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Dynamical Systems

Not only in research, but also in the everyday world of politics and economics,

we would all be better off if more people realized that simple nonlinear systems

do not necessarily possess simple dynamical properties.

Robert M. May

There is nothing more to say – except why. But since why is difficult to handle,

one must take refuge in how.

Toni Morrison

1.1 Introduction

There is a rich literature on discrete time models in many disciplines –

including economics – in which dynamic processes are described for-

mally by first-order difference equations (see (2.1)). Studies of dynamic

properties of such equations usually involve an appropriate definition

of a steady state (viewed as a dynamic equilibrium) and conditions that

guarantee its existence and local or global stability. Also of importance,

particularly in economics following the lead of Samuelson (1947), have

been the problems of comparative statics and dynamics: a systematic

analysis of how the steady states or trajectories respond to changes in

some parameter that affects the law of motion. While the dynamic prop-

erties of linear systems (see (4.1)) have long been well understood, rela-

tively recent studies have emphasized that “the very simplest” nonlinear

difference equations can exhibit “a wide spectrum of qualitative behav-

ior,” from stable steady states, “through cascades of stable cycles, to a

regime in which the behavior (although fully deterministic) is in many

respects chaotic or indistinguishable from the sample functions of a ran-

dom process” (May 1976, p. 459). This chapter is not intended to be a
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2 Dynamical Systems

comprehensive review of the properties of complex dynamical systems,

the study of which has benefited from a collaboration between the more

“abstract” qualitative analysis of difference and differential equations,

and a careful exploration of “concrete” examples through increasingly

sophisticated computer experiments. It does recall some of the basic re-

sults on dynamical systems, and draws upon a variety of examples from

economics (see Complements and Details).

There is by now a plethora of definitions of “chaotic” or “complex”

behavior, and we touch upon a few properties of chaotic systems in

Sections 1.2 and 1.3. However, the map (2.3) and, more generally, the

quadratic family discussed in Section 1.7 provide a convenient frame-

work for understanding many of the definitions, developing intuition and

achieving generalizations (see Complements and Details). It has been

stressed that the qualitative behavior of the solution to Equation (2.5)

depends crucially on the initial condition. Trajectories emanating from

initial points that are very close may display radically different proper-

ties. This may mean that small changes in the initial condition “lead to

predictions so different, after a while, that prediction becomes in effect

useless” (Ruelle 1991, p. 47). Even within the quadratic family, com-

plexities are not “knife-edge,” “abnormal,” or “rare” possibilities. These

observations are particularly relevant for models in social sciences, in

which there are obvious limits to gathering data to identify the initial

condition, and avoiding computational errors at various stages.

In Section 1.2 we collect some basic results on the existence of fixed

points and their stability properties. Of fundamental importance is the

contraction mapping theorem (Theorem 2.1) used repeatedly in subse-

quent chapters. Section 1.3 introduces complex dynamical systems, and

the central result is the Li–Yorke theorem (Theorem 3.1). In Section 1.4

we briefly touch upon linear difference equations. In Section 1.5 we ex-

plore in detail dynamical systems in which the state space is R+, the set

of nonnegative reals, and the law of motion α is an increasing function.

Proposition 5.1 is widely used in economics and biology: it identifies

a class of dynamical systems in which all trajectories (emanating from

initial x in R++) converge to a unique fixed point. In contrast, Sec-

tion 1.6 provides examples in which the long-run behavior depends on

initial conditions. In the development of complex dynamical systems,

the “quadratic family” of laws of motion (see (7.11)) has played a distin-

guished role. After a review of some results on this family in Section 1.7,

we turn to examples of dynamical systems from economics and biology.
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1.2 Basic Definitions: Fixed and Periodic Points 3

We have selected some descriptive models, some models of optimization

with a single decision maker, a dynamic game theoretic model, and an

example of intertemporal equilibrium with overlapping generations. An

interesting lesson that emerges is that variations of some well-known

models that generate monotone behavior lead to dynamical systems ex-

hibiting Li–Yorke chaos, or even to systems with the quadratic family as

possible laws of motion.

1.2 Basic Definitions: Fixed and Periodic Points

We begin with some formal definitions. A dynamical system is described

by a pair (S, α) where S is a nonempty set (called the state space) and α

is a function (called the law of motion) from S into S. Thus, if xt is the

state of the system in period t , then

xt+1 = α(xt ) (2.1)

is the state of the system in period t + 1.

In this chapter we always assume that the state space S is a (nonempty)

metric space (the metric is denoted by d). As examples of (2.1), take S

to be the set R of real numbers, and define

α(x) = ax + b, (2.2)

where a and b are real numbers.

