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Introduction

The problems of statistical mechanics are those which involve systems with a
larger number of degrees of freedom than we can conveniently follow explicitly
in experiment, theory or simulation. The number of degrees of freedom which can
be followed explicitly in simulations has been changing very rapidly as computers
and algorithms improve. However, it is important to note that, even if computers
continue to improve at their present rate, characterized by Moore’s “law,” scientists
will not be able to use them for a very long time to predict many properties of nature
by direct simulation of the fundamental microscopic laws of physics. This point is
important enough to emphasize.

Suppose that, T years from the present, a calculation requiring computation time
fo at present will require computation time #(T) = #2~7/> (Moore’s “law,”! see
Figure 1). Currently, state of the art numerical solutions of the Schrodinger equation
for a few hundred atoms can be carried out fast enough so that the motion of these
atoms can be followed long enough to obtain thermodynamic properties. This is
adequate if one wishes to predict properties of simple homogeneous gases, liquids
or solids from first principles (as we will be discussing later). However, for many
problems of current interest, one is interested in entities in which many more atoms
need to be studied in order to obtain predictions of properties at the macroscopic
level of a centimeter or more. These include polymers, biomolecules and nanocrys-
talline materials for example. In such problems, one easily finds situations in which
a first principles prediction requires following 10° atoms dynamically. The first
principles methods for calculating the properties increase in computational cost as
the number of atoms to a power between 2 and 3. Suppose they scale as the second
power so the computational time must be reduced by a factor 10% in order to handle
10° atoms. Using Moore’s law we then predict that the calculation will be possible
T years from the present where T = 16/log,,2 = 53 years. In fact, this may be
optimistic because Moore’s “law” may not continue to be valid for that long and
also because 10° atoms will not be enough in many cases. What this means is that,
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Figure 1 One version of Moore’s “law.”

for a long time, we will need means beyond brute force computation for relating
the properties of macroscopic matter to the fundamental microscopic laws of
physics.

Statistical mechanics provides the essential organizing principles needed for
connecting the description of matter at large scales to the fundamental underlying
physical laws (Figure 2). Whether we are dealing with an experimental system
with intractably huge numbers of degrees of freedom or with a mass of data from
a simulation, the essential goal is to describe the behavior of the many degrees of
freedom in terms of a few “macroscopic” degrees of freedom. This turns out to
be possible in a number of cases, though not always. Here, we will first describe
how this connection is made in the case of equilibrium systems, whose average
properties do not change in time. Having established (Part I) some principles of
equilibrium statistical mechanics, we then provide (Part II) a discussion of how
they are applied in the three most common phases of matter (gases, liquids and
solids) and the treatment of phase transitions. Part III concerns dynamical and
nonequilibrium methods.
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Figure 2 Computational length and time scales. QC stands for quantum chemistry
methods in which the Schrédinger equation is solved. MD stands for molecular
dynamics in which classical equations of motion for atomic motion are solved.
Continuum includes thermodynamics, hydrodynamics, continuum mechanics, mi-
cromagnetism in which macroscopic variables describe the system. Statistical me-
chanics supplies the principles by which computations at these different scales are
connected.
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Part I

Foundations of equilibrium statistical mechanics
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1

The classical distribution function

Historically, the first and most successful case in which statistical mechanics has
made the connection between microscopic and macroscopic description is that
in which the system can be said to be in equilibrium. We define this carefully
later but, to proceed, may think of the equilibrium state as the one in which the
values of the macroscopic variables do not drift in time. The macroscopic vari-
ables may have an obvious relation to the underlying microscopic description
(as for example in the case of the volume of the system) or a more subtle rela-
tionship (as for temperature and entropy). The macroscopic variables of a system
in equilibrium are found experimentally (and in simulations) to obey historically
empirical laws of thermodynamics and equations of state which relate them to
one another. For systems at or near equilibrium, statistical mechanics provides
the means of relating these relationships to the underlying microscopic physical
description.

We begin by discussing the details of this relation between the microscopic and
macroscopic physical description in the case in which the system may be described
classically. Later we run over the same ground in the quantum mechanical case.
Finally we discuss how thermodynamics emerges from the description and how the
classical description emerges from the quantum mechanical one in the appropriate
limit.

