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Preface

This main purpose of this book is to present the basic theory of well-posed
linear systems in a form which makes it available to a larger audience, thereby
opening up the possibility of applying it to a wider range of problems. Up to
now the theory has existed in a distributed form, scattered between different
papers with different (and often noncompatible) notation. For many years this
has forced authors in the field (myself included) to start each paper with a long
background section to first bring the reader up to date with the existing theory.
Hopefully, the existence of this monograph will make it possible to dispense
with this in future.
My personal history in the field of abstract systems theory is rather short but

intensive. It started in about 1995 when I wanted to understand the true nature
of the solution of the quadratic cost minimization problem for a linear Volterra
integral equation. It soon became apparent that the most appropriate setting
was not the one familiar to me which has classically been used in the field of
Volterra integral equations (as presented in, e.g., Gripenberg et al. [1990]). It
also became clear that the solution was not tied to the class of Volterra integral
equations, but that it could be formulated in a much more general framework.
From this simple observation I gradually plunged deeper and deeper into the
theory of well-posed (and even non-well-posed) linear systems.
One of the first major decisions that I had to make when I began to write

this monograph was how much of the existing theory to include. Because of
the nonhomogeneous background of the existing theory (several strains have
been developing in parallel independently of each other), it is clear that it is
impossible to write a monograph which will be fully accepted by every worker
in the field. I have therefore largely allowed my personal taste to influence the
final result, meaning that results which lie closer to my own research interests
are included to a greater extent than others. It is also true that results which
blend more easily into the general theory have had a greater chance of being
included than those which are of a more specialist nature. Generally speaking,

xi
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xii Preface

instead of borrowing results directly from various sources I have reinterpreted
and reformulated many existing results into a coherent setting and, above all,
using a coherent notation.
The original motivation for writing this book was to develop the background

which is needed for an appropriate understanding of the quadratic cost mini-
mization problem (and its indefinite minimax version). However, due to page
and time limitations, I have not yet been able to include any optimal control in
this volume (only the background needed to attack optimal control problems).
The book on optimal control still remains to be written.
Not only was it difficult to decide exactly what parts of the existing theory

to include, but also in which form it should be included. One such decision
was whether to work in a Hilbert space or in a Banach space setting. Optimal
control is typically done in Hilbert spaces. On the other hand, in the basic theory
it does not matter if we are working in a Hilbert space or a Banach space (the
technical differences are minimal, compared to the general level of difficulty of
the theory). Moreover, there are several interesting applications which require
the use of Banach spaces. For example, the natural norm in population dynamics
is often the L1-norm (representing the total mass), parabolic equations have a
well-developed L p-theory with p �= 2, and in nonlinear equations it is often
more convenient to use L∞-norms than L2-norms. The natural decision was to
present the basic theory in an arbitrary Banach space, but to specialize to Hilbert
spaces whenever this additional structure was important. As a consequence of
this decision, the present monograph contains the first comprehensive treatment
of a well-posed linear system in a setting where the input and output signals are
continuous (as opposed to belonging to some L p-space) but do not have any
further differentiability properties (such as belonging to some Sobolev spaces).
(More precisely, they are continuous apart from possible jump discontinuities.)
The first version of the manuscript was devoted exclusively to well-posed

problems, and the main part of the book still deals with problems that are well
posed. However, especially in H∞-optimal control, one naturally runs into non-
well-posed problems, and this is also true in circuit theory in the impedance
and transmission settings. The final incident that convinced me that I also had
to include some classes of non-well-posed systems in this monograph was my
discovery in 2002 that every passive impedance systemwhich satisfies a certain
algebraic condition can be represented by a (possibly non-well-posed) system
node. System nodes are a central part of the theory of well-posed systems, and
the well-posedness property is not always essential. My decision not to stay
strictly within the class of well-posed systems had the consequence that this
monograph is also the the first comprehensive treatment of (possibly non-well-
posed) systems generated by arbitrary system nodes.
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Preface xiii

The last three chapters of this book have a slightly different flavor from the
earlier chapters. There the general Banach space setting is replaced by a stan-
dard Hilbert space setting, and connections are explored between well-posed
linear systems, Fourier analysis, and operator theory. In particular, the admissi-
bility of scalar control and observation operators for contraction semigroups is
characterized by means of the Carleson measure theorem, and systems theory
interpretations are given of the basic dilation and model theory for contractions
and continuous-time contraction semigroups in Hilbert spaces.
It took me approximately six years to write this monograph. The work has

primarily been carried out at the Mathematics Institute of Åbo Akademi, which
has offered me excellent working conditions and facilities. The Academy of
Finland has supported me by relieving me of teaching duties for a total of two
years, and without this support I would not have been able to complete the
manuscript in this amount of time.
I amgrateful to several students and colleagues for helpingmefind errors and

misprints in the manuscript, most particularly Mikael Kurula, Jarmo Malinen
and Kalle Mikkola.
Above all I am grateful to my wife Marjatta for her understanding and

patience while I wrote this book.
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Notation

Basic sets and symbols

C The complex plane.
C

+
ω , C

+
ω C

+
ω := {z ∈ C | 
z > ω} and C

+
ω := {z ∈ C | 
z ≥ ω}.

C
−
ω , C

−
ω C

−
ω := {z ∈ C | 
z < ω} and C

−
ω := {z ∈ C | 
z ≤ ω}.

C
+, C

+
C

+ := C
+
0 and C

+
:= C

+
0 .

C
−, C

−
C

− := C
−
0 and C

−
:= C

−
0 .

D
+
r , D

+
r D

+
r := {z ∈ C | 
z > r} and D

+
r := {z ∈ C | |z| ≥ r}.

D
−
r , D

−
r D

−
r := {z ∈ C | 
z < r} and D

−
r := {z ∈ C | |z| ≤ r}.

D
+, D

+
D

+ := D
+
1 and D

+
:= D

+
1 .

D
−, D

−
D

− := D
−
1 and D

−
:= D

−
1 .

R R := (−∞, ∞).
R

+, R
+

R
+ := (0, ∞) and R

+
:= [0, ∞).

R
−, R

−
R

− := (−∞, 0) and R
−
:= (−∞, 0].

T The unit circle in the complex plane.
TT The real lineRwhere the points t + mT ,m = 0, ±1, ±2, . . .

are identified.
Z The set of all integers.
Z

+, Z
−

Z
+ := {0, 1, 2, . . .} and Z

− := {−1, −2, −3, . . .}.
j j := √−1.
0 The number zero, or the zero vector in a vector space, or the

zero operator, or the zero-dimensional vector space {0}.
1 The number one and also the identity operator on any set.

Operators and related symbols

A, B, C, D In connection with an L p|Reg-well-posed linear system or an
operator node, A is usually the main operator, B the control

xiv
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Notation xv

operator, C the observation operator and D a feedthrough
operator. See Chapters 3 and 4.

C&D The observation/feedthrough operator of an L p|Reg-well-
posed linear system or an operator node. See Definition 4.7.2.

A, B, C, D The semigroup, inputmap, outputmap, and input/outputmap
of an L p|Reg-well-posed linear system, respectively. SeeDef-
initions 2.2.1 and 2.2.3.

D̂ The transfer function of an L p|Reg-well-posed linear system
or an operator node. See Definitions 4.6.1 and 4.7.4.

B(U ; Y ), B(U ) The set of bounded linear operators from U into Y or from
U into itself, respectively.

C, L The Cayley and Laguerre transforms. See Definition 12.3.2.
τ t The bilateral time shift operator τ t u(s) := u(t + s) (this is

a left-shift when t > 0 and a right-shift when t < 0). See
Example 2.5.3 for some additional shift operators.

γλ The time compression or dilation operator (γλu)(s) := u(λs).
Here λ > 0.

πJ (πJ u)(s) := u(s) if s ∈ J and (πJ u)(s) := 0 if s /∈ J . Here
J ⊂ R.

π+, π− π+ := π[0,∞) and π− := π(−∞,0).
R The time reflection operator about zero: ( Ru)(s) := u(−s)

(in the L p-case) or ( Ru)(s) := limt↓−s u(t) (in the Reg-case).
See Definition 3.5.12.

Rh The time reflection operator about the point h. See Lemma
6.1.8.

σ The discrete-time bilateral left-shift operator (σu)k := uk+1,
where u = {uk}k∈Z. See Section 12.1 for the definitions ofσ+
and σ−.

πJ (πJu)k := uk if k ∈ J and (πJu)k := 0 if k /∈ J . Here J ⊂ Z

and u = {uk}k∈Z.
π+, π− π+ := πZ+ and π− := πZ− .
w-lim The weak limit in a Banach space. Thus w-limn→∞ xn = x in

X iff limn→∞ x∗xn = x∗x for all x∗ ∈ X∗. See Section 3.5.
〈x, x∗〉 In a Banach space setting x∗x := 〈x, x∗〉 is the continuous

linear functional x∗ evaluated at x . In a Hilbert space setting
this is the inner product of x and x∗. See Section 3.5.

E⊥ E⊥ := {x∗ ∈ X∗ | 〈x, x∗〉 = 0 for all x ∈ E}. This is the an-
nihilator of E ⊂ X . See Lemma 9.6.4.

⊥F ⊥F := {x ∈ X | 〈x, x∗〉 = 0 for all x∗ ∈ F}. This is the pre-
annihilator of F ⊂ X∗. See Lemma 9.6.4. In the reflexive
case ⊥F = F⊥, and in the nonreflexive case ⊥F = F⊥ ∩ X .
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xvi Notation

A∗ The (anti-linear) dual of the operator A. See Section 3.5.
A ≥ 0 A is (self-adjoint and) positive definite.
A � 0 A ≥ ε for some ε > 0, hence A is invertible.
D (A) The domain of the (unbounded) operator A.
R (A) The range of the operator A.
N (A) The null space (kernel) of the operator A.
rank(A) The rank of the operator A.
dim(X ) The dimension of the space X .
ρ(A) The resolvent set of A (see Definition 3.2.7). The resolvent

set is always open.
σ (A) The spectrum of A (see Definition 3.2.7). The spectrum is

always closed.
σp(A) The point spectrum of A, or equivalently, the set of eigenval-

ues of A (see Definition 3.2.7).
σr (A) The residual spectrum of A (see Definition 3.2.7).
σc(A) The continuous spectrum of A (see Definition 3.2.7).
ωA The growth bound of the semigroup A. See Definition 2.5.6.
T I, TIC T I stands for the set of all time-invariant, and TIC stands for

the set of all time-invariant and causal operators. See Defini-
tion 2.6.2 for details.

A&B, C&D A&B stands for an operator (typically unbounded) whose
domain D (A&B) is a subspace of the cross-product

[
X
U

]
of

two Banach spaces X and U , and whose values lie in a third
Banach space Z . If D (A&B) splits into D (A&B) = X1 +̇
U1 where X1 ⊂ X and U1 ⊂ U , then A&B can be written in
block matrix form as A&B = [A B], where A = A&B |X1

and B = A&B |U1 . We alternatively write these identities in
the form Ax = A&B

[ x
0

]
and Bu = A&B

[ 0
u

]
, interpreting

D (A&B) as the cross-product of X1 and U1.

Special Banach spaces

U Frequently the input space of the system.
X Frequently the state space of the system.
Y Frequently the output space of the system.
Xn Spaces constructed from the state space X with the help of the

generator of a semigroup A. In particular, X1 is the domain
of the semigroup generator. See Section 3.6.

X∗
n X∗

n := (X∗)n = (X−n)∗. See Remark 3.6.1.
+̇ X = X1 +̇ X2 means that the Banach space X is the direct

sum of X1 and X2, i.e., both X1 and X2 are closed subspaces
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Notation xvii

of X , and every x ∈ X has a unique representation of the form
x = x1 + x2 where x1 ∈ X1 and x2 ∈ X2.

⊕ X = X1 ⊕ X2 means that the Hilbert space X is the or-
thogonal direct sum of the Hilbert spaces X1 and X2, i.e.,
X = X1 +̇ X2 and X1 ⊥ X2.[

X
Y

]
The cross-product of the two Banach spaces X and Y . Thus,[

X
Y

] = [
X
0

] +̇ [
0
Y

]
.

Special functions

χI The characteristic function of the set I .
1+ The Heaviside function: 1+ = χR+ . Thus (1+)(t) = 1 for t ≥

0 and (1+)(t) = 0 for t < 0.
B The Beta function (see (5.3.1)).
� The Gamma function (see (3.9.7)).
eω eω(t) = eωt for ω, t ∈ R.
log The natural logarithm.

Function spaces

V (J ;U ) Functions of type V (= L p, BC, etc.) on the interval J ⊂ R

with range in U .
Vloc(J ;U ) Functions which are locally of type V , i.e., they are defined

on J ⊂ R with range in U and they belong to V (K ;U ) for
every bounded subinterval K ⊂ J .

Vc(J ;U ) Functions in V (J ;U ) with bounded support.
Vc,loc(J ;U ) Functions in Vloc(J ;U ) whose support is bounded to the left.
Vloc,c(J ;U ) Functions inVloc(J ;U )whose support is bounded to the right.
V0(J ;U ) Functions in V (J ;U ) vanishing at ±∞. See also the special

cases listed below.
Vω(J ;U ) The set of functions u for which (t �→ e−ωt u(t)) ∈ V (J ;U ).

See also the special cases listed below.
Vω,loc(R;U ) The set of functions u ∈ Vloc(R;U ) which satisfy π−u ∈

Vω(R−;U ).
V (TT ;U ) The set of T -periodic functions of type V on R. The norm in

this space is the V -norm over one arbitrary interval of length
T .

BC Bounded continuous functions; sup-norm.
BC0 Functions in BC that tend to zero at ±∞.
BCω Functions u for which (t �→ e−ωt u(t)) ∈ BC.
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xviii Notation

BCω,loc(R;U ) Functions u ∈ C(R;U ) which satisfy π−u ∈ BCω(R−;U ).
BC0,ω Functions u for which (t �→ e−ωt u(t)) ∈ BC0.
BC0,ω,loc(R;U ) Functions u ∈ C(R;U ) which satisfy π−u ∈ BC0,ω(R−;U ).
BUC Bounded uniformly continuous functions; sup-norm.
BUCn Functions which together with their n first derivatives belong

to BUC. See Definition 3.2.2.
C Continuous functions. The same space as BCloc.
Cn n times continuously differentiable functions. The same

space as BCn
loc.

C∞ Infinitely many times differentiable functions. The same
space as BC∞

loc.

L p, 1 ≤ p < ∞ Strongly measurable functions with norm
{∫ |u(t)|p dt

}1/p
.

L∞ Strongly measurable functions with norm ess sup|u(t)|.
L p
0 L p

0 = L p if 1 ≤ p < ∞, and L∞
0 consists of those u ∈ L∞

which vanish at ±∞, i.e., limt→∞ ess sup|s|≥t |u(s)| = 0.
L p

ω Functions u for which (t �→ e−ωt u(t)) ∈ L p.
L p

ω,loc(R;U ) Functions u ∈ L p
loc(R;U ) which satisfy π−u ∈ L p

ω(R−;U ).
L p
0,ω Functions u for which (t �→ e−ωt u(t)) ∈ L p

0 .
L p
0,ω,loc(R;U ) Functions u ∈ L p

loc(R;U ) which satisfy π−u ∈ L p
0,ω(R

−;U ).
W n,p Functions which together with their n first (distribution)

derivatives belong to L p. See Definition 3.2.2.
Reg Bounded right-continuous functions which have a left hand

limit at each finite point.
Reg0 Functions in Reg which tend to zero at ±∞.
Regω The set of functions u for which (t �→ e−ωt u(t)) ∈ Reg.
Regω,loc(R;U ) The set of functions u ∈ Regloc(R;U ) which satisfy π−u ∈

Regω(R
−;U ).

Reg0,ω The set of functions u for which (t �→ e−ωt u(t)) ∈ Reg0.
Reg0,ω,loc(R;U ) Functions u ∈ Regloc(R;U ) which satisfy π−u ∈

Reg0,ω(R
−;U ).

Regn Functions which together with their n first derivatives belong
to Reg. See Definition 3.2.2.

L p|Reg This stands for either L p or Reg, whichever is appropriate.
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