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Preface

When there are so many textbooks on logic already available, an au-

thor of a new one must expect to be challenged for explanations as

to why he has added to their number. I have four main excuses. I

am not happy with the treatments of well-foundedness nor of the ax-

iomatisation of set theory in any of the standard texts known to me.

My third excuse is that, because my first degree was not in mathemat-

ics but in philosophy and music, I have always been more preoccupied

with philosophical concerns than have most of my colleagues. Both the

intension-extension distinction and the use-mention distinction are not

only philosophically important but pedagogically important too: this is

no coincidence. Many topics in mathematics become much more acces-

sible to students if approached in a philosophically sensitive way. My

fourth excuse is that nobody has yet written an introductory book on

logic that fully exploits the expository possibilities of the idea of an in-

ductively defined set or recursive datatype. I think my determination to

write such a book is one of the sequelæ of reading Conway’s beautiful

book (2001) based on lectures he gave in Cambridge many years ago

when I was a Ph.D. student.

This book is based on my lecture notes and supervision (tutorial) notes

for the course entitled “Logic, Computation and Set Theory”, which is

lectured in part II (third year) of the Cambridge Mathematics Tripos.

The choice of material is not mine, but is laid down by the Mathematics

Faculty Board having regard to what the students have learned in their

first two years. Third-year mathematics students at Cambridge have

learned a great deal of mathematics, as Cambridge is one of the few

schools where it is possible for an undergraduate to do nothing but

mathematics for three years; however, they have done no logic to speak

of. Readers who know more logic and less mathematics than did the

ix
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x Preface

original audience for this material – and among mathematicians they

may well be a majority outside these islands – may find the emphasis

rather odd. The part IIb course, of which this is a component, is designed

for strong mathematics students who wish to go further and who need

some exposure to logic: it was never designed to produce logicians. This

book was written to meet a specific need, and to those with that need

I offer it in the hope that it can be of help. I offer it also in the hope

that it will convey to mathematicians something of the flavour of the

distinctive way logicians do mathematics.

Like all teachers, I owe a debt to my students. Any researcher needs

students for the stimulating questions they ask, and those attempting to

write textbooks will be grateful to their students for the way they push

us to give clearer explanations than our unreflecting familiarity with

elementary material normally generates. At times students’ questions

will provoke us into saying things we had not realised we knew. I am

also grateful to my colleagues Peter Johnstone and Martin Hyland for

exercises they provided.
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