented and/or moving with
respect to S in an arbitrary manner. Nevertheless, there exists a class of preferred
reference systems called inertial frames, defined as those in which Newton’s first
law holds, so that a free particle is at rest or moves with constant velocity, i.e. in
a straight line with fixed speed. In Cartesian coordinates this means that

d2x

dt2
= d2y

dt2
= d2z

dt2
= 0�

It follows that, in the absence of gravity, if S and S′ are two inertial frames then
S′ can differ from S only by (i) a translation, and/or (ii) a rotation and/or (iii) a
motion of one frame with respect to the other at a constant velocity (for otherwise
Newton’s first law would no longer be true). The concept of inertial frames is
fundamental to the principle of relativity, which states that the laws of physics
take the same form in every inertial frame. No exception has ever been found to
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2 The spacetime of special relativity

this general principle, and it applies equally well in both Newtonian theory and
special relativity.

The Newtonian and special-relativistic descriptions differ in how the coor-
dinates of an event P in two inertial frames are related. Let us consider two
Cartesian inertial frames S and S′ in standard configuration, where S′ is moving
along the x-axis of S at a constant speed v and the axes of S and S′ coincide at
t = t′ = 0 (see Figure 1.1). It is clear that the (primed) coordinates of an event
P with respect to S′ are related to the (unprimed) coordinates in S via a linear
transformation1 of the form

t′ = At+Bx�

x′ = Dt+Ex�

y′ = y�

z′ = z�

Moreover, since we require that x′ = 0 corresponds to x = vt and that x = 0
corresponds to x′ = −vt′, we find immediately that D =−Ev and D =−Av, so
that A= E. Thus we must have

t′ = At+Bx�

x′ = A�x−vt��

y′ = y�

z′ = z�

(1.1)

x x'

y'y

S S'

z'z

v

Figure 1.1 Two inertial frames S and S′ in standard configuration (the origins
of S and S′ coincide at t = t′ = 0).

1 We will prove this in Chapter 5.
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1.3 The spacetime geometry of special relativity 3

1.2 Newtonian geometry of space and time

Newtonian theory rests on the assumption that there exists an absolute time, which
is the same for every observer, so that t′ = t. Under this assumption A = 1 and
B = 0, and we obtain the Galilean transformation relating the coordinates of an
event P in the two Cartesian inertial frames S and S′:

t′ = t�

x′ = x−vt�

y′ = y�

z′ = z�

(1.2)

By symmetry, the expressions for the unprimed coordinates in terms of the primed
ones have the same form but with v replaced by −v.

The first equation in (1.2) is clearly valid for any two inertial frames S and
S′ and shows that the time coordinate of an event P is the same in all inertial
frames. The second equation leads to the ‘common sense’ notion of the addition
of velocities. If a particle is moving in the x-direction at a speed u in S then its
speed in S′ is given by

u′x =
dx′

dt′
= dx′

dt
= dx

dt
−v= ux−v�

Differentiating again shows that the acceleration of a particle is the same in both
S and S′, i.e. du′x/dt′ = dux/dt.

If we consider two events A and B that have coordinates �tA� xA� yA� zA�

and �tB� xB� yB� zB� respectively, it is straightforward to show that both the time
difference �t = tB− tA and the quantity

�r2 = �x2+�y2+�z2

are separately invariant under any Galilean transformation. This leads us to
consider space and time as separate entities. Moreover, the invariance of �r2

suggests that it is a geometric property of space itself. Of course, we recognise
�r2 as the square of the distance between the events in a three-dimensional
Euclidean space. This defines the geometry of space and time in the Newtonian
picture.

1.3 The spacetime geometry of special relativity

In special relativity, Einstein abandoned the postulate of an absolute time and
replaced it by the postulate that the speed of light c is the same in all inertial
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4 The spacetime of special relativity

frames.2 By applying this new postulate, together with the principle of relativity,
we may obtain the Lorentz transformations connecting the coordinates of an event
P in two different Cartesian inertial frames S and S′.