Foundations of equilibrium statistical mechanics

Here we will suppose that the systems with which we deal are nonrelativistic and can
be described fundamentally by 3N time dependent coordinates labelled ¢;(¢) and
their time derivatives ¢;(¢) i = 1, ..., 3N). A model for the dynamics of the system
is specified through a Lagrangian L({g;}, {¢;}) (not explicitly time dependent) from
which the dynamical behavior of the system is given by the principle of least
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8 1 The classical distribution function
action
8 / Ldt=0 (1.1)
or equivalently by the Lagrangian equations of motion
dL d (0L
———({=—=1]=0 (1.2)
dg;  dr \9¢g;
Alternatively one may define momenta
aL
pi = (1.3)
9q;
and a Hamiltonian
N
H=Y pigi—L (1.4)
i=1

Expressing H as a function of the momenta p; and the coordinates g; one then has
the equations of motion in the form

oH (15)
ap; =4qi .
oH
5 = P (1.6)
qi

In examples, we will often be concerned with a system of identical particles with
conservative pair interactions. Then it is convenient to use the various components
of the positions of the particles 71, 7», . . . as the quantities g;, and the Hamiltonian
takes the form

H= Zﬁ£/2m+(1/2)ZV(?k,?1) (1.7)
k k#l

where the sums run over particle labels and p; = Vi H. Then the Hamiltonian

equations reduce to simple forms of Newton’s equation of motion. It turns out,

however, that the more general formulation is quite useful at the fundamental level,

particularly in understanding Liouville’s theorem, which we will discuss later.

In keeping with the discussion in the Introduction, we wish to relate this mi-
croscopic description to quantities which are measured in experiment or which are
conveniently used to analyze the results of simulations in a very similar way. Gener-
ically we denote these observable quantities as ¢(g; (), p;(t)). It is also possible to
consider properties which depend on the microscopic coordinates at more than one
time. We will defer discussion of these until Part III. Generally, these quantities, for
example the pressure on the wall of a vessel containing the system, are not constant
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Foundations of equilibrium statistical mechanics 9

in time and what is measured is a time average:

t+1/2
b= [ @ penar (18)
T Ji—1)2
T is an averaging time determined by the apparatus and the measurement made
(or chosen for analysis by the simulator). Experience has shown that for many
systems, an experimental situation can be achieved in which measurements of ¢,
are independent of 7 for all T > 7 for some finite 7. It is easy to show that, in
such a case, ¢; is also independent of . If this is observed to be the case for the
macroscopic observables of interest, then the system is said to be in equilibrium. A
similar operational definition of equilibrium is applied to simulations. In practice
it is never possible to test this equilibrium condition for arbitrarily long times, in
either experiment or simulation. Thus except in the rare cases in which mathematical
proofs exist for relatively simple models, the existence and nature of equilibrium
states are hypothesized on the basis of partial empirical evidence. Furthermore, in
experimental situations, we do not expect any system to satisfy the equilibrium
condition for arbitrarily long times, because interactions with the surroundings
will inevitably change the values of macroscopic variables eventually. Making the
system considered ever larger and the time scales longer and longer does not help
here, because there is no empirical evidence that the universe itself is in equilibrium
in this sense. Nevertheless, the concept of equilibrium turns out to be an extremely
useful idealization because of the strong evidence that many systems do satisfy
the relevant conditions over a very wide range of averaging times t and that,
under sufficiently isolated conditions, many systems spontaneously evolve rapidly
toward an approximately equilibrium state whose characteristics are not sensitive
to the details of the initial microscopic conditions. These empirical statements
lack mathematical proofs for most systems of experimental or engineering interest,
though mathematicians have made progress in proving them for simple models.
For systems in equilibrium defined in this way we are concerned with the calcu-
lation of averages of the type

B} Y )
6= Jim - [ odtatn. tponar (19)
=00 T J
We will show that it is always possible in principle to write this average in the form

¢ = / pUagit (pihHeUai, (pHdNqd* p (1.10)

inwhich p({g;}, { p;i}) is called the classical distribution function. The demonstration
provides useful insight into the meaning of p({g;}, { p;}). We consider the 6N dimen-
sional space of the variables {g;}, {p;}, called phase space. In this space the time
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10 1 The classical distribution function

evolution of the system is described by the motion of a point. Take a small re-
gion of this space whose volume is denoted A3" pA3Vg centered at the point
(p, q). (Henceforth we denote (p,q) = ({g;}, {p;}) and similarly (Ap, Ag) =
({Aq;}, {Ap;i}).) Consider the interval of time At defined as

At(qo, po, to;q, p, t; Ap, Aq) (L.1D)

equivalent to the time which the point describing the system spends in the region
AN pA3N g around (¢, p) between t, and ¢ if it started at the point (go, po) at time

1o.-
Now consider the fraction of time that the system point spends in A3N pA3Ng,
denoted Aw:
i At
Aw(qo, po;q, p; Ap, Ag) = lim (1.12)
t—>o00 \ — tO

which is the fraction of the total time between #y and + — oo which the system
spends in the region A3N p A3¥ g around (g, p).

