Hydrology

Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. This textbook presents a coherent introduction to many of the concepts and relationships needed to describe the distribution and transport of water in the natural environment.

Continental water transport processes take place above, on and below the Earth's surface, and consequently the book is split into four main parts. Part I deals with water in the atmosphere. Part II introduces the transport of water on the surface. Water below the surface is the subject of Part III. Part IV is devoted to flow phenomena at the basin scale and statistical concepts useful in the analysis of hydrologic data. Finally, the book closes with a brief history of ideas concerning the hydrologic cycle. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics.

Hydrology – An Introduction is a textbook that covers the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the past 30 years. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other Earth sciences.

WILFRIED BRUTSAERT is William L. Lewis Professor of Engineering at Cornell University. In a long and prestigious career in the research and teaching of hydrology, Professor Brutsaert has received many awards and honors, including: the Hydrology Award and Robert E. Horton Medal, American Geophysical Union; President, Hydrology Section, American Geophysical Union, from 1992 to 1994, Fellow of the American Geophysical Union and American Meteorological Society; the Ray K. Linsley Award, American Institute of Hydrology; Walter B. Langbein Lecturer, American Geophysical Union; International Award, Japan Society of Hydrology & Water Resources; Jule G. Charney Award, American Meteorological Society. He is a member of the National Academy of Engineering and has published two previous books, *Evaporation into the Atmosphere: Theory, History and Applications* (D. Reidel Publishing Company, 1982), and *Gas Transfer at Water Surfaces* (with G. H. Jirka, D. Reidel Publishing Company, 1984). He has authored and co-authored more than 170 journal articles.

HYDROLOGY AN INTRODUCTION

WILFRIED BRUTSAERT

Cornell University

Cambridge University Press 0521824796 - Hydrology: An Introduction Wilfried Brutsaert Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521824798

© W. Brutsaert 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this book is available from the British Library

Library of Congress Cataloging in Publication data

ISBN-13 978-0-521-82479-8 hardback ISBN-10 0-521-82479-6 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

www.cambridge.org

1

Cambridge University Press 0521824796 - Hydrology: An Introduction Wilfried Brutsaert Frontmatter More information

CONTENTS

Foreword	page ix
Note on the text	xii
Introduction	1
1.1 Definition and scope	1
1.2 The hydrologic cycle	2
1.3 Some estimates of the global water balance	3
1.4 Methodologies and procedures	7
1.5 Conservation laws: the equations of motion	12
References	18
Problems	19

Part I Water in the atmosphere

2	Water aloft: fluid mechanics of the lower atmosphere	23
	2.1 Water vapor in air	23
	2.2 Hydrostatics and atmospheric stability	28
	2.3 Turbulent transport of water vapor	34
	2.4 The atmospheric boundary layer	36
	2.5 Turbulence similarity	41
	2.6 Surface boundary condition: the energy budget constraint	55
	References	72
	Problems	76
3	Precipitation	79
	3.1 Formation of precipitation	79
	3.2 Major precipitation weather systems	82
	3.3 Precipitation distribution on the ground	92
	3.4 Interception	100
	3.5 Reliability of operational precipitation measurements	106
	References	111
	Problems	116

Cambridge University Press 0521824796 - Hydrology: An Introduction Wilfried Brutsaert Frontmatter <u>More information</u>

CONTENTS

4	Evaporation	117
	4.1 Evaporation mechanisms	117
	4.2 Mass transfer formulations	118
	4.3 Energy budget and related formulations	123
	4.4 Water budget methods	142
	4.5 Evaporation climatology	148
	References	151
	Problems	156

Part II Water on the surface

5	Water on the land surface: fluid mechanics of free surface flow	161
	5.1 Free surface flow	161
	5.2 Hydraulic theory: shallow water equations	163
	5.3 Friction slope	167
	5.4 General considerations and some features of free surface flow	174
	References	194
	Problems	196
6	Overland flow	198
	6.1 The standard formulation	198
	6.2 Kinematic wave approach	201
	6.3 Lumped kinematic approach	210
	References	213
	Problems	213
7	Streamflow routing	216
	7.1 Two extreme cases of large flood wave propagation	217
	7.2 A lumped kinematic approach: the Muskingum method	224
	7.3 Estimation of the Muskingum parameters	232
	References	241
	Problems	242