Another example is provided by S = [0, 1] and

α(x) = 4x(1 − x). (2.3)

Here in (2.3), d(x, y) ≡ |x − y|.
The evolution of the dynamical system (R, α) where α is defined by

(2.2) is described by the difference equation

xt+1 = axt + b. (2.4)

Similarly, the dynamical system ([0, 1], α) where α is defined by (2.3)

is described by the difference equation

xt+1 = 4xt (1 − xt ). (2.5)

Once the initial state x (i.e., the state in period 0) is specified, we write

α0(x) ≡ x , α1(x) = α(x), and for every positive integer j ≥ 1,

α j+1(x) = α(α j (x)). (2.6)
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4 Dynamical Systems

We refer to α j as the jth iterate of α. For any initial x , the trajectory

from x is the sequence τ (x) = {α j (x)∞j=0}. The orbit from x is the set

γ (x) = {y: y = α j (x) for some j ≥ 0}. The limit set w(x) of a trajectory

τ (x) is defined as

w(x) =
∞
⋂

j=1

[τ (α j (x)], (2.7)

where Ā is the closure of A.

Fixed and periodic points formally capture the intuitive idea of a sta-

tionary state or an equilibrium of a dynamical system. In his Foundations,

Samuelson (1947, p. 313) noted that “Stationary is a descriptive term

characterizing the behavior of an economic variable over time; it usually

implies constancy, but is occasionally generalized to include behavior

periodically repetitive over time.”

A point x ∈ S is a fixed point if x = α(x). A point x ∈ S is a periodic

point of period k ≥ 2 if αk(x) = x and α j (x) �= x for 1 ≤ j < k. Thus,

to prove that x is a periodic point of period, say, 3, one must prove that

x is a fixed point of α3 and that it is not a fixed point of α and α2. Some

writers consider a fixed point as a periodic point of period 1.

Denote the set of all periodic points of S by ℘(S). We write ℵ(S) to

denote the set of nonperiodic points.

We now note some useful results on the existence of fixed points of α.

Proposition 2.1 Let S = R and α be continuous. If there is a (nondegen-

erate) closed interval I = [a, b] such that (i) α(I ) ⊂ I or (ii) α(I ) ⊃ I ,

then there is a fixed point of α in I .

Proof.

(i) If α(I ) ⊂ I , then α(a) ≥ a and α(b) ≤ b. If α(a) = a or α(b) = b,

the conclusion is immediate. Otherwise, α(a) > a and α(b) < b. This

means that the function β(x) = α(x) − x is positive at a and negative

at b. Using the intermediate value theorem, β(x∗) = 0 for some x∗ in

(a, b). Then α(x∗) = x∗.

(ii) By the Weierstrass theorem, there are points xm and xM in I

such that α(xm) ≤ α(x) ≤ α(xM ) for all x in I . Write α(xm) = m and

α(xM ) = M . Then, by the intermediate value theorem, α(I ) = [m, M].
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1.2 Basic Definitions: Fixed and Periodic Points 5

Since α(I ) ⊃ I , m ≤ a ≤ b ≤ M . In other words,

α(xm) = m ≤ a ≤ xm,

and

α(xM ) = M ≥ b ≥ xM .

The proof can now be completed by an argument similar to that in

case (i).

Remark 2.1 Let S = [a, b] and α be a continuous function from S into

S. Suppose that for all x in (a, b) the derivative α′(x) exists and |α′(x)| <

1. Then α has a unique fixed point in S.

Proposition 2.2 Let S be a nonempty compact convex subset of R
�, and

α be continuous. Then there is a fixed point of α.

A function α : S → S is a uniformly strict contraction if there is some

C, 0 < C < 1, such that for all x, y ∈ X , x �= y, one has

d(α(x), α(y)) < Cd(x, y). (2.8)

If d(α(x), α(y)) < d(x, y) for x �= y, we say that α is a strict contrac-

tion. If only

d(α(x), α(y)) � d(x, y),

we say that α is a contraction.

If α is a contraction, α is continuous on S.

In this book, the following fundamental theorem is used many times:

Theorem 2.1 Let (S, d) be a nonempty complete metric space and

α : S → S be a uniformly strict contraction. Then α has a unique fixed

point x∗ ∈ S. Moreover, for any x in S, the trajectory τ (x) = {α j (x)∞j=0}
converges to x∗.