Now we express the time average ¢, of equation (1.9) in terms of Aw by dividing
the entire phase space into small regions labelled by an index k and each of volume
A3N p A3N q:

¢ =Y ¢(q0. Poidk» POAWG0, Po; Gk Pii AP, Ag) (1.13)
k

We then suppose that Aw(qo, po;q, p; Ap, Aq) is a well behaved function of the
arguments (Ap, Ag) and write

6N
Defining
N Aw
p(qo, po;q, p) = [m]APZquo (1.15)
we then have in the limit ApAg — 0 that
6= [ plan. poia. ota. DV (1.16)

which is of the form (1.10). Several of the smoothness assumptions made in this
discussion are open to question as we will discuss in more detail later.

Equation (1.16) is most useful if ¢, depends only on a few of the 6N initial
conditions ¢, po. Experimentally (and in simulations) it is found that the time
averages of many macroscopic quantities measured in equilibrium systems are very
insensitive to the way the system is prepared. We will demonstrate that under certain
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Foundations of equilibrium statistical mechanics 11

conditions, the only way in which these averages can depend on the initial conditions
is through the values of the energy, linear momentum and angular momentum of the
entire system. The general study of the dependence of averages of the form (1.16)
on the initial conditions is part of ergodic theory. An ergodic system is (loosely
from a mathematical point of view) defined as an energetically isolated system for
which the phase point eventually passes through every point on the surface in phase
space consistent with its energy. It is not hard to prove that the averages ¢, in such
an ergodic system depend only on the energy of the system. It is worth pointing out
that the existence of ergodic systems in phase space of more than two dimensions
is quite surprising. The trajectory of the system in phase space is a topologically
one dimensional object (a path, parametrized by one variable, the time) yet we
want this trajectory to fill the 6N — 1 dimensional surface defined by the energy.
The possibility of space filling curves is known mathematically (for a semipopular
account see reference 1). However, for a large system, the requirement is extreme:
the trajectory must fill an enormously open space of the order of 10?* dimensions! By
contrast the path of a random walk has dimension 2 (in any embedding dimension)!
(Very briefly, the (fractal or Hausdorff—Besicovitch) dimension of a random walk
can be understood to be 2 as follows. The dimension of an object in this sense
is determined as Dy defined so that when one covers the object in question with
spheres of radius # a minimum of N(7) spheres is required and

Ly = lim N(n)n"x
n—0

is finite and nonzero. For a random walk of mean square radius (R?), N(n) =
(R*)/n* and Dy = 2. See reference 1 for details.) Nevertheless something like
ergodicity is required for statistical mechanics to work, and so the paths in phase
space of large systems must in fact achieve this enormous convolution in order to
account for the known facts from experiment and simulation. It is not true that every
system consisting of small numbers of particles is ergodic. Some of the problems at
the end of this section illustrate this point. For example, a one dimensional harmonic
oscillator is ergodic, but a billiard ball on a two dimensional table is not (Figure 1.1).
On the other hand, in the latter case, the set of initial conditions for which it is not
ergodic is in some sense “small.” Another instructive example is a two dimensional
harmonic oscillator (Problem 1.1).

There are several rationally equivalent ways of talking about equation (1.10).
These occur in textbooks and other discussions and reflect the history of the subject
as well as useful approaches to its extension to nonequilibrium systems. What we
have discussed so far may be termed the Boltzmann interpretation of p (in which p
is related to the time which the system phase point spends in each region of phase
space). This is closely related to the probability interpretation of p because the
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12 1 The classical distribution function

P

Figure 1.1 Phase space trajectory of a one dimensional oscillator fills the energy
surface. For some initial conditions, a ball on a billiard table with elastic specularly
reflecting walls is not ergodic.

probability that the system is found in d*¥ ¢d" p is just pd3¥ gd*" p according to the
standard observation frequency definition of probability. In such an interpretation,
one takes no interest in the question of how the system got into each phase space
region and could as well imagine that it hopped discontinuously from one to another
for some purposes. Indeed such discontinuous hops (which we do not believe occur
in real experimental systems obeying classical mechanics to a good approximation)
do occur in certain numerical methods of computing the integrals (1.10) once the
form of p is known. Regarding pd*" gd3" p as a probability opens the way to the
use of information theoretic methods for approximating its form under all sorts
of conditions in which various constraints are applied. For mechanical systems in
equilibrium this approach leads to the same forms which we will obtain and use
here. The reader is referred to the book by Katz?> and to many papers by Jaynes
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