Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1. **Introduction**
 - The primate order 1
 - Ape and monkey bias 11
 - Evolution before natural selection 13
 - 1858–1859: The advent of natural selection theory 15
 - Essentialism versus population-thinking 20
 - 1863: Thomas Henry Huxley and the place of humans in nature 22

2. **A brief history of primatology and human evolution**
 - Introduction 26
 - Antiquity and the Middle Ages 30
 - The Renaissance to the late eighteenth century 32
 - The nineteenth century 36
 - The early twentieth century 37
 - The “new” physical anthropology 43
 - 1959 – *annus mirabilis* 44
 - The baboon renaissance 50
 - Sociobiology and behavioral ecology 53

3. **The catarrhine fossil record**
 - The geological time scale 56
 - Major features of primate evolution 56
 - The shape and pattern of primate evolution 57
 - The early catarrhine primates 62
 - Hominoid systematics 64
 - The Miocene hominoid radiation 65
 - Community structure and competition between primate species 70
The end of the hominoid radiation and the rise of the cercopithecoids 73
Climate change in the late Miocene and the first hominids 76

4. Primate speciation and extinction 81
Primate speciation and extinction in the geological past 81
Speciation in modern primates 86
Extinction in modern primates 94

5. Anatomical primatology 107
Introduction 107
Phylogeny and cladistic methodology 107
Adaptation and the “adaptationist program” 115
Studying adaptation 117
The functional morphology of fossil species 119
Ontogeny and anatomical genomics 124
Phenotypic variability 126

6. Captive studies of non-human primates 128
Introduction 128
The influence of captivity on behavior 128
Harry Harlow’s research 130
An inventory of abnormal captive behaviors 130
Biomedical primatology 137

7. What can non-human primate anatomy, physiology, and development reveal about human evolution? 141
The catarrhine substrate 141

8. Natural history intelligence and human evolution 146
Introduction 146
Ideas on the origins of hominid intelligence 150
Hominid attention to natural history 155
Animal behavior and artificial intelligence 157
Natural history intelligence 159
Problems with the social cognition model 163
Further primatological evidence against social cognition as a generator of intelligence 167
Brain mechanisms underlying natural history intelligence 171
Other tests of the social cognition theory 179
Contents

Natural history intelligence over the course of human evolution 180
Conclusions 182

9. Why be social? – the advantages and disadvantages of social life 185
Why be social? 185
How to become social 188
Explanations of primate social complexity 194
What is the catarrhine substrate for sociality? 194

10. Evolution and behavior 196
Proximate and ultimate factors in behavioral evolution 196
Factors limiting population size 197
Diet and foraging behavior 198
Cultural traditions 199
Phylogenetic inertia and phylogenetic constraint 201

11. The implications of body size for evolutionary ecology 203
Introduction 203
Measuring body size in fossil species 208
Body size and paleocommunity reconstructions 209
Body size and behavior 213
The all-too-familiar use of sexual dimorphism to infer sociality in fossil species 215
Reversible body size changes in individuals 218
Size and shape changes: adaptation and plasticity 220
Population-level differences in body size 231
What can be inferred from body size in fossil species? 236
The sweating response, body shape, and heat adaptation 239
The evolution of body size in primates 245
Conclusions 248

12. The nature of the fossil record 252
Does the fossil record faithfully record past events? 252
Decimation and recovery from extinction 259
Rates of evolutionary change 262
Time-averaging 265
Taphonomy and experimental studies 266

13. The bipedal breakthrough 271
Introduction 271
Ape models for bipedal origins 271
Contents

- Behavior and morphology 276
- Bipedal efficiency 277
- Paleoenvironment 280
- Bipedal origins 280
- Lessons from *Oreopithecus* 288
- A mixture of morphologies 290

14. The hominid radiation 292

- The earliest hominids 292
- Plio-Pleistocene hominids 293
- The single-species hypothesis 293
- Sympatry and multiple hominid niches 298
- Sexual dimorphism and niche structure 303
- The origin of genus *Homo* 305
- Hominid dispersion from sub-Saharan Africa 306
- Asian ape-men: Early ideas about hominid origins in Asia 306
- The origins of anatomically modern humans 308
- Genetic variation in modern humans 310

15. Modeling human evolution 311

- Baboon models 311
- Referential and conceptual models 313
- A “composite mammal” model 314

16. Archeological evidence and models of human evolution 317

- Human antiquity 317
- Recognition that the archeological record is not coeval with the human paleontological record 321
- Bone modification and inferences of hominid behavior 329
- Climatic events and the archeological record 331
- “Man the Hunter” and the new physical anthropology 333
- Food, food-sharing, and division of labor 336
- Pair-bonding 340
- Taphonomy and the nature of “sites” 343
- The hominization process 344

17. What does evolutionary anthropology reveal about human evolution? 351

- Phenotypic change and “contemporary evolution” 351
- Body size and shape changes 353
Contents

What factors are responsible for the origin of generalized species? 361
Tool behavior and technology 366
Language 369
Early hominid sociality 371

18. Final thoughts on primate and human evolution 382
 Speciation, extinction, and other evolutionary processes 382
 Terrestrial life and bipedality 384
 Tool behavior 385
 Intelligence 386
 Complex sociality 387

References 389
Index 452