Proof. Choose an arbitrary x ∈ S. Consider the trajectory τ (x) = (xt )

from x , where

xt+1 = α(xt ). (2.9)
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6 Dynamical Systems

Note that d(x2, x1) = d(α(x1), α(x)) < Cd(x1, x) for some C ∈ (0, 1);

hence, for any t ≥ 1,

d(xt+1, xt ) < C
t d(x1, x). (2.10)

We note that

d(xt+2, xt ) ≤ d(xt+2, xt+1) + d(xt+1, xt )

< C
t+1d(x1, x) + C

t d(x1, x)

= C
t (1 + C)d(x1, x).

It follows that for any integer k ≥ 1,

d(xt+k, xt ) < [Ct/(1 − C)]d(x1, x),

and this implies that (xt ) is a Cauchy sequence. Since S is assumed to be

complete, limitt→∞ xt = x∗ exists. By continuity of α, and (2.9),

α(x∗) = x∗.

If there are two distinct fixed points x∗ and x∗∗ of α, we see that there is

a contradiction:

0 < d(x∗, x∗∗) = d(α(x∗), α(x∗∗)) < Cd(x∗, x∗∗), (2.11)

where 0 < C < 1.

Remark 2.2 For applications of this fundamental result, it is important

to reflect upon the following:

(i) for any x ∈ S, d(αn(x), x∗) ≤ Cn(1 − C)−1d(α(x), x)),

(ii) for any x ∈ S, d(x, x∗) ≤ (1 − C)−1d(α(x), x).

Theorem 2.2 Let S be a nonempty complete metric space andα : S → S

be such that αk is a uniformly strict contraction for some integer k > 1.

Then α has a unique fixed point x∗ ∈ S.

Proof. Let x∗ be the unique fixed point of αk . Then

αk(α(x∗)) = α(αk(x∗)) = α(x∗)

Hence α(x∗) is also a fixed point of αk . By uniqueness, α(x∗) = x∗.

This means that x∗ is a fixed point of α. But any fixed point of α is a

fixed point of αk . Hence x∗ is the unique fixed point of α.
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1.2 Basic Definitions: Fixed and Periodic Points 7

Theorem 2.3 Let S be a nonempty compact metric space and α : S → S

be a strict contraction. Then α has a unique fixed point.

Proof. Since d(α(x), x) is continuous and S is compact, there is an

x∗ ∈ S such that

d(α(x∗), x∗) = inf
x∈S

d(α(x), x). (2.12)

Then α(x∗) = x∗, otherwise

d(α2(x∗), α(x∗)) < d(α(x∗), x∗),

contradicting (2.12).

Exercise 2.1

(a) Let S = [0, 1], and consider the map α : S → S defined by

α(x) = x −
x2

2
.

Show that α is a strict contraction, but not a uniformly strict contraction.

Analyze the behavior of trajectories τ (x) from x ∈ S.

(b) Let S = R, and consider the map α : S → S defined by

α(x) = [x + (x2 + 1)1/2]/2.

Show that α(x) is a strict contraction, but does not have a fixed

point.

A fixed point x∗ of α is (locally) attracting or (locally) stable if there

is an open set U containing x∗ such that for all x ∈ U , the trajectory τ (x)

from x converges to x∗.

We shall often drop the caveat “local”: note that local attraction or local

stability is to be distinguished from the property of global stability of a

dynamical system: (S, α) is globally stable if for all x ∈ S, the trajectory

τ (x) converges to the unique fixed point x∗. Theorem 2.1 deals with

global stability.

A fixed point x∗ of α is repelling if there is an open set U containing

x∗ such that for any x ∈ U , x �= x∗, there is some k ≥ 1, αk(x) /∈ U .

Consider a dynamical system (S, α) where S is a (nondegenerate)

closed interval [a, b] and α is continuous on [a, b]. Suppose that α is
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8 Dynamical Systems

also continuously differentiable on (a, b). A fixed point x∗ ∈ (a, b) is

hyperbolic if |α′(x∗)| �= 1.

Proposition 2.3 Let S = [a, b] and α be continuous on [a, b] and con-

tinuously differentiable on (a, b). Let x∗ ∈ (a, b) be a hyperbolic fixed

point of α.

(a) If |α′(x∗)| < 1, then x∗ is locally stable.

(b) If |α′(x∗)| > 1, then x∗ is repelling.

Proof.

(a) There is some u > 0 such that |α′(x)| < m < 1 for all x in I =
[x∗ − u, x∗ + u]. By the mean value theorem, if x ∈ I ,

|α(x) − x∗| = |α(x) − α(x∗)| ≤ m|x − x∗| < mu < u.

Hence, α maps I into I and, again, by the mean value theorem, is a

uniformly strict contraction on I . The result follows from Theorem 2.1.

(b) this is left as an exercise.

We can define “a hyperbolic periodic point of period k” and define

(locally) attracting and repelling periodic points accordingly.