Let us again consider S and S′ to be in standard configuration (see Figure 1.1),
and consider a photon emitted from the (coincident) origins of S and S′ at t =
t′ = 0 and travelling in an arbitrary direction. Subsequently the space and time
coordinates of the photon in each frame must satisfy

c2t2−x2−y2− z2 = c2t′2−x′2−y′2− z′2 = 0�

Substituting the relations (1.1) into this expression and solving for the constants
A and B, we obtain

ct′ = 	�ct−
x��

x′ = 	�x−
ct��

y′ = y�

z′ = z�

(1.3)

where 
 = v/c and 	 = �1−
2�−1/2. This Lorentz transformation, also known
as a boost in the x-direction, reduces to the Galilean transformation (1.2) when

� 1. Once again, symmetry demands that the unprimed coordinates are given
in terms of the primed coordinates by an analogous transformation in which v is
replaced by −v.

From the equations (1.3), we see that the time and space coordinates are in
general mixed by a Lorentz transformation (note, in particular, the symmetry
between ct and x). Moreover, as we shall see shortly, if we consider two events
A and B with coordinates �tA� xA� yA� zA� and �tB� xB� yB� zB� in S, it is straight-
forward to show that the interval (squared)

�s2 = c2�t2−�x2−�y2−�z2 (1.4)

is invariant under any Lorentz transformation. As advocated by Minkowski, these
observations lead us to consider space and time as united in a four-dimensional
continuum called spacetime, whose geometry is characterised by (1.4). We note
that the spacetime of special relativity is non-Euclidean, because of the minus
signs in (1.4), and is often called the pseudo-Euclidean or Minkowski geometry.
Nevertheless, for any fixed value of t the spatial part of the geometry remains
Euclidean.

2 The reasoning behind Einstein’s proposal is discussed in Appendix 1A.
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1.4 Lorentz transformations as four-dimensional ‘rotations’ 5

We have arrived at the familiar viewpoint (to a physicist!) where the physical
world is modelled as a four-dimensional spacetime continuum that possesses
the Minkowski geometry characterised by (1.4). Indeed, many ideas in special
relativity are most simply explained by adopting a four-dimensional point of view.

1.4 Lorentz transformations as four-dimensional ‘rotations’

Adopting a particular (Cartesian) inertial frame S corresponds to labelling events in
the Minkowski spacetime with a given set of coordinates �t� x� y� z�. If we choose
instead to describe the world with respect to a different Cartesian inertial frame
S′ then this corresponds simply to relabelling events in the Minkowski spacetime
with a new set of coordinates �t′� x′� y′� z′�; the primed and unprimed coordinates
are related by the appropriate Lorentz transformation. Thus, describing physics
in terms of different inertial frames is equivalent to performing a coordinate
transformation on the Minkowski spacetime.

Consider, for example, the case where S′ is related to S via a spatial rotation
through an angle � about the x-axis. In this case, we have

ct′ = ct�

x′ = x′�

y′ = y cos�− z sin ��

z′ = y sin �+ z cos��

Clearly the inverse transform is obtained on replacing � by −�.
The close similarity between the ‘boost’ (1.3) and an ordinary spatial rotation

can be highlighted by introducing the rapidity parameter

� = tanh−1
�

As 
 varies from zero to unity, � ranges from 0 to�. We also note that 	= cosh�
and 	
= sinh�. If two inertial frames S and S′ are in standard configuration, we
therefore have

ct′ = ct cosh�−x sinh��

x′ = −ct sinh�+x cosh��

y′ = y�

z′ = z�

(1.5)

This has essentially the same form as a spatial rotation, but with hyperbolic
functions replacing trigonometric ones. Once again the inverse transformation is
obtained on replacing � by −�.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521829518 - General Relativity: An Introduction for Physicists
M. P. Hobson, G. P. Efstathiou and A. N. Lasenby
Excerpt
More information

http://www.cambridge.org/0521829518
http://www.cambridge.org
http://www.cambridge.org


6 The spacetime of special relativity

x

y

S

z

z'

y'

x'

S'

a

v

Figure 1.2 Two inertial frames S and S′ in general configuration. The broken
line shown the trajectory of the origin of S′.