Part III Water below the surface

s 249
249
251
268
287
298
303
]

vi

CON	TENTS	vii
9	Infiltration and related unsaturated flows	307
	9.1 General features of the infiltration phenomenon	307
	9.2 Infiltration in the absence of gravity: sorption	310
	9.3 Infiltration capacity	326
	9.4 Rain infiltration	332
	9.5 Catchment-scale infiltration and other "losses"	343
	9.6 Capillary rise and evaporation at the soil surface	346
	References	357
	Problems	361
10	Groundwater outflow and base flow	366
	10.1 Flow in an unconfined riparian aquifer	366
	10.2 Free surface flow: a first approximation	377
	10.3 Hydraulic groundwater theory: a second approximation	382
	10.4 Linearized hydraulic groundwater theory: a third approximation	398
	10.5 Kinematic wave in sloping aquifers: a fourth approximation	415
	10.6 Catchment-scale base flow parameterizations	416
	References	431
	Problems	433
Part	IV Flows at the catchment scale in response to precipitation	
11	Streamflow generation: mechanisms and parameterization	441
	11.1 Riparian areas and headwater basins	441
	11.2 Storm runoff mechanisms in riparian areas	443
	11.3 Summary of mechansims and parameterization options	457
	References	461
12	Streamflow response at the catchment scale	465
	12.1 Stationary linear response: the unit hydrograph	465
	12.2 Identification of linear response functions	472
	12.3 Stationary nonlinear lumped response	493
	12.4 Non-stationary linear response	498
	References	501 503
	Problems	505
13	Elements of frequency analysis in hydrology	509
	13.1 Random variables and probability	509
	13.2 Summary descriptors of a probability distribution function	511
	13.3 Some probability distributions for discrete variables	519
	13.4 Some probability distributions for continuous variables	523
	13.5 Extension of available records	543
	References	550
	Problems	553

Cambridge University Press 0521824796 - Hydrology: An Introduction Wilfried Brutsaert Frontmatter More information

CON	TENTS	viii
14	Afterword – a short historical sketch of theories about the water	
	circulation on Earth	557
	14.1 Earliest concepts: the atmospheric water cycle	557
	14.2 Greek antiquity	559
	14.3 The Latin era	566
	14.4 From philosophy to science by experimentation	572
	14.5 Closing comments	585
	References	586
Арр	endix Some useful mathematical concepts	590
	A1 Differentiation of an integral	590
	A2 The general response of a linear stationary system	590
	A3 The general response of a nonlinear system	597
	References	598
	Index	599

FOREWORD

Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. The goal of this book is to present a coherent introduction to some of the concepts and relationships needed to describe the distribution and transport of water in the natural environment. Thus it is an attempt to provide a more thorough understanding, and to connect the major paradigms that bear upon the hydrologic cycle, that is the never-ending circulation of water over the continents of the Earth.

Continental water transport processes take place above, on and below the Earth's landsurfaces. Accordingly, in Part I, water is considered as it passes through the lower atmosphere; this part consists of a general description of atmospheric transport in Chapter 2, followed by the application of these concepts to precipitation and evaporation in Chapters 3 and 4, respectively. In Part II, water transport on the Earth's surface is dealt with; this part consists of a general description of the hydraulics of free surface flow in Chapter 5, which is then applied to overland runoff and streamflow routing in rivers in Chapters 6 and 7, respectively. Water below the surface is the subject of Part III; again, a general introduction to flow in porous materials in Chapter 8 is followed by applications to phenomena involving infiltration and capillary rise in Chapter 9, and groundwater drainage and baseflow in Chapter 10. Part IV is devoted to flow phenomena, mostly fluvial runoff, in response to precipitation at the catchment and river basin scales, which result from the combination of flows both above and below the Earth's surface, already treated at smaller scales separately in Parts II and III. Various interactions of these flow phenomena and the major paradigms regarding the subscale mechanisms are described in Chapter 11. This is followed by a treatment of the available parameterizations in Chapter 12. In Chapter 13 the fourth part of the book concludes with a brief description of some of the more common statistical concepts that are useful in the analysis of hydrologic data. Finally, as an afterword, Chapter 14 closes the book with a brief history of the ideas on the water cycle, which over the centuries evolved to our present understanding; Santayana's dictum may be a bit worn by now, but several recent reinventions of the hydrologic wheel could have been avoided, if the past had been better remembered.