Let x0 be a periodic point of period 2 and x1 = α(x0). By defini-

tion x0 = α(x1) = α2(x0) and x1 = α(x0) = α2(x1). Now if α is differ-

entiable, by the chain rule,

[α2(x0)]′ = α′(x1)α′(x0).

More generally, suppose that x0 is a periodic point of period k and its

orbit is denoted by {x0, x1, . . . , xk−1}. Then,

[αk(x0)]′ = α′(xk−1) · · · α′(x0).

It follows that

[αk(x0)]′ = [αk(x1)]′ · · · [αk(xk−1)]′.

We can now extend Proposition 2.3 appropriately.

While the contraction property of α ensures that, independent of the

initial condition, the trajectories enter any neighborhood of the fixed

point, there are examples of simple nonlinear dynamical systems in

which trajectories “wander around” the state space. We shall examine

this feature more formally in Section 1.3.
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1.2 Basic Definitions: Fixed and Periodic Points 9

Example 2.1 Let S = R, α(x) = x2. Clearly, the only fixed points of α

are 0, 1. More generally, keeping S = R, consider the family of dynam-

ical systems αθ (x) = x2 + θ , where θ is a real number. For θ > 1/4, αθ

does not have any fixed point; for θ = 1/4, αθ has a unique fixed point

x = 1/2; for θ < 1/4, αθ has a pair of fixed points.

When θ = −1, the fixed points of the map α(−1)(x) = x2 − 1 are

[1 +
√

5]/2 and [1 −
√

5]/2. Now α(−1)(0) = −1; α(−1)(−1) = 0.

Hence, both 0 and −1 are periodic points of period 2 of α(−1). It fol-

lows that:

τ (0) = (0, −1, 0, −1, . . .), τ (−1) = (−1, 0, −1, 0, . . .),

γ (−1) = {−1, 0}, γ (0) = {0, −1}.

Since

α2
(−1)(x) = x4 − 2x2,

we see that (i) α2
(−1) has four fixed points: the fixed points of α(−1), and

0, −1; (ii) the derivative of α2
(−1) with respect to x , denoted by [α2

(−1)(x)]′,

is given by

[α2
(−1)(x)]′ = 4x3 − 4x .

Now, [α2
(−1)(x)]′x=0 = [α2

(−1)(x)]′x=−1 = 0. Hence, both 0 and −1 are

attracting fixed points of α2.

Example 2.2 Let S = [0, 1]. Consider the “tent map” defined by

α(x) =
{

2x for x ∈ [0, 1/2]

2(1 − x) for x ∈ [1/2, 1].

Note that α has two fixed points “0” and “2/3.” It is tedious to write out

the functional form of α2:

α2(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4x for x ∈ [0, 1/4]

2(1 − 2x) for x ∈ [1/4, 1/2]

2(2x − 1) for x ∈ [1/2, 3/4]

4(1 − x) for x ∈ [3/4, 1].

Verify the following:

(i) “2/5” and “4/5” are periodic points of period 2.
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10 Dynamical Systems

(ii) “2/9,” “4/9,” “8/9” are periodic points of period 3. It follows from

a well-known result (see Theorem 3.1) that there are periodic points of

all periods.

By using the graphs, if necessary, verify that the fixed and periodic

points of the tent map are repelling.

Example 2.3 In many applications to economics and biology, the state

space S is the set of all nonnegative reals, S = R+. The law of motion

α : S → S has the special form

α(x) = xβ(x), (2.11′)

where β(0) ≥ 0, β : R+ → R+ is continuous (and often has additional

properties). Now, the fixed points x̂ of α must satisfy

α(x̂) = x̂

or

x̂[1 − β(x̂)] = 0.

The fixed point x̂ = 0 may have a special significance in a particular

context (e.g., extinction of a natural resource). Some examples of α

satisfying (2.11′) are

(Verhulst 1845) α(x) =
θ1x

x + θ2

, θ1 > 0, θ2 > 0.

(Hassell 1975) α(x) = θ1x(1 + x)−θ2 , θ1 > 0, θ2 > 0.

(Ricker 1954) α(x) = θ1xe−θ2x , θ1 > 0, θ2 > 0.

Here θ1, θ2 are interpreted as exogenous parameters that influence the

law of motion α.

Assume that β(x) is differentiable at x ≥ 0. Then,

α′(x) = β(x) + xβ ′(x).

Hence,

α′(0) = β(0).

For each of the special maps, the existence of a fixed point x̂ �= 0 and the

local stability properties depend on the values of the parameters θ1, θ2.

We shall now elaborate on this point.
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