In general, S′ is moving with a constant velocity �v with respect to S in an
arbitrary direction3 and the axes of S′ are rotated with respect to those of S.
Moreover, at t = t′ = 0 the origins of S and S′ need not be coincident and may
be separated by a vector displacement �a, as measured in S (see Figure 1.2).4

The corresponding transformation connecting the two inertial frames is most
easily found by decomposing the transformation into a displacement, followed
by a spatial rotation, followed by a boost, followed by a further spatial rotation.
Physically, the displacement makes the origins of S and S′ coincident at t= t′ = 0,
and the first rotation lines up the x-axis of S with the velocity �v of S′. Then a boost
in this direction with speed v transforms S into a frame that is at rest with respect to
S′. A final rotation lines up the coordinate frame with that of S′. The displacement
and spatial rotations introduce no new physics, and the only special-relativistic
consideration concerns the boost. Thus, without loss of generality, we can restrict
our attention to inertial frames S and S′ that are in standard configuration, for
which the Lorentz transformation is given by (1.3) or (1.5).

1.5 The interval and the lightcone

If we consider two events A and B having coordinates �t′A�x′A� y′A� z′A� and
�t′B� x′B� y′B� z′B� in S′, then, from (1.5), the interval between the events is given by

3 Throughout this book, the notation �v is used specifically to denote three-dimensional vectors, whereas v
denotes a general vector, which is most often a 4-vector.

4 If �a= �0 then the Lorentz transformation connecting the two inertial frames is called homogeneous, while if
�a �= �0 it is called inhomogeneous. Inhomogeneous transformations are often referred to as Poincaré transfor-
mations, in which case homogeneous transformations are referred to simply as Lorentz transformations.
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1.5 The interval and the lightcone 7

�s2 = c2�t′2−�x′2−�y′2−�z′2

= 
�c�t� cosh�− ��x� sinh��2− 
−�c�t� sinh�+ ��x� cosh��2

−�y2−�z2

= c2�t2−�x2−�y2−�z2�

Thus the interval is invariant under the boost (1.5) and, from the above discussion,
we may infer that �s2 is in fact invariant under any Poincaré transformation. This
suggests that the interval is an underlying geometrical property of the spacetime
itself, i.e. an invariant ‘distance’ between events in spacetime. It also follows that
the sign of �s2 is defined invariantly, as follows:

for �s2 > 0� the interval is timelike�
for �s2 = 0� the interval is null or lightlike�
for �s2 < 0� the interval is spacelike�

This embodies the standard lightcone structure shown in Figure 1.3. Events A and
B are separated by a timelike interval, A and C by a lightlike (or null) interval and

ct

x

A

Future of A

Past of A

D

‘Elsewhere’ of A ‘Elsewhere’ of A

C

B

Figure 1.3 Spacetime diagram illustrating the lightcone of an event A (the y-
and z- axes have been suppressed). Events A and B are separated by a timelike
interval, A and C by a lightlike (or null) interval and A and D by a spacelike
interval.
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8 The spacetime of special relativity

A and D by a spacelike interval. The geometrical distinction between timelike and
spacelike intervals corresponds to a physical distinction: if the interval is timelike
then we can find an inertial frame in which the events occur at the same spatial
coordinates and if the interval is spacelike then we can find an inertial frame
in which the events occur at the same time coordinate. This becomes obvious
when we consider the spacetime diagram of a Lorentz transformation; we shall
do this next.

1.6 Spacetime diagrams

Figure 1.3 is an example of a spacetime diagram. Such diagrams are extremely
useful in illustrating directly many special-relativistic effects, in particular coor-
dinate transformations on the Minkowski spacetime between different inertial
frames. The spacetime diagram in Figure 1.4 shows the change of coordinates of
an event A corresponding to the standard-configuration Lorentz transformation
(1.5). The x′-axis is simply the line t′ = 0 and the t′-axis is the line x′ = 0.
From the Lorentz-boost transformation (1.3) we see that the angle between the
x- and x′- axes is the same as that between the t- and t′- axes and has the value

t (A)

ct ct'

x

x'

t' (A)

x' (A)

Event A

x (A)

Figure 1.4 Spacetime diagram illustrating the coordinate transformation
between two inertial frames S and S′ in standard configuration (the y- and z-
axes have been suppressed). The worldlines of the origins of S and S′ are the
axes ct and ct′ respectively.
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1.6 Spacetime diagrams 9

tan−1�v/c�. Moreover, we note that the t- and t′- axes are also the worldlines of
the origins of S and S′ respectively.

It is important to realise that the coordinates of the event A in the frame S′ are
not obtained by extending perpendiculars from A to the x′- and t′- axes. Since
the x′-axis is simply the line t′ = 0, it follows that lines of simultaneity in S′ are
parallel to the x′-axis. Similarly, lines of constant x′ are parallel to the t′-axis. The
same reasoning is equally valid for obtaining the coordinates of A in the frame
S but, since the x- and t- axes are drawn as orthogonal in the diagram, this is
equivalent simply to extending perpendiculars from A to the x- and t- axes in the
more familiar manner.

The concept of simultaneity is simply illustrated using a spacetime diagram.
For example, in Figure 1.5 we replot the events in Figure 1.3, together with the x′-
and t′- axes corresponding to a Lorentz boost in standard configuration at some
velocity v. We see that the events A and D, which are separated by a spacelike
interval, lie on a line of constant t′ and so are simultaneous in S′. Evidently, A
and D are not simultaneous in S; D occurs at a later time than A. In a similar
way, it is straightforward to find a standard-configuration Lorentz boost such that
the events A and B, which are separated by a timelike interval, lie on a line of
constant x′ and hence occur at the same spatial location in S′.

line of
constant t'

x'

ct'
ct

x

A

D

C

B

Figure 1.5 The events illustrated in figure 1.3 and a Lorentz boost such that A
and D are simultaneous in S′.
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10 The spacetime of special relativity

1.7 Length contraction and time dilation

Two elementary (but profound) consequences of the Lorentz transformations
are length contraction and time dilation. Both these effects are easily derived
from (1.3).

Length contraction

Consider a rod of proper length �0 at rest in S′ (see Figure 1.6); we have

�0 = x′B−x′A�

We want to apply the Lorentz transformation formulae and so find what length
an observer in frame S assigns to the rod. Applying the second formula in (1.3),
we obtain

x′A = 	 �xA−vtA� �

x′B = 	 �xB−vtB� �

relating the coordinates of the ends of the rod in S′ to the coordinates in S. The
observer in S measures the length of the rod at a fixed time t = tA = tB as

�= xB−xA = 1
	

(
x′B−x′A

)= �0
	
�

Hence in S the rod appears contracted to the length

�= �0
(
1−v2/c2

)1/2
�

If a rod is moving relative to S in a direction perpendicular to its length,
however, it is straightforward to show that it suffers no contraction. It thus follows
that the volume V of a moving object, as measured by simultaneously noting the
positions of the boundary points in S, is related to its proper volume V0 by V =
V0�1−v2/c2�1/2. This fact must be taken into account when considering densities.

x x'

y'y

S S'

z'z

v

x A' x B'

Figure 1.6 Two inertial frames S and S′ in standard configuration. A rod of
proper length �0 is at rest in S′.
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