These transport phenomena in the hydrologic cycle on land are treated at spatial and temporal scales, at which they are commonly encountered in everyday life and at which they are tractable with presently available data. Hydrology is a physical science, and the language of physics is mathematics. Accordingly, plausible assumptions are introduced and the mathematical formulations and parameterizations are derived, which describe the

Cambridge University Press 0521824796 - Hydrology: An Introduction Wilfried Brutsaert Frontmatter More information

FOREWORD

more relevant mechanisms involved in the different phases of the continental hydrologic cycle. The resulting equations are then examined and, if possible, solved for certain prototype situations and boundary conditions. The motivation for this is, first, to gain a better understanding of their structure and underlying assumptions, and of the physics they are intended to represent; and second, to provide the basis and background for more complex modeling exercises, simulations and predictions in practical applications.

The subject material covered in this book grew out of the lecture notes for my courses in hydrology and related topics in the School of Civil and Environmental Engineering, at Cornell University. I have not tried to cover all possible angles and points of view of the subject matter. Rather, I have followed a line of thought, which over the years I have come to find effective in conveying a broad understanding of the more important phenomena, and in stimulating further inquiry in the subject. Similarly, no attempt has been made to compile a complete bibliography. But the references that are listed refer to other works, so that it should be possible to trace back the more important developments.

As its subtitle indicates, this book is intended as an introduction; as such, it should be suitable as a textbook for an entry-level course in hydrology directed at advanced seniors and beginning graduate students in engineering and physical science, who have a working knowledge of calculus and basic fluid mechanics. The book contains much more material than can reasonably be covered in a first course. Thus it will depend on the objectives of the course, and on the orientation and level of the students, which specific topics should be selected for coverage. Naturally, the instructor should be the ultimate judge in this. However, to facilitate this selection, the text is printed in two different type formats. The main subject matter, which in the experience of the author can be suggested for inclusion in a first course, is presented in regular type. An effort has been made to lay out this part of the text in such a way that the student should be able to grasp the material with little or no reliance on the more advanced sections. For certain topics, clarification by an experienced instructor in the lectures will undoubtedly be helpful. Subject matter of a more advanced or specialized nature, is printed as indented text in a slightly smaller type and with a grey rule on the left-hand side of the page. This material is intended either as optional or explanatory reading for the first course, or as subject matter to be covered in a second and more advanced course. Sections of this second type of material have also been used as major portions in more specialized courses, namely in Groundwater Hydrology (Chapters 8, 9 and 10) and in Boundary Layer Meteorology (Chapters 2, 3 and 4) at Cornell.

The book is intended mainly for students of hydrology; it should, however, also be more broadly of interest to professional scientists and engineers, who are active in environmental matters, meteorology, agronomy, geology, climatology, oceanology, glaciology and other Earth sciences, and who wish to study some of the underlying concepts of hydrology, relevant to their discipline. In addition, it is hoped that the book

х

FOREWORD

xi

will be of use to workers in fluid dynamics, who want to become acquainted with applications to some intriguing and fascinating phenomena in nature.

Wilfried Brutsaert

Ter nagedachtenis van mijn ouders Godelieve S. G. Bostijn (-B.) en Daniel P. C. B. 妻トヨに捧げる And to the life of Siska, Hendrik, Erika and Karl.

NOTE ON THE TEXT

Readers should note that more advanced material in this book is printed in smaller type than the main subject matter, with a grey rule in the left-hand margin. A fuller explanation may be found in the Foreword.