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Introduction

In the beginning was the Word, and the Word was with God, and the Word
was God. The same was also in the beginning with God.

John’s Gospel, ch 1 v 1

Despite having this text by heart I still have no idea what it means.

What I do know is that the word that is translated from the Greek into

English as ‘word’ is λoγoσ, which also gave us the word ‘logic’. It is

entirely appropriate that we use a Greek word since it was the Greeks

who invented logic. They also invented the axiomatic method, in which

one makes basic assumptions about a topic from which one then derives

conclusions.

The most striking aspect of the development of mathematics in its

explosive modern phase of the last 120-odd years has been the exten-

sion of the scope of the subject matter. By this I do not mean that

mathematics has been extended to new subject areas (one thinks imme-

diately of the way in which the social sciences have been revolutionised

by the discovery that the things they study can be given numerical val-

ues), even though it has, nor do I mean that new kinds of mathematical

entities have been discovered (imaginary numbers, vectors and so on),

true though that is too. What I mean is that in that period there was a

great increase in the variety of mathematical entities that were believed

to have an independent existence.

To any of the eighteenth-century mathematicians one could have be-

gun an exposition “Let n be an integer. . . ” or “Let n be a real. . . ” and

they would have listened attentively, expecting to understand what was

to come. If, instead, one had begun “Let f be a set of reals . . . ” they

would not. The eighteenth century had the idea of an arbitrary integer

or an arbitrary point or an arbitrary line, but it did not have the idea of

an arbitrary real valued function, or an arbitrary set of reals, or an ar-
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2 Introduction

bitrary set of points. During this period mathematics acquired not only

the concept of an arbitrary real-valued function, but also the concepts of

arbitrary set, arbitrary formula, arbitrary proof, arbitrary computation,

and additionally other concepts that will not concern us here. A reader

who is not happy to see a discussion begin “Let x be an arbitrary . . . ”,

where the dots are to be filled in with the name of a suite of entities

(reals, integers, sets), is to a certain extent not admitting entities from

that suite as being fully real in the way they admit entities whose name

they will accept in place of the dots. This was put pithily by Quine:

“To be is to be the value of a variable”. There are arbitrary X’s once

you have made X’s into mathematical objects.

At the start of the third millenium of the common era, mathematics

still has not furnished us with the idea of an arbitrary game or arbitrary

proof. However, there is a subtle difference between this shortcoming

and the eighteenth century’s lack of the concept of an arbitrary function.

Modern logicians recognise the lack of a satisfactory formalisation of a

proof or game as a shortcoming in a way in which the eighteenth century

did not recognise their lack of a concept of arbitrary function.

This historical development has pedagogical significance, since most of

us acquire our toolkit of mathematical concepts in roughly the same or-

der that the western mathematical tradition did. Ontogeny recapitulates

phylogeny after all, and many students find that the propensity to rea-

son in a freewheeling way about arbitrary reals or functions or sets does

not come naturally. The ontological toolkit of school mathematics is to

a large extent that of the eighteenth century. I remember when studying

for my A-level being nonplussed by Richard Watts-Tobin’s attempt to

interest me in Rolle’s theorem and the intermediate value theorem. It

was too general. At that stage I was interested only in specific functions

with stories to them: Σn∈INx2
n

was one that intruiged me, as did the

function Σn∈INxn · n! in Hardy’s (1949), which I encountered at about

that time. I did not have the idea of an arbitrary real-valued function,

and so I was not interested in general theorems about them.

Although understanding cannot be commanded, it will often come for-

ward (albeit shyly) once it becomes clear what the task is. The student

who does not know how to start answering “How many subsets does a

set with n elements have?” may perhaps be helped by pointing out that

their difficulty is that they are less happy with the idea of an arbitrary

set than with the idea of an arbitrary number. It becomes easier to

make the leap of faith once one knows which leap is required.

Some of these new suites of entities were brewed in response to a need
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Introduction 3

to solve certain problems, and the suites that concern us most will be

those that arose in response to problems in logic. Logic exploded into life

in the twentieth century with the Hilbert programme and the celebrated

incompleteness theorem of Gödel. It is probably a gross simplification

to connect the explosive growth in logic in the twentieth century with

the Hilbert programme, but that is the way the story is always told. In

his famous 1900 address Hilbert posed various challenges whose solution

would perforce mean formalising more mathematics. One particularly

pertinent example concerns Diophantine equations, which are equations

like x3 + y5 = z2 + w3, where the variables range over integers. Is there

a general method for finding out when such equations have solutions

in the integers? If there is, of course, one exhibits it and the matter

is settled. If there is not, then in order to prove this fact one has to

be able to say something like: “Let A be an arbitrary algorithm . . . ”

and then establish that A did not perform as intended. However, to do

that one needs a concept of an algorithm as an arbitrary mathematical

object, and this was not available in 1900. It turns out that there is

no method of the kind that Hilbert wanted for analysing diophantine

equations, and in chapter 6 we will see a formal concept of algorithm of

the kind needed to demonstrate this.

This extension of mathematical notation to nonmathematical areas

has not always been welcomed by mathematicians, some of whom appear

to regard logic as mere notation: “If Logic is the source of a mathemati-

cian’s hygiene, it is not the source of his food” is a famous sniffy aside

of Bourbaki. Well, one bon mot deserves another: there is a remark of

McCarthy’s as famous among logicians as Bourbaki’s is to mathemati-

cians to the effect that, “It is reasonable to hope that the relationship

between computation and mathematical logic will be as fruitful in the

next century as that between analysis and physics in the last.” With this

at the back our minds it has to be expected that when logicians write

books about logic for mathematicians they will emphasise the possible

connections with topics in theoretical computer science.

The autonomy of syntax

One of the great insights of twentieth-century logic was that, in order to

understand how formulæ can bear the meanings they bear, we must first

strip them of all those meanings so we can see the symbols as themselves.

Stripping symbols of all the meanings we have so lovingly bestowed on
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4 Introduction

them over the centuries in various unsystematic ways
1

seems an ex-

tremely perverse thing to do – after all, it was only so that they could

bear meaning that we invented the symbols in the first place. But we

have to do it so that we can think about formulæ as (perhaps mathe-

matical) objects in their own right, for then can we start to think about

how it is possible to ascribe meanings to them in a systematic way that

takes account of their internal structure. That makes it possible to prove

theorems about what sort of meanings can be born by languages built

out of those symbols. These theorems tend to be called completeness

theorems, and it is only a slight exaggeration to say that logic in the

middle of the twentieth century was dominated by the production of

them.

It is hard to say what logic is dominated by now because no age

understands itself (a very twentieth century insight!), but it does not

much matter here because all the material in this book is fairly old

and long-established. All the theorems in this will be older than the

undergraduate reader; most of them are older than the author.

Finally, a cultural difference. Logicians tend to be much more con-

cerned than other mathematicians about the way in which desirable

propositions are proved. For most mathematicians, most of the time,

it is enough that a question should be answered. Logicians are much

more likely to be concerned to have proofs that use particular methods,

or refrain from exploiting particular methods. This is at least in part

because the connections between logic and computation make logicians

prefer proofs that correspond to constructions in a way which we will see

sketched later, but the reasons go back earlier than that. Logicians are

more likely than other mathematicians to emphasise that ‘trivial’ does

not mean ‘unimportant’. There are important trivialities, many of them

in this book. The fact that something is unimportant may nevertheless

itself be important. There are some theorems that it is not a kindness

to the student to make seem easy. Some hard things should be seen to

be hard.

1 The reader is encourged to dip into Cajori’s History of Mathematical Notations
to see how unsystematic these ways can be and how many dead ends there have
been.
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Definitions and notations

This chapter is designed to be read in sequence, not merely referred back

to. There are even exercises in it to encourage the reader.

Things in boldface are usually being defined. Things in italic are

being emphasised. Some exercises will be collected at the end of each

chapter, but there are many exercises to be found in the body of the

text. The intention is that they will all have been inserted at the precise

stage in the exposition when they become doable.

I shall use lambda notation for functions. λx.F (x) is the function

that, when given x, returns F (x). Thus λx.x2 applied to 2 evaluates to

4. I shall also adhere to the universal practice of writing ‘λxy.(. . .)’ for

‘λx.(λy.(. . .))’. Granted, most people would write things like ‘y = F (x)’

and ‘y = x2’, relying on an implicit convention that, where ‘x’ and ‘y’

are the only two variables are used, then y is the output (“ordinate”)

and x is the input (“abcissa”). This convention, and others like it, have

served us quite well, but in the information technology age, when one

increasingly wants machines to do a lot of the formula manipulations

that used to be done by humans, it turns out that lambda notation and

notations related to it are more useful. As it happens, there will not be

much use of lambda notation in this text, and I mention it at this stage

to make a cultural point as much as anything. By the same token, a

word is in order at this point on the kind of horror inspired in logicians

by passages like this one, picked almost at random from the literature

(Ahlfors, 1953 p. 69):

Suppose that an arc γ with equation z = z(t), α ≤ t ≤ β is contained in a

region Ω, and let f be defined and continuous in Ω. Then w = w(t) = f(z(t))
defines an arc . . .

The linguistic conventions being exploited here can be easily followed
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6 1 Definitions and notations

by people brought up in them, but they defy explanation in any terms

that would make this syntax machine-readable. Lambda notation is

more logical. Writing ‘w = λt.f(z(t))’ would have been much better

practice.

I write ordered pairs, triples, and so on with angle brackets: 〈x, y〉. If

x is an ordered pair, then fst(x) and snd(x) are the first and second

components of x. We will also write ‘�x’ for ‘x1 . . . xn’.

1.1 Structures

A set with a relation (or bundle of relations) associated with it is called

a structure, and we use angle brackets for this too. 〈X,R〉 is the set X

associated with the relation R, and 〈X,R1, R2 . . . Rn〉 is X associated

with the bundle of relations – R1 . . . Rn. For example, 〈IN,≤〉 is the

naturals as an ordered set.

The elements are “in” the structure in the sense that they are members

of the underlying set – which the predicates are not. Often we will use

the same letter in different fonts to denote the structure and the domain

of the structure; thus, in “M = 〈M, . . .〉” M is the domain of M. Some

writers prefer the longer but more evocative locution that M is the

carrier set of M, and I will follow that usage here, reserving the word

‘domain’ for the set of things that appear as elements of n-tuples in R,

where R is an n-place relation. We write ‘dom(R)’ for short.

Many people are initially puzzled by notations like 〈IN,≤〉. Why spec-

ify the ordering when it can be inferred from the underlying set? The

ordering of the naturals arises from the naturals in a – natural(!) – way.

But it is common and natural to have distinct structures with the same

carrier set. The rationals-as-an-ordered-set, the rationals-as-a-field and

the rationals-as-an-ordered-field are three distinct structures with the

same carrier set. Even if you are happy with the idea of this distinction

between carrier-set and structure and will not need for the moment the

model-theoretic jargon I am about to introduce in the rest of this para-

graph, you may find that it helps to settle your thoughts. The rationals-

as-an-ordered-set and the rationals-as-an-ordered-field have the same

carrier set, but different signatures (see page 48). We say that the

rationals-as-an-ordered-field are an expansion of the rationals-as-an-

ordered-set, which in turn is a reduction of the rationals-as-an-ordered-

field. The reals-as-an-ordered-set are an extension of the rationals-

as-an-ordered-set, and, conversely, the rationals-as-an-ordered-set are a

substructure of the reals. Thus:
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1.2 Intension and extension 7

Beef up the signature to get an expansion.
Beef up the carrier set to get an extension.
Throw away some structure to get a reduction.
Throw away some of the carrier set to get a substructure.

We will need the notion of an isomorphism between two structures.

If 〈X,R〉 and 〈Y, S〉 are two structures, they are isomorphic iff there

is a bijection f between X and Y such that, for all x, y ∈ X, R(x, y) iff

S(f(x), f(y)).

(This dual use of angle brackets for tupling and for notating structures

has just provided us with our first example of overloading. “Over-

loading”!? It is computer science-speak for “using one piece of syntax

for two distinct purposes” – commonly and gleefully called “abuse of

notation” by mathematicians.)

1.2 Intension and extension

Sadly the word ‘extension’, too, will be overloaded. We will not only

have extensions of models – as just now – but extensions of theories

(of which more later), and there is even extensionality, a property of

relations. A binary relation R is extensional if (∀x)(∀y)(x = y ←→

(∀z)(R(x, z) ←→ R(y, z)). Notice that a relation can be extensional

without its converse (converses are defined on page 9) being extensional:

think “square roots”. An extensional relation on a set X corresponds

to an injection from X into P(X), the power set of X. For us the most

important example of an extensional relation will be ∈, set membership.

Two sets with the same members are the same set.

Finally, there is the intension extension distinction, an informal de-

vice but a standard one we will need at several places. We speak of

functions-in-intension and functions-in-extension and in general

of relations-in-intension and relations-in-extension. There are also

‘intensions’ and ‘extensions’ as nouns in their own right.

The standard illustration in the literature concerns the two properties

of being human and being a featherless biped – a creature with two legs

and no feathers. There is a perfectly good sense in which these concepts

are the same (one can tell that this illustration dates from before the

time when the West had encountered Australia with its kangaroos!), but

there is another perfectly good sense in which they are different. We

name these two senses by saying that ‘human’ and ‘featherless biped’

are the same property in extension but different properties in intension.
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8 1 Definitions and notations

A more modern and more topical illustration is as follows. A piece of

code that needs to call another function can do it in either of two ways. If

the function being called is going to be called often, on a restricted range

of arguments, and is hard to compute, then the obvious thing to do is

compute the set of values in advance and store them in a look-up table in

line in the code. On the other hand if the function to be called is not go-

ing to be called very often, and the set of arguments on which it is to be

called cannot be determined in advance, and if there is an easy algorithm

available to compute it, then the obvious strategy is to write code for

that algorithm and call it when needed. In the first case the embedded

subordinate function is represented as a function-in-extension, and in the

second case as a function-in-intension. Functions-in-extension are some-

times called the graphs of the corresponding functions-in-intension: the

graph of a function f is {〈x, y〉 : x = f(y)}. One cannot begin to an-

swer exercise 1(vi) unless one realises that the question must be, “How

many binary relations-in-extension are there on a set with n elements?”

(There is no answer to “how many binary relations-in-intension . . . ”)

I remember being disquieted – when I was a A-level student – by being

shown a proof that if one integrates λx. 1

x
with respect to x, one gets

λx.log(x). The proof procedes by showing that the two functions are

the same function-in-extension – or at least that they are both roots of

the one functional equation, and that did not satisfy me.

The intension – extension distinction is not a formal technical device,

and it does not need to be conceived or used rigorously, but as a piece

of mathematical slang it is very useful. One reason why it is a bit

slangy is captured by an aperçu of Quine’s: “No entity without identity”.

What this obiter dictum means is that if you wish to believe in the

existence of a suite of entities – numbers, ghosts, functions-in-intension

or whatever it may be – then you must have to hand a criterion that

tells you when two numbers (ghosts, functions-in-intension) are the same

number (ghost, etc.) and when they are different numbers (ghosts, etc).

We need identity criteria for entities belonging to a suite before those

entities can be used rigorously. And sadly, although we have a very

robust criterion of identity for functions-in-extension, we do not yet have

a good criterion of identity for functions-in-intension. Are the functions-

in-intension λx.x+x and λx.2 ·x two functions or one? Is a function-in-

intension an algorithm? Or are algorithms even more intensional than

functions-in-intension?

Finally, this slang turns up nowadays in the connection with the idea

of evaluation. In recent times there has been increasingly the idea that
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1.3 Notation for sets and relations 9

intensions are the sort of things one evaluates and that the things to

which they evaluate are extensions.

1.3 Notation for sets and relations

Relations in extension can be thought of as sets of ordered tuples, so we

had better ensure we have to hand the elementary set-theoretic gadgetry

needed.

Some people write ‘{x|F}’ for the set of things that are F , but since

I will be writing ‘|x|’ for the cardinal of x, I shall stick to ‘{x : F (x)}’.

This notation is commonly extended by moving some of the conditions

expressed on the right of the colon to the left: for example, ‘{x ∈ IN :

(∃y)(x = 2 · y)}’ instead of ‘{x : x ∈ IN ∧ (∃y)(x = 2 · y)}’. There is

a similar notation for the quantifiers: often one writes ‘(∀n ∈ IN)(. . .)’

instead of ‘(∀n)(n ∈ IN → . . .)’. The reader is presumably familiar with

‘⊆’ for subset of, but perhaps not with ‘x ⊇ y’ (read ‘x is a superset

of y’): it means the same as y ⊆ x’. P(x) is the power set of x:

{y : y ⊆ x}. Set difference: x \ y is the set of things that are in x

but not in y. The symmetric difference: x∆y, of x and y, is the set

of things in one or the other but not both: (x \ y) ∪ (y \ x). (This is

sometimes written ‘XOR’, but we will reserve XOR for the corresponding

propositional connective). Sumset:
⋃

x := {y : (∃z)(y ∈ z∧z ∈ x)}; and

intersection
⋂

x := {y : (∀z)(z ∈ x → y ∈ z)}. These will also be written

in indexed form at times:
⋃

i∈I
Ai. The arity of a function or a relation

is the number of arguments it is supposed to have. It is a significant but

generally unremarked fact that one can do most of mathematics without

ever having to consider relations of arity greater than 2. These relations

are binary. The composition of two binary relations R and S, which

is {〈x, z〉 : (∃y)(〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ S)}, is notated ‘R ◦ S’. R ◦ S is not

in general the same as S ◦ R: the sibling of your parent is probably not

the parent of your sibling. (Mini exercise: how is it legally possible for

them to be the same?)

R ◦ R is written R2, and similarly Rn. The inverse or converse of

R, written ‘R−1’, is {〈x, y〉 : 〈y, x〉 ∈ R}. However, do not be misled by

this exponential notation into thinking that R ◦R−1 is the identity. See

exercise 1.

It is sometimes convenient to think of a binary relation as a matrix

whose entries are true and false. This has an advantage, namely, that

under this scheme the matrix product of the matrices for R and S is

the matrix for R ◦ S. (Take multiplication to be ∧ and addition to be
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10 1 Definitions and notations

∨). However, in principle this is not a good habit, because it forces

one to decide on an ordering of the underlying set (rows and columns

have to be put down in an order after all) and so is less general than

the picture of binary relations-in-extension as sets of ordered pairs. It

also assumes thereby that every set can be totally ordered, and this is a

nontrivial consequence of the axiom of choice, a contentious assumption

of which we will see more later. However, it does give a nice picture of

converses: the inverse – converse of R corresponds to the transpose of

the matrix corresponding to R, and the matrix corresponding to R ◦ S

is the product of the two matrices in the obvious way.

A relation R is transitive if ∀x∀y∀z R(x, y) ∧ R(y, z)Dz → R(x, z)

(or, in brief, R2 ⊆ R). A relation R is symmetrical if ∀x∀y(R(x, y) ←→

R(y, x)) or R = R−1. Beginners often assume that symmetrical relations

must be reflexive . They are wrong, as witness “rhymes with”, “conflicts

with”, “can see the whites of the eyes of”, “is married to”, “is the sibling

of” and so on.

An equivalence relation is symmetrical, transitive and reflexive. An

equivalence relation ∼ is a congruence relation for an n-ary function

f if, whenever xi ∼ yi for i ≤ n, then f(�x) ∼ f(�y). (The notation

“�x” abbreviates a list of variables, all of the shape ‘x’ with different

subscripts.) A cuddly familiar example is integers mod k: congruence

mod k is a congruence relation for addition and multiplication of natural

numbers. (It is not a congruence relation for exponentiation: something

that often confuses beginners.) We will need this again in sections 3.4

(on boolean algebra) and 5.7 (on ultraproducts) and in chapter 7, on

transfinite arithmetic.

I have used the adjective ‘reflexive’ without defining it. A binary

relation on a set X is reflexive if it relates every member of X to itself.

(A relation is irreflexive if it is disjoint from the identity relation: note

that irreflexive is not the same as not reflexive!) That is to say, R is

reflexive iff (∀x ∈ X)(〈x, x〉 ∈ R). Notice that this means that reflexivity

is not a property of a relation, but of the structure 〈X,R〉 of which the

relation is a component.

This annoying feature of reflexivity (which irreflexivity does not share)

is also exhibited by surjectivity, which is a property not of a function

but a function-with-a-range. A function is surjective if every element of

the range is a value. Totality likewise is a property of a function-and-

an-intended-domain. A function f on a set X is total if it is defined for

every argument in X.

Some mathematical cultures make this explicit, saying that a function
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