
1 Cryptography: An Overview

1.1 Elementary Ciphers

Cryptography is the design and use of communication schemes aimed at
hiding the meaning of the message from everyone except the intended re-
ceiver. Cryptanalysis is the effort to foil an encryption system, to crack the
code. The study of cryptography and cryptanalysis is called cryptology and
is the focus of this chapter.1 Later we will study some fairly sophisticated
cryptographic systems, but we begin with a few elementary examples.

1.1.1 Substitution ciphers

Substitution ciphers are the familiar sort of encryption that one finds in
Sunday newspaper puzzles, in which each letter of the alphabet stands
for another letter. A special case is the Caesar cipher, in which the al-
phabet is simply shifted by some number of places. In the version used
by Julius Caesar, the alphabet is shifted forward by three places. For
example, if a letter of the original message, or plaintext, is A, the cor-
responding letter of the encrypted message, or cyphertext, is D, and
so on as indicated here:

plaintext: A B C . . . X Y Z

ciphertext: D E F . . . A B C

1 For a compact overview of cryptography and cryptanalysis, including many practical issues,
see Piper and Murphy (2002). A more mathematical information-theoretic approach is
given in Welsh (1988). A popular historical account can be found in Singh (1999). For a
more thorough treatment of the history, see Kahn (1967).
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2 Chapter 1. Cryptography: An Overview

We can express this cipher mathematically by assigning a number to each
letter: A → 0, B → 1, . . . , Z → 25. Then if x represents a letter of the
plaintext and y the corresponding letter of the ciphertext, Julius Caesar’s
cipher can be expressed as

y = x + 3 (mod 26),

where “(mod 26)” means that one takes the remainder upon dividing by
26. (Much more on modular arithmetic in later sections of this chapter.)
If you are adept at cracking the substitution ciphers of the Sunday paper,
you may find it surprising that Caesar was able to keep any messages
secret with this simple strategy, but evidently it worked well enough.

A simple generalization of the Caesar cipher is expressed by the equa-
tion y = ax + b (mod 26), where a and b are integers.2 It is interesting to
ask whether some values of a and b are better than others, and indeed
this question is the subject of one of the exercises below. A further gen-
eralization is to use an arbitrary permutation of the alphabet.

How does one go about cracking a substitution cipher? The standard
technique, which is well known today but was not known in Roman times,
is frequency analysis. Let us assume that the cryptanalyst knows what lan-
guage the plaintext is expressed in; suppose it is English. In typical English
text, each letter occurs with a certain frequency. The most common letter
in English is E: if you blindly point to a letter on a page in a novel, the
probability that the letter will be E is around 12.7%. The following table
gives the frequencies of all the letters, as computed from a sample of over
300,000 characters taken from newspapers and novels.3

E 12.7% D 4.2% P 1.9%
T 9.0% L 4.0% B 1.5%
A 8.2% U 2.8% V 1.0%
O 7.5% C 2.8% K 0.8%
I 7.0% M 2.4% Q 0.1%
N 6.7% W 2.4% X 0.1%
S 6.3% F 2.2% J 0.1%
H 6.1% G 2.0% Z 0.1%
R 6.0% Y 2.0%

2 The special case with a = 1 and b = 13, called “ROT13,” is used nowadays in online
settings to hide such things as joke punchlines and puzzle solutions.

3 Piper and Murphy (2002). The authors write that the table is based on one originally
compiled by H. J. Beker and F. C. Piper.
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1.1. Elementary Ciphers 3

We can use this table to crack a substitution cipher as follows. Given the
ciphertext, we count how many times each letter appears. If the message
is long enough, the frequencies of occurrence will help us guess how
each letter should be decrypted. For example, if v occurs around 13% of
the time, we guess that v represents the letter e. Once we have correctly
guessed a few of the letters, we look for familiar words and so on. A related
technique is to look for pairs of letters that occur frequently together.
Some of the exercises at the end of this section will give you practice with
frequency analysis.

1.1.2 Vigenère ciphers

We now consider a cipher that is more sophisticated than simple substi-
tution. It was invented by Giovan Batista Belaso in the sixteenth century
but later incorrectly attributed to Blaise de Vigenère and given his name.
(Vigenère devised a more powerful variation on this cipher, in which
the message itself was used to generate the key.)4 The secret key in this
case is a word or phrase. It is easiest to explain the cipher by giving an
example; in the following example the message is “Meet me at midnight,”
and the key is “quantum.” (Not a key that Belaso or Vigenère is likely to
have used.)

PLAINTEXT: M E E T M E A T M I D N I G H T

KEY: Q U A N T U M Q U A N T U M Q U

CIPHERTEXT: C Y E G F Y M J G I Q G C S X N

To generate the ciphertext, we have associated an integer with each
letter as before: A→ 0, B→ 1, etc.; in each column above we have added,
mod 26, the numbers corresponding to the given letters of the plaintext
and the key. For example, the first letter of the ciphertext is obtained as
follows:

M + Q → 12 + 16 (mod 26) = 2 → C

In other words, each letter is encrypted with a Caesar cipher – the encryp-
tion is a cyclic shifting of the alphabet – but different letters can be shifted
by different amounts. In the above example, six distinct Caesar ciphers

4 Belaso’s cipher is closely related to ciphers devised by others in the preceding century. A
full account can be found in Kahn (1967).
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4 Chapter 1. Cryptography: An Overview

are used in a pattern that repeats after seven letters. The intended recip-
ient should know the key and can recover the plaintext by subtracting
from each letter of the ciphertext the corresponding letter of the key.

Notice how this cipher improves on the simple substitution scheme.
The letter M appears three times in our plaintext, and each time it is
encrypted differently. Conversely, the letter G appears three times in the
ciphertext, and each time it stands for a different letter of the plaintext.
Thus a straightforward frequency analysis will not be nearly as effective
as it is against a substitution cipher.

However, one can still use frequency analysis to crack the cipher if
the message is long enough. Suppose that the cryptanalyst can somehow
figure out the length of the repeated key. Let us say that the length is 7
as in the above example. Then every seventh letter is encrypted with the
same Caesar cipher, which can be cracked by doing a frequency analysis
on just those entries of the ciphertext. So the problem is not hard once
we know the length of the key. But how might the cryptanalyst guess the
length of the key? One method is to look for repeated strings of letters.
For example, in a long message it is quite likely that the word “the” will
be encrypted in the same way several times and will thus produce the
same three-letter sequence several times. So if the cryptanalyst sees, for
example, three instances of “rqv,” the second instance displaced from the
first by 21 steps and the third displaced from the second by 56 steps, he or
she could reasonably guess that the repeated key is seven letters long, since
7 is the only positive integer (other than 1) that divides both 21 and 56.
Of course such a guess becomes more trustworthy if more repetitions are
discovered, since it is always possible for a string of letters of the ciphertext
to be repeated by chance. This method of cracking the Vigenère cipher
was discovered in the nineteenth century by Friedrich Kasiski.

An alternative version of the Vigenère cipher replaces the repeated
key with a “running key,” usually an easily accessible text that is at least as
long as the message. For example, we might use as the key the Constitution
of the United States, beginning with the preamble. Then our encryption
of “Meet me at midnight” would look like this:

PLAINTEXT: M E E T M E A T M I D N I G H T

KEY: W E T H E P E O P L E O F T H E

CIPHERTEXT: I I X A Q T E H B T H B N Z O X
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1.1. Elementary Ciphers 5

The recipient, knowing the key, again simply subtracts it, letter by letter,
from the ciphertext to recover the original message.

Clearly the cryptanalytic method we just described will not work
against this encryption scheme, because the key is no longer periodic.
But the key does have some structure, and a cryptanalyst can use this
structure to get a foothold on the plaintext. For example, if the cryptan-
alyst suspects that the key is a piece of English text, she can guess that
the word “the” appears in it frequently. She can then try “the” as part of
the key in various positions along the ciphertext and see if the resulting
plaintext is plausible as part of the message. Let us try this in the above
example, applying THE at each position of the ciphertext.

Trigram in ciphertext Trigram minus THE

IIX PBT
IXA PQW
XAQ ETM
AQT HJP
...

...
ZOX GHT

Most of the trigrams on the right-hand side of the table could not
possibly be part of a message written in English. In fact the only plausible
candidates are ETM and GHT. The latter is particularly helpful, because
there are only a few combinations of letters that are likely to precede
GHT in English. The cryptanalyst might try a few of these, to see what
they would imply about the key. Here is a table showing what he or she
would find:

Guess at plaintext Ciphertext minus plaintext = key

OUGHT NTTHE
NIGHT OFTHE
FIGHT WFTHE
RIGHT KFTHE
LIGHT QFTHE
EIGHT XFTHE

Of these, only the first two make any sense as part of a passage in
English, and of these the second is more likely. So the cryptanalyst might
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6 Chapter 1. Cryptography: An Overview

tentatively guess that NIGHT is part of the plaintext and OFTHE part
of the key. Continuing in this way, working back and forth between the
unknown plaintext and the unknown key, he or she has a reasonable
chance of cracking the cipher.

1.1.3 One-time pad

What makes the Vigenère cipher insecure, even with the running key of
the last example, is that the key has some structure that can be exploited by
the cryptanalyst: the key is a piece of English text, and English definitely
has some structure. The natural way to avoid this problem is to use a
running key consisting of purely random letters. The key used in the
following example was generated, literally, by tossing coins.

PLAINTEXT: M E E T M E A T M I D N I G H T

KEY: P O V N H U J B K R C J D C O F

CIPHERTEXT: B S Z G T Y J U W Z F W L I V Y

Of course the intended recipient must also have a copy of the random
key.

In this example, even though there is plenty of structure in the plain-
text, the randomness of the key – if it is truly random – guarantees that
there will be no structure whatsoever in the ciphertext. This cryptographic
scheme can therefore not be broken by cryptanalysis. 5 (An eavesdropper
could try other attacks such as intercepting the secret key on its way to
the intended recipient.) We are assuming here that the random key is at
least as long as the message, so that it will not have to be repeated. Also,
for complete security it is important that the key be used only once. If it is
used twice, an eavesdropper could compare the two ciphertexts and look
for patterns. This method of encryption – a random key used only once –
is known as a one-time pad, suggesting that the key might be copied on
a pad of paper, delivered to the intended recipient, used once, and then
destroyed.

Nowadays much of the information that is conveyed from place to
place is in digital form and can be expressed as a sequence of zeros and

5 A precise statement of this claim was proved by Shannon (1949).
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1.1. Elementary Ciphers 7

ones. A one-time pad works fine for such an application, the key in this
case being a random binary string. For example, one might see the fol-
lowing encryption of a rather uninteresting message. (Here again the key
was generated by tossing a fair coin, despite what you may think.)

PLAINTEXT: 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

KEY: 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1

CIPHERTEXT: 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0

In each column the two entries, one from the plaintext and one from the
key, have been added mod 2: that is, the ordinary sum is replaced by its
remainder upon division by 2, so that 1 + 1 (mod 2) = 0.

Though the one-time pad is perfectly secure against cryptanalysis, it
is by no means the most widely used form of cryptography. The problem
with the scheme is that the random key has to be generated and delivered
securely to the intended recipient at a rate equal to or exceeding the rate
at which messages are to be conveyed. If this rate is large, one might have
to employ an army of trusted couriers to transport the key.

Later in this book we consider in some detail a recently invented
scheme, quantum key distribution, that could potentially solve this prob-
lem by relying not on mathematics but on the laws of nature. But our study
of quantum key distribution will have to wait until we have introduced
the relevant laws in Chapter 2.

EXERCISES

Problem 1. We mentioned a substitution cipher in which each plaintext
letter, represented by an integer x, is replaced by the letter corresponding
to the integer y = ax + b (mod 26), where a and b are integers. If the
alphabet we are using has n letters, where n is not necessarily 26, we can
generalize this rule to y = ax + b (mod n), where “mod n” means that
we take the remainder upon division by n. In answering the following
questions, assume that the integers a and b are restricted to the values
0, . . . , n − 1.

(a) Suppose that n has the value 26, as it does if the plaintext is in
English and we do not encrypt spaces or punctuation marks. Is there a
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8 Chapter 1. Cryptography: An Overview

reason not to use certain values of the constant a or of the constant b? If
so, which values are the bad ones and what makes them bad?

(b) If we also count “space” as a character to be encrypted, we have
n = 27. Now what, if any, are the bad values of a? Of b?

(c) For a general n, make a conjecture as to what will be the bad values
of a and b, if there are any.

Problem 2. The following ciphertext was encrypted by a simple shift of
the alphabet. All spaces and punctuation marks were first deleted from
the plaintext, which was then arbitrarily broken into five-letter blocks.
Find the original plaintext.

VQFGE KRJGT VJKUU GPVGP EGUJK HVGCE JNGVV GTDCE
MYCTF DAVYQ UVGRU

Problem 3. The following ciphertext was generated by a Vigenère cipher
with a repeating key. All spaces and punctuation marks were removed
from the plaintext, and the resulting ciphertext was broken into six-letter
blocks.

NRUATW YAHJSE DIODII TLWCIJ DOIPRA DPANTO EOOPEG
TNCWAS DOBYAP FRALLW HSQNHW DTDPIJ GENDEO BUWCEH
LWKQGN LVEEYZ ZEOYOP XAGPIP DEHQOX GIKFSE YTDPOX
DENGEZ AHAYOI PNWZNA SAOEOH ZOGQON AAPEEN YSWYDB
TNZEHA SIZOEJ ZRZPRX FTPSEN PIOLNE XPKCTW YTZTFB
PRAYCA MEPHEA YTDPSA EWKAUN DUEESE YCNJPP LNWWYO
TSKYEG YOSDTD LTPSED TDZPNK CDACWW DCKYSP CUYEEZ
MYDFMW YIJEEH WICPNY PWDPRA LSPSEK CDACOB YAPFRA
LPLLRA YTHJCK XEOQRK XAOZUN NEKFTO TDAZFK FROPLR
PSWYDE DMKCEI JSPPRE ZUO

(a) Look for strings of three or more letters that are repeated in the
ciphertext. From the separations of different instances of the same string,
try to infer the length of the key.

(b) Using frequency analysis or any other means, try to find the key
and the plaintext. (You might find Section A.3 of the Appendix helpful.)
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1.2. Enigma 9

1.2 Enigma

Though our review of cryptography is by no means exhaustive, there is
one historical example that we cannot pass by, namely, the Enigma cipher
used by the German military before and during World War II.6

The Enigma cipher is more complex than the ciphers we have con-
sidered so far. Though it can be described in purely mathematical terms
and could in principle be implemented by hand, the cipher is intimately
tied to a mechanical device, the Enigma machine. In this section we de-
scribe a slightly simplified version of the Enigma machine and the cipher
it generates.7

1.2.1 The Enigma cipher

The main cryptographic components of the machine are (i) the plugboard,
(ii) the rotors, and (iii) the reflector. Each of these parts has the effect
of permuting the alphabet, and in each case the permutation is achieved
by electrical wires that we can imagine connecting the input letter to
the output letter. The net effect of all the parts is obtained by following
the wires through the machine, from the original input letter, typed on
a keyboard, to the output letter, indicated by the lighting of a lightbulb
labeled with that letter. We now describe briefly each of the components.

The plugboard includes an array of 26 jacks, one for each letter, and six
electrical cables, each of which can be plugged into two of the jacks so as
to interchange those two letters.8 All the letters that are not part of such
interchanges are left unchanged. Let us call the plugboard’s permutation
A; it is a function that maps the alphabet to itself. If x is an input letter, we
will write Ax (without parentheses) to indicate the plugboard’s output.
Notice that the inverse function A−1, which takes a given output of the
plugboard to the corresponding input, is the same as A itself. This fact
will be important in what follows.

6 For more on the Enigma cipher, see for example Sebag-Montefiore (2000).
7 Our main simplification is to avoid discussing the “rings,” a feature of the Enigma machine

that added some security but did not constitute one of the main cryptanalytic challenges.
8 Each jack actually consists of a pair of holes – an input and an output – and each electrical

cable consists of a pair of wires: if one wire sends the letter B to the letter J, for example,
its companion wire sends J to B.
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10 Chapter 1. Cryptography: An Overview

Each rotor is a disk, with 26 input locations arranged in a circle on
one side, and 26 output locations arranged in an identical circle on the
other side. Inside the rotor, a wire runs from each of the input locations
to one of the output locations, and together, the 26 wires implement a
complicated permutation with no special symmetries. The output of the
plugboard becomes the input to the first rotor, the output of the first rotor
becomes the input to the second rotor, and so on. In the original Enigma
machine used by the German army, there were three standard rotors, each
embodying a different permutation.

The reflector acts on the output of the last rotor and effects a permu-
tation that, like that of the plugboard, simply interchanges letters in pairs.
Unlike the permutation of the plugboard, the reflector’s permutation is
fixed and cannot be changed by the operator of the machine, at least not
in the simple version of Enigma that we are considering here. (There were
other versions allowing some freedom to adjust the reflector.) Also the
permutation is not limited to six pairs of letters: every letter is sent to a
different letter. We will call the reflector’s permutation B, and we note
that B−1 = B.

Let us now follow the path by which the input letter leads to a par-
ticular output letter. As we have implied above, the input letter first
encounters the plugboard permutation, then each of the rotor permu-
tations in turn, and then the reflector permutation. After that, the path
goes backwards through the rotors (in reverse order) and finally through
the plugboard again before the output is indicated by a labeled light-
bulb. The whole path is diagrammed for a simplified alphabet in Fig. 1.1.9

Notice that because the reflector leaves no letter unchanged, neither does
the Enigma machine as a whole: it never encodes a letter as itself.

The most characteristic and subtle feature of the Enigma machine is
this: though each rotor has a fixed permutation wired into it, its orientation
with respect to the other rotors and with respect to the other components
can change from one keystroke to the next. There is one special ori-
entation of each rotor which we call the “standard” orientation. Let Ri

be the permutation executed by the ith rotor when it is in its standard
orientation. Then, if the rotor’s orientation is rotated from its standard

9 This figure and Fig. 1.2 were inspired by similar figures in Singh (1999).
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