STATISTICAL MECHANICS

From First Principles to Macroscopic Phenomena

Based on the author's graduate course taught over many years in several physics departments, this book takes a "reductionist" view of statistical mechanics, while describing the main ideas and methods underlying its applications. It implicitly assumes that the physics of complex systems as observed is connected to fundamental physical laws represented at the molecular level by Newtonian mechanics or quantum mechanics. Organized into three parts, the first section describes the fundamental principles of equilibrium statistical mechanics. The next section describes applications to phases of increasing density and order: gases, liquids and solids; it also treats phase transitions. The final section deals with dynamics, including a careful account of hydrodynamic theories and linear response theory.

This original approach to statistical mechanics is suitable for a 1-year graduate course for physicists, chemists, and chemical engineers. Problems are included following each chapter, with solutions to selected problems provided.

J. WOODS HALLEY is Professor of Physics at the School of Physics and Astronomy, University of Minnesota, Minneapolis.

Cambridge University Press 978-0-521-82575-7 - Statistical Mechanics: From First Principles to Macroscopic Phenomena J. Woods Halley Frontmatter More information

STATISTICAL MECHANICS

From First Principles to Macroscopic Phenomena

J. WOODS HALLEY University of Minnesota

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521825757

© J. Woods Halley 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN-13 978-0-521-82575-7 hardback ISBN-10 0-521-82575-X hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-0-521-82575-7 - Statistical Mechanics: From First Principles to Macroscopic Phenomena J. Woods Halley Frontmatter More information

Contents

	Preface	<i>page</i> ix
	Introduction	1
Pa	rt I Foundations of equilibrium statistical mechanics	5
1	The classical distribution function	7
	Foundations of equilibrium statistical mechanics	7
	Liouville's theorem	14
	The distribution function depends only on additive constants of the	
	motion	16
	Microcanonical distribution	20
	References	24
	Problems	24
2	Quantum mechanical density matrix	27
	Microcanonical density matrix	33
	Reference	34
	Problems	34
3	Thermodynamics	37
	Definition of entropy	37
	Thermodynamic potentials	38
	Some thermodynamic relations and techniques	42
	Constraints on thermodynamic quantities	46
	References	49
	Problems	49
4	Semiclassical limit	51
	General formulation	51
	The perfect gas	52
	Problems	56

v

Cambridge University Press	
978-0-521-82575-7 - Statistical Mechanics: From First Principles to Macrosc	opic Phenomena
J. Woods Halley	
Frontmatter	
More information	

vi	Contents	
Part II States of matter in equilibrium statistical physics		
5	Perfect gases	59
	Classical perfect gas	60
	Molecular ideal gas	62
	Quantum perfect gases: general features	69
	Quantum perfect gases: details for special cases	71
	Perfect Bose gas at low temperatures	74
	Perfect Fermi gas at low temperatures	78
	References	81
	Problems	81
6	Imperfect gases	85
	Method I for the classical virial expansion	86
	Method II for the virial expansion: irreducible linked clusters	95
	Application of cumulants to the expansion of the free energy	102
	Cluster expansion for a quantum imperfect gas (extension of	
	method I)	108
	Gross-Pitaevskii-Bogoliubov theory of the low temperature weakly	
	interacting Bose gas	115
	References	122
	Problems	122
7	Statistical mechanics of liquids	125
	Definitions of <i>n</i> -particle distribution functions	126
	Determination of $g(r)$ by neutron and x-ray scattering	128
	BBGKY hierarchy	133
	Approximate closed form equations for $g(\vec{r})$	135
	Molecular dynamics evaluation of liquid properties	136
	References	143
	Problems	144
8	Quantum liquids and solids	145
	Fundamental postulates of Fermi liquid theory	146
	Models of magnets	150
	Physical basis for models of magnetic insulators: exchange	150
	Comparison of Ising and liquid-gas systems	153
	Exact solution of the paramagnetic problem	153
	High temperature series for the Ising model	154
	Transfer matrix	157
	Monte Carlo methods	158
	References	159
	Problems	160

Cambridge University Press
978-0-521-82575-7 - Statistical Mechanics: From First Principles to Macroscopic Phenomena
J. Woods Halley
Frontmatter
More information

Contents	vii
9 Phase transitions: static properties	161
Thermodynamic considerations	161
Critical points	166
Phenomenology of critical point singularities: scaling	167
Mean field theory	172
Renormalization group: general scheme	177
Renormalization group: the Landau–Ginzburg model	181
References	189
Problems	189
Part III Dynamics	193
10 Hydrodynamics and definition of transport coefficients	195
General discussion	195
Hydrodynamic equations for a classical fluid	196
Fluctuation-dissipation relations for hydrodynamic transport	
coefficients	199
References	214
Problems	214
11 Stochastic models and dynamical critical phenomena	217
General discussion of stochastic models	217
Generalized Langevin equation	217
General discussion of dynamical critical phenomena	221
References	242
Problems	242
Appendix: solutions to selected problems	243
Index	281

Cambridge University Press 978-0-521-82575-7 - Statistical Mechanics: From First Principles to Macroscopic Phenomena J. Woods Halley Frontmatter More information

Preface

This book is based on a course which I have taught over many years to graduate students in several physics departments. Students have been mainly candidates for physics degrees but have included a scattering of people from other departments including chemical engineering, materials science and chemistry. I take a "reductionist" view, that implicitly assumes that the basic program of physics of complex systems is to connect observed phenomena to fundamental physical laws as represented at the molecular level by Newtonian mechanics or quantum mechanics. While this program has historically motivated workers in statistical physics for more than a century, it is no longer universally regarded as central by all distinguished users of statistical mechanics^{1,2} some of whom emphasize the phenomenological role of statistical methods in organizing data at macroscopic length and time scales with only qualitative, and often only passing, reference to the underlying microscopic physics. While some very useful methods and insights have resulted from such approaches, they generally tend to have little quantitative predictive power. Further, the recent advances in first principles quantum mechanical methods have put the program of predictive quantitative methods based on first principles within reach for a broader range of systems. Thus a text which emphasizes connections to these first principles can be useful.

The level here is similar to that of popular books such as those by Landau and Lifshitz,³ Huang⁴ and Reichl.⁵ The aim is to provide a basic understanding of the fundamentals and some pivotal applications in the brief space of a year. With regard to fundamentals, I have sought to present a clear, coherent point of view which is correct without oversimplifying or avoiding mention of aspects which are incompletely understood. This differs from many other books, which often either give the fundamentals extremely short shrift, on the one hand, or, on the other, expend more mathematical and scholarly attention on them than is appropriate in a one year graduate course. The chapters on fundamentals begin with a description of equilibrium for classical systems followed by a similar description for quantum

х

Cambridge University Press 978-0-521-82575-7 - Statistical Mechanics: From First Principles to Macroscopic Phenomena J. Woods Halley Frontmatter More information

mechanical systems. The derivation of the equilibrium aspects of thermodynamics is then presented followed by a discussion of the semiclassical limit.

Preface

In the second part, I progress through equilibrium applications to successively more dense states of matter: ideal classical gases, ideal quantum gases, imperfect classical gases (cluster expansions), classical liquids (including molecular dynamics) and some aspects of solids. A detailed discussion of solids is avoided because, at many institutions, solid state physics is a separate graduate course. However, because magnetic models have played such a central role in statistical mechanics, they are not neglected here. Finally, in this second part, having touched on the main states of matter, I devote a chapter to phase transitions: thermodynamics, classification and the renormalization group.

The third part is devoted to dynamics. This consists first of a long chapter on the derivation of the equations of hydrodynamics. In this chapter, the fluctuation– dissipation theorem then appears in the form of relations of transport coefficients to dynamic correlation functions. The second chapter of the last part treats stochastic models of dynamics and dynamical aspects of critical phenomena.

There are problems in each chapter. Solutions are provided for many of them in an appendix. Many of the problems require some numerical work. Sample codes are provided in some of the solutions (in Fortran) but, in most cases, it is advisable for students to work out their own solutions which means writing their own codes. Unfortunately, the students I have encountered recently are still often surprised to be asked to do this but there is really no substitute for it if one wants a thorough mastery of simulation aspects of the subject.

I have interacted with a great many people and sources during the evolution of this work. For this reason acknowledging them all is difficult and I apologise in advance if I overlook someone. My tutelage in statistical mechanics began with a course by Allan Kaufman in Berkeley in the 1960s. With regard to statistical mechanics I have profited especially from interactions with Michael Gillan, Gregory Wannier (some personally but mainly from his book), Mike Thorpe, Aneesur Rahman, Bert Halperin, Gene Mazenko, Hisao Nakanishi, Nigel Goldenfeld and David Chandler. Obviously none of these people are responsible for any mistakes you may find, but they may be given some credit for some of the good stuff. I am also grateful to the many classes that were subjected to these materials, in rather unpolished form in the early days, and who taught me a lot. Finally I thank all my Ph.D. students and postdocs (more than 30 in all) through the years for being good company and colleagues and for stimulating me in many ways.

J. Woods Halley Minneapolis July 2005

Preface

xi

References

- 1. For example, P. Anderson, Seminar 8 in http://www.princeton.edu/complex/site/
- 2. P. Anderson, A Career in Theoretical Physics, London: World Scientific, 1994.
- 3. L. D. Landau and E. M. Lifshitz, *Statistical Physics*, 3rd edition, *Part 1, Course of Theoretical Physics*, Volume 5, Oxford: Pergamon Press, 1980.
- 4. K. Huang, *Statistical Mechanics*, New York: John Wiley, 1987.
- 5. L. E. Reichl, A Modern Course in Statistical Physics, 2nd edition, New York: John Wiley, 